Paramètres d’exposition de l’Homme du logiciel MODUL’ERS
PARAMÈTRES D’EXPOSITION DE L’HOMME DU MODÈLE MODUL’ERS

Rapport réalisé pour le Ministère de la Transition écologique et solidaire
PRÉAMBULE

Le présent rapport a été établi sur la base des informations fournies à l'INERIS, des données (scientifiques ou techniques) disponibles et objectives et de la réglementation en vigueur.

La responsabilité de l'INERIS ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes ou erronées.

Les avis, recommandations, préconisations ou équivalent qui seraient portés par l'INERIS dans le cadre des prestations qui lui sont confiées, peuvent aider à la prise de décision. Etant donné la mission qui incombe à l'INERIS de par son décret de création, l'INERIS n'intervient pas dans la prise de décision proprement dite. La responsabilité de l'INERIS ne peut donc se substituer à celle du décideur.

Le destinataire utilisera les résultats inclus dans le présent rapport intégralement ou sinon de manière objective. Son utilisation sous forme d'extraits ou de notes de synthèse sera faite sous la seule et entière responsabilité du destinataire. Il en est de même pour toute modification qui y serait apportée.

L'INERIS dégage toute responsabilité pour chaque utilisation du rapport en dehors de la destination de la prestation.
TABLE DES MATIÈRES

1. PARAMETRES TRAITES .. 8
2. DEFINITION DES CLASSES D’AGE .. 8
3. ALIMENTATION .. 10
 3.1 Données utilisées pour définir les quantités consommées .. 10
 3.2 Données utilisées pour définir la part des aliments exposée à la contamination 14
 3.3 Viande de volaille ... 14
 3.4 Viande porcine ... 15
 3.5 Viande Bovine et autres viandes .. 16
 3.6 Produits laitiers .. 17
 3.7 Œufs .. 18
 3.8 Fruits ... 19
 3.9 Tubercules .. 20
 3.10 Légumes-feuilles .. 21
 3.11 Légumes-fruits ... 23
 3.12 Légumes-racines .. 24
 3.13 Poissons d’eau douce .. 25
 3.14 Quantité journalière d’eau du robinet consommée ... 27
4. INGESTION DE SOL ... 29
 4.1 Définition du paramètre ... 29
 4.2 Données bibliographiques .. 29
 4.3 Valeurs proposées dans MODUL’ERS .. 37
5. MASSE CORPORELLE .. 43
6. HAUTEUR DE RESPIRATION ... 45
7. BUDGET ESPACE-TEMPS .. 46
 7.1 Fraction de temps à l’intérieur ... 46
 7.2 Fraction de temps à l’extérieur ... 47
8. REFERENCES BIBLIOGRAPHIQUES ... 49
LISTE DES TABLEAUX

Tableau 1 : Masse de viande de volaille consommée par jour 15
Tableau 2 : Part de la consommation de viande de volaille, exposée à la contamination – f_animal1_exp .. 15
Tableau 3 : Masse de viande issue du porc consommée par jour 16
Tableau 4 : Part de la consommation de viande porcine, exposée à la contamination – f_animal1_exp ... 16
Tableau 5 : Masse de viande bovine et autres viandes consommées par jour 17
Tableau 6 : Part de la consommation de viande bovine et autres viandes, exposée à la contamination – f_animal1_exp 17
Tableau 7 : Masse de produits laitiers consommés par jour 18
Tableau 8 : Part de la consommation de produits laitiers, exposée à la contamination – f_laitier1_exp ... 18
Tableau 9 : Masse d’œufs consommés par jour .. 19
Tableau 10 : Part de la consommation d’œufs, exposée à la contamination – f_laitier2_exp .. 19
Tableau 11 : Masse de fruits consommés par jour – Qveg (kg frais/j) 20
Tableau 12 : Part de la consommation de fruits, exposée à la contamination – f_veg_exp .. 20
Tableau 13 : Masse de tubercules consommés par jour – Qveg (kg frais/j) 21
Tableau 14 : Part de la consommation de tubercules, exposée à la contamination – f_veg_exp .. 21
Tableau 15 : Masse de légumes-feuilles consommés par jour – Qveg (kg frais/j) ... 22
Tableau 16 : Part de la consommation de légumes-feuilles, exposée à la contamination – f_veg_exp .. 22
Tableau 17 : Masse de légumes-fruits consommés par jour – Qveg (kg frais/j) 23
Tableau 18 : Part de la consommation de légumes-fruits, exposée à la contamination – f_veg_exp .. 23
Tableau 19 : Masse de légumes-racines consommés par jour – Qveg (kg frais/j)... 24
Tableau 20 : Part de la consommation de légumes-racines, exposée à la contamination – f_veg_exp .. 24
Tableau 21 : Masse de poissons ingérés par jour en population générale – Qanimal_aq .. 26
Tableau 22 : Masse de poissons d’eau douce ingérés par jour dans les foyers de pêcheurs amateurs – Qanimal_aq (kg frais/j) 27
Tableau 23 : Volume d’eau du robinet consommée par jour – Qeau (l/j) 28
Tableau 24 : Valeurs utilisées pour la définition d’une valeur centrale de la quantité de sol ingéré par les enfants 38
Tableau 25 : Valeurs utilisées pour la définition d’une valeur centrale de la quantité de sol ingéré par les adultes 40
Tableau 26 : Quantité de sol ingéré par jour – Qsol (mg/j) 40
Tableau 27 : Masse corporelle de la cible (kg) - B_w ... 45
Tableau 28 : Hauteur de respiration (m) - H_{resp} .. 45
Tableau 29 : Fraction de temps passé à l’intérieur du logement (-) f_{annuelle_temps_int} ... 46
Tableau 30 : Fraction de temps passé à l’extérieur (sur ou près du lieu d’habitation) (-) f_{annuelle_temps_ext} ... 48
RESUME

L’INERIS met à disposition l’outil de modélisation et de simulation MODUL’ERS pour estimer les concentrations, les expositions et les risques sanitaires liées à un sol contaminé ou une installation classée pour l’environnement.

Pour faciliter l’utilisation de cet outil, des valeurs sont proposées dans le logiciel pour renseigner les données d’entrée. Des rapports sont fournis pour exposer la manière dont ces valeurs ont été définies (sources de données consultées, hypothèses et choix effectués).

Le présent document réunit les informations collectées et sélectionnées pour renseigner les paramètres d’exposition des cibles humaines. Les données traitées concernent les quantités des différents aliments d’origine végétale et animale consommés par jour, la fraction de ces aliments, exposée à la contamination du site, les quantités de sol et d’eau de consommation ingérés, les fractions de temps passé à l’intérieur et à l’extérieur sur le site, la masse corporelle et les hauteurs de respiration. Ces données ont été définies pour sept classes d’âge différentes.

Ce travail s’appuie sur des informations recueillies dans des publications scientifiques et des rapports d’étude d’instituts scientifiques.

Pour la plupart des paramètres, une valeur dite centrale, généralement la valeur moyenne dans la population (sauf pour la part des produits d’origine animale consommés et exposés à la contamination du site), est donnée. Un intervalle de valeurs ou une valeur conservatoire peut aussi être fourni. Les valeurs proposées dans les cases « Value » du logiciel, correspondent aux valeurs centrales.

Enfin, il convient de rappeler que l’utilisateur du logiciel doit vérifier la pertinence des valeurs proposées pour son cas d’étude et utiliser des valeurs plus adaptées si nécessaires, en justifiant ces modifications dans le rapport d’étude.
1. PARAMETRES TRAITES
L’INERIS met à disposition l’outil de modélisation et de simulation MODUL’ERS pour estimer les concentrations, les expositions et les risques sanitaires liés à un sol contaminé ou aux émissions d’une installation classée pour l’environnement. Des valeurs, des intervalles de valeurs ou/distributions de valeurs ont été prédéfinis et sont fournis par défaut dans le logiciel pour renseigner les données d’entrée.
Les documents relatifs à ces données d’entrée, disponibles dans le répertoire « Mes documents\MODULERS\Documents\Deliverables\Donnees_entrees » ont deux objectifs :
• présenter la manière dont les valeurs proposées pour les renseigner ont été définies (sources de données consultées, hypothèses et choix effectués) ;
• permettre aux utilisateurs de savoir si ces valeurs sont adaptées à leur cas d’étude, et sinon les aider à compléter le travail de définition des données d’entrée, en repartant de la recherche et de l’analyse bibliographiques déjà effectuées.
Le présent rapport s’intéresse aux paramètres permettant de calculer les niveaux d’exposition à partir des concentrations dans les milieux. Dans MODUL’ERS, ces paramètres (masse corporelle, hauteur de respiration, masses des différents aliments d’origine végétale et animale consommés par jour, fractions de ces aliments exposées à la contamination du site, quantités de sol et d’eau de consommation ingérées, fractions de temps passé à l’intérieur et à l’extérieur sur le site) sont définis au sein des modules relatifs aux milieux. Les paramètres pouvant être utilisés de manière commune par plusieurs modules ont également été regroupés dans les modules Par_Expo et Par_Emission_Air.

2. DEFINITION DES CLASSES D’AGE
MODUL’ERS permet à l’utilisateur de définir de 1 à 10 classes d’âge pour estimer les niveaux d’exposition et de risque de manière plus ou moins précise, en fonction des besoins et des données disponibles.
D’une manière générale, les enfants sont des cibles plus sensibles aux contaminants que les adultes. En scénario résidentiel, leur niveau d’exposition, compte-tenu de leur activité (contact main-bouche,...) et de leur poids est généralement plus élevé que celui des adultes (Bonnard, 2003 ; INERIS, 2008). Il apparaît donc important de définir des classes d’âge suffisamment étroites durant l’enfance, pour pouvoir prendre en compte les conditions d’exposition spécifiques des jeunes enfants et ne pas sous-estimer leurs niveaux d’exposition et de risque, en les « diluant » dans ceux des classes plus âgées. Cet objectif de précision doit toutefois tenir compte des données disponibles pour renseigner les paramètres. Les niveaux de risque calculés pour chacune des classes d’âge doivent également correspondre à des expositions de type chronique, d’où une étendue des classes d’âge égale à un an au minimum.
Compte-tenu de ces impératifs, sept classes d’âge ont été prédéfinies dans MODUL’ERS :
• classe 1 : de 0 à 1 an,
• classe 2 : de 1 à 3 ans,
• classe 3 : de 3 à 6 ans,
• classe 4 : de 6 à 11 ans,
• classe 5 : de 11 à 15 ans,
• classe 6 : de 15 à 18 ans,
• classe 7 : les plus de 18 ans,

Chaque classe d’âge inclut la borne inférieure et exclut la borne supérieure.
Le découpage retenu est en grande partie lié aux sources d'informations disponibles pour définir les quantités d’aliments ingérés (cf. section 3).
3. ALIMENTATION

La bibliothèque de MODUL’ERS contient un module *Nouveau_Vegetal* et un module *Nouvel_animal*, permettant de calculer les doses d’exposition liées respectivement à l’ingestion de produits d’origine végétal et de produits d’origine animale. Ces deux modules ont été déclinés en plusieurs versions pré-paramétrées, pour calculer les doses d’exposition liées aux consommations de légumes-feuilles, légumes-fruits, fruits, légumes-racines et tubercules d’une part et consommations de viande bovine, de viande porcine, de viande de volaille, d’œufs et de produits laitiers. La bibliothèque de MODUL’ERS contient également un module *Animaux_aquatiques* pour prendre en compte des expositions liées à l’ingestion de poissons. Enfin, un module *Eaux_souterraines* et un module *Eaux_superficielles* permettent de calculer les doses d’exposition liées à l’eau d’alimentation.

Pour chacun des aliments considérés dans les modules pré-paramétrés, les quantités journalières consommées par l’Homme sont fournies pour les sept classes d’âge présentées ci-dessus, ainsi qu’un facteur représentant la fraction d’aliments exposée à la contamination du site étudié.

3.1 DONNEES UTILISEES POUR DEFINIR LES QUANTITES CONSOMMEES

Cinq sources d’information accessibles au public ont été recensées pour renseigner les quantités d’aliments solides, consommés par la population française en fonction de l’âge. Toutes présentent néanmoins des limites. Des sources les plus anciennes au plus récentes, on trouve :

- le rapport de l’AFSSA sur l’exposition théorique des nourrissons et enfants en bas âge aux résidus de pesticides, apportés par les aliments courants et infantiles (AFSSA, 2002). Cette étude est basée sur les données de consommation alimentaire de l’enquête Alliance 7-Sofres-CHU/Dijon, réalisée en 1997 par la SOFRES pour le Syndicat Français des Aliments de l’Enfance. L’enquête a porté sur un échantillon d’enfants, qui n’étaient pas nourris au sein, représentatif en termes de localisation géographique, de taille de commune et de catégorie socio-professionnelle du chef de famille. Les données de consommation ont été recueillies pendant trois jours consécutifs par les parents. A partir de ces données, l’AFSSA a réparti les enfants de 15 jours à 18 mois en quatre classes d’âge, correspondant aux grandes étapes de diversification de l’alimentation et a décomposé les aliments (hors aliments infantiles) en ingrédients simples pour estimer les consommations journalières moyennes d’aliments susceptibles de contenir des résidus de pesticides. A l’exception du poisson, ce travail couvre les types d’aliments dont les consommations sont à renseigner dans MODUL’ERS. Des enquêtes plus récentes ont été réalisées sur les enfants de 0 à 3 ans pour le Syndicat Français des Aliments de l’Enfance, mais les données de base n’ont pas été publiées.

réalisés sur quatre périodes de l’année différentes, afin de tenir compte de la saisonsnalité des consommations alimentaires. Le rapport donne les consommations moyennes et les taux de consommateurs sur une semaine de différentes catégories d’aliments pour les enfants, répartis sur des classes d’âge de trois ans, et pour les adultes, avec des classes d’âge de dix ans.

Dans ce rapport, les données sont parfois fournies pour des catégories d’aliments insuffisamment précises par rapport aux besoins recensés dans MODUL’ERS. Par exemple, les quantités de légumes consommés sont données sans distinction entre les différents types de légumes, de même pour la viande de boucherie.

- la base de données CIBLEX (ADEME, 2003). Elle donne les quantités d’aliments consommés :
 - pour les enfants de 0 à 2 ans basées sur des recommandations de spécialistes et d’enquêtes réalisées autour de sites nucléaires ;

Contrairement aux valeurs du rapport de Volatier (2000), les données de consommation présentées concernent les seuls consommateurs. Or, l’utilisation d’indicateurs basés sur les seuls consommateurs tend à surestimer de manière significative l’estimation des consommations dans la population totale quand les taux de consommation des aliments sont relativement faibles. L’utilisation de valeurs pour les seuls consommateurs pour les différents aliments aboutit aussi à l’établissement d’un régime alimentaire pour un individu non réaliste et majorant.

Par ailleurs, les classes d’âge et les catégories d’aliments considérées sous CIBLEX sont différentes de celles fournies dans le rapport INCA 1. Il est indiqué dans l’outil que pour des besoins de cohérence avec les autres données, des équivalences ont été faites entre les classes d’âge de l’étude INCA et de CIBLEX. Toutefois, la manière dont les valeurs ont été redéfinies n’est pas précisée (calcul à partir des données brutes de l’enquête initiale ou simple attribution des données calculées pour une classe d’âge de l’étude INCA à une classe d’âge de CIBLEX ?).

Les consommations d’aliments recherchées pour MODUL’ERS sont renseignées selon des regroupements d’aliments identiques à ceux de l’étude INCA 1. En revanche, les données sont segmentées en un nombre plus réduit de classes d’âge. Ainsi, les données pour les enfants sont réparties entre les classes allant de 3 à 10 ans, de 11 à 14 ans et de 15 à 18 ans, d’où une perte relative d’information entre 3 et 10 ans par rapport à l’étude INCA 1.
Le fichier Excel des consommations alimentaires dans différents pays européens, sur le site de l'European Food Safety Authority (EFSA, 2011). Pour la France, les données sont issues de l'enquête INCA 2. Les données de consommation ne sont fournies que pour cinq groupes (les enfants de 3 à 10 ans, les jeunes de 10 à 18 ans, les adultes de 18 à 65 ans, les personnes de 65 à 75 ans et les plus de 75 ans), mais contrairement aux sources citées ci-dessous, elles sont rapportées au poids de chaque individu. La prise en compte de la masse corporelle est un point important. Utiliser des consommations alimentaires qui ne sont pas rapportées à la masse corporelle tend en effet à majorer la variabilité des quantités consommées dans la population : un individu de faible corpulence ayant moins de chance qu’un individu de forte corpulence de faire partie des plus gros mangeurs. Par rapport au document INCA 2, des données supplémentaires sont également disponibles dans ce fichier : les percentiles 5, 10, 95, 97,5 et 99 sont listés. En revanche, les catégories alimentaires définies sont moins précises que dans le rapport INCA 2. Par ailleurs, contrairement aux informations statistiques fournies par l’AFSSA, il semble que celles de l’EFSA soient présentées sans redressement préalable des données individuelles par rapport aux données démographiques françaises, et sans suppression des enregistrements correspondant à des individus jugés sous-déclarants.

Les données de ces différentes sources d'informations posent des problèmes de représentativité de la consommation alimentaire dans la population sur le long terme. En effet, elles reposent toutes sur des enquêtes relevant les consommations individuelles sur de courtes périodes (sept jours pour les enquêtes INCA), sans information sur les fréquences de consommation. Il n’est donc pas possible de distinguer les consommateurs occasionnels des consommateurs réguliers d’un aliment. Aussi, les percentiles élevés de la distribution de ces données surévaluent la variabilité des consommations dans la population sur le long terme. De plus, aucune des sources citées ne tient compte des corrélations entre les consommations des différents aliments. Ne pas prendre en compte ces corrélations tend aussi à majorer la variabilité des consommations alimentaires. Par exemple, une personne ne buvant pas de lait, consomme peut-être plus de fromages et de yaourts qu’une personne qui boit du lait, et aura peut-être une consommation équivalente de produits laitiers.

Compte-tenu des limites exposées ci-dessus, il n’a pas semblé opportun d’utiliser directement un ou plusieurs percentiles des distributions définies dans certaines de ces sources. Les consommations de certains aliments ayant également évoluées de manière sensible entre l’étude INCA 1 et l’étude INCA 2, les données fournies par l’AFSSA et issues de la dernière enquête ont été préférées, malgré une information moins fine pour les enfants entre 3 et 10 ans.

1 Par exemple, pour le lait, d'après l'enquête INCA 1, les consommations moyennes des enfants de 3 à 5 ans, de 6 à 8 ans et de 9 à 11 ans sont respectivement égales à 247,1 g/j, 232 g/j et 201,3 g/j (source Volatier, 2000), tandis que d'après l'enquête INCA 2, la consommation moyenne des enfants de 3 à 10 ans est de 196,6 g/j (source AFSSA, 2009).
Modalités d’estimation des quantités consommées

Les consommations alimentaires ont été définies à partir des moyennes fournies dans le rapport de l’AFSSA de 2009 pour les classes d’âge 2 à 7 et de celles fournies dans le rapport de l’AFSSA de 2002 pour la classe d’âge 1 (0-1 an).

Ce rapport donne des valeurs pour des classes d’âge plus fines, à partir desquelles les données ont été calculées pour les enfants de 0 à 1 an.

A l’inverse, la classe des enfants de 3 à 10 ans définie dans la dernière étude INCA disponible (AFSSA, 2009) a été scindée en deux pour tenir compte, de manière plus précise, des évolutions physiologiques durant cette période. Avec une seule classe pour couvrir les enfants de 3 à 10 ans, la masse corporelle aurait été doublée d’une classe à une autre.

Pour la classe d’âge 2 (allant de 1 à 3 ans), qui n’est pas couverte en totalité par les enquêtes citées, les valeurs ont été calculées en utilisant les consommations alimentaires de la classe 3 (enfants de 3 à 6 ans) et celles définies pour les enfants de 13 à 18 mois dans l’étude Alliance 7-SOFRES-CHU/Dijon, et en appliquant une pondération à ces valeurs. Cette pondération est basée sur les distances entre le milieu de la classe d’âge à renseigner et celui des classes d’âge dont les données sont utilisées\(^2\).

Enfin, une seule classe d’âge a été définie au-delà de 18 ans, car, même si les conditions d’exposition des personnes adultes évoluent avec l’âge, l’impact de ces changements paraît plus limité sur les valeurs.

Du fait des limites liées aux données publiées, MODUL’ERS ne présente pas d’intervalle de valeurs pour les consommations alimentaires. Toutefois, les rapports « Percentile 97,5 sur moyenne » calculés pour les groupes de la population et les catégories d’aliments du fichier Excel de l’EFSA sont présentés ci-dessous pour donner une indication des variations possibles des consommations alimentaires. Ces valeurs doivent être considérées comme des ordres de grandeur, car elles ne tiennent pas compte des fréquences de consommation des personnes incluses dans l’enquête et les catégories définies par l’EFSA sont différentes de celles utilisées dans MODUL’ERS.

Enfin, les consommations alimentaires de produits d’origine animale sont exprimées en poids frais et en poids de matières grasses. Les valeurs en matières grasses ont été calculées à partir du pourcentage de matières grasses des aliments, définies dans le document de juin 2000 de l’AFSSA sur la contamination et l’exposition de la population aux dioxines, et éventuellement de la fraction représentée par chaque aliment dans la consommation globale d’une catégorie d’aliments.

\(^2\) Par exemple, la valeur de la variable X relative à la classe 2 est calculée de la manière suivante :

\[
X_{\text{classe_age2}} = \frac{X_{1-1,5\text{ans}} \times (Y_{\text{classe_age2}} - Y_{1-1,5\text{ans}})^{-1} + X_{3-6\text{ans}} \times (Y_{3-6\text{ans}} - Y_{\text{classe_age2}})^{-1}}{(Y_{\text{classe_age2}} - Y_{1-1,5\text{ans}})^{-1} + (Y_{3-6\text{ans}} - Y_{\text{classe_age2}})^{-1}}
\]

Avec \(X_{1-1,5\text{ans}}, X_{3-6\text{ans}}\), les valeurs de la variable X relatives, aux enfants de 1 à 1,5 ans et aux enfants de 3 à 6 ans,

e t \(Y_{\text{classe_age2}}, Y_{1-1,5\text{ans}}\) et \(Y_{3-6\text{ans}}\), le milieu des intervalles d’âge de la classe 2, de l’intervalle allant de 1 à 1,5 ans et de l’intervalle allant de 3 à 6 ans (\(Y_{\text{classe_age2}} = 2\) ans, \(Y_{1-1,5\text{ans}} = 1,25\) an et \(Y_{3-6\text{ans}} = 4,5\) ans).
3.2 DONNEES UTILISEES POUR DEFINIR LA PART DES ALIMENTS EXPOSEE A LA CONTAMINATION

Dans le cadre d’évaluation des risques liés à une source de contamination locale, l’information recherchée concerne la part des aliments produits localement. Il peut s’agir d’aliments produits par les consommateurs eux-mêmes (agriculteurs, personnes possédant un jardin), d’aliments achetés chez des agriculteurs locaux ou d’aliments produits localement par des particuliers et reçus en dons.

Pour l’étude d’imprégnation par les dioxines des populations vivant à proximité d’usines d’ordures ménagères (InVS, 2009), une enquête sur la consommation générale et la consommation de produits locaux a été réalisée en 2005 sur les populations à proximité de huit sites d’UIOM et sur des populations de référence vivant à moins 20 km de ces usines. Cette étude a porté au total sur 1053 personnes.

Au vu de la représentativité des données de l’INSEE pour l’ensemble du territoire national, de la possibilité qu’elles offrent de définir des valeurs spécifiques aux populations d’intérêt comme les agriculteurs et possesseurs de jardins (dans une optique d’élaboration de scénarios agricole et résidentiel avec jardins), les paramètres relatifs aux fractions de produits exposés à la contamination du site étudié ont été définis à partir des publications de l’INSEE (1993, 1994), malgré leur ancienneté.

Les valeurs calculées à partir de l’étude de l’InVS sont cohérentes avec celles obtenues à partir des données de l’INSEE. On peut toutefois noter quelques différences sur les parts de la consommation locale de viande de volaille et d’œufs en population générale, ainsi que sur celle des légumes chez les autoconsommateurs. Ces différences sont rapportées dans les sections suivantes.

Les pourcentages d’autoconsommation, calculés à partir des masses fraîches d’aliments, et supérieurs à 10, ont été arrondis au multiple de 5 le plus proche.

3.3 VIANDE DE VOLAILLE

Les valeurs définies dans cette section sont utilisées dans les modules Poule et Poulet.

3.3.1 QUANTITE DE VIANDE DE VOLAILLE CONSOMMEE

Le tableau suivant donne les consommations de volaille pour les sept classes d’âge définies dans MODUL’ERS. Les valeurs définies à partir des données de l’étude INCA 2 intègrent en fait les consommations de viande de lapins et de gibiers. Le pourcentage de matières grasses pris en compte pour ce type de viande est égal à 6,3.
Tableau 1 : Masse de viande de volaille consommée par jour

Classe d'âge	Qanim1
	(kg/µJ/j)
Classe d'âge 1	2,4.10^{-3}
Classe d'âge 2	1,1.10^{-2}
Classe d'âge 3	1,7.10^{-2}
Classe d'âge 4	1,7.10^{-2}
Classe d'âge 5	2,3.10^{-2}
Classe d'âge 6	2,5.10^{-2}
Classe d'âge 7	3,2.10^{-2}

3.3.2 Part de la consommation de viande de volaille, exposée à la contamination

Un intervalle de valeurs est proposé pour ce paramètre. La borne inférieure correspond à l'autoconsommation pour la population générale, la borne supérieure a été calculée à partir des données relatives à la population agricole.

Tableau 2 : Part de la consommation de viande de volaille, exposée à la contamination – f_anim1_exp

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,20 – 0,75</td>
</tr>
</tbody>
</table>

La valeur en population générale pour les viandes de volaille et de lapins, calculée à partir de données de l’enquête réalisée en 2005 par l’InVS (2009), est plus faible. Elle est égale à 0,11.

3.4 Viande porcine

3.4.1 Quantité de viande consommée issue du porc

Dans le rapport de l’AFSSA (2009), les consommations des différents types de viande, hormis celles de volaille, de lapin, de gibier et la charcuterie, sont regroupées au sein d’une même catégorie. Pour estimer les consommations de viande issue du porc (dont l'exposition présente des modalités différentes des herbivores), cette catégorie a été désagrégée en estimant et en utilisant les pourcentages des différents types de viande consommée.

D’après les données de CIBLEX à l’échelon national, selon les classes d’âge, la viande de volaille représente 24 à 31 % de la consommation totale de viande, la viande porc, incluant la charcuterie, 30 à 34 % et les autres viandes (bœuf, mouton, cheval) 39 à 43 %. D’après l’étude d’imprégnation par les dioxines des populations autour des incinérateurs (InVS, 2008), la viande de volaille et de lapin correspond à 27 % de la viande consommée, la viande de porc et la charcuterie à 34 %, les autres viandes et les abats à 40 %. Ces pourcentages sont quasiment identiques à ceux obtenus pour les adultes dans la base CIBLEX.

Les quantités de viande de porc consommée, regroupant la viande de porc proprement dite et la charcuterie, ont finalement été estimées pour les classes
d’âge 2 à 7 en supposant que ce type de viande représente 34 % de la consommation totale de viande, incluant la charcuterie. La classe d’âge 1 a pu être renseignée directement par les données du rapport de l’AFSSA (2002) donnant les consommations des différents types de viande par les enfants en bas âge.

Le tableau suivant donne les consommations de viande porcine, incluant la viande de porc proprement dite et la charcuterie. Les quantités consommées exprimées en poids de matières grasses ont été calculées en utilisant un pourcentage de matières grasses de 14,9 pour la viande de porc et de 19,3 pour la charcuterie (AFSSA, 2000).

<table>
<thead>
<tr>
<th>Classe d’âge</th>
<th>Qanim1 (kg frais/j)</th>
<th>Qanim1_mg (kg mg/j)</th>
<th>Perc. 97,5 sur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>3,0.10^4</td>
<td>5,4.10^5</td>
<td>-</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>2,2.10^2</td>
<td>4,1.10^3</td>
<td>≈ 2</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>2,5.10^2</td>
<td>4,8.10^3</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>2,5.10^2</td>
<td>4,8.10^3</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>3,2.10^2</td>
<td>6,0.10^3</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>3,4.10^2</td>
<td>6,2.10^3</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>4,0.10^2</td>
<td>7,5.10^3</td>
<td></td>
</tr>
</tbody>
</table>

3.4.2 PART DE LA CONSOMMATION DE VIANDE PORCINE, EXPOSEE A LA CONTAMINATION

Un intervalle de valeurs est proposé pour ce paramètre. La borne inférieure correspond à l’autoconsommation pour la population générale, la borne supérieure a été calculée à partir des données relatives à la population agricole.

<table>
<thead>
<tr>
<th>Tableau 4 : Part de la consommation de viande porcine, exposée à la contamination – f Anim1 Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,04 – 0,30</td>
</tr>
</tbody>
</table>

3.5 VIANDE BOVINE ET AUTRES VIANDES

Les valeurs définies dans cette section sont utilisées dans les modules intitulés Bœuf et Vache.

Cette catégorie regroupe toutes les viandes, à l’exception des viandes porcines, des viandes de volaille, de lapins et de gibiers. Il s’agit donc de la viande bovine proprement dite, de la viande ovine, de la viande de cheval et des abats.

3.5.1 QUANTITE DE VIANDE BOVINE ET AUTRES VIANDES CONSOMMEEES

Pour les classes d’âge 1 et 2, les quantités en matière fraîche ont été renseignées, en soustrayant de la quantité totale de viande consommée les quantités définies ci-dessus pour les catégories « viande de volaille » et « viande porcine ». Pour les classes d’âge 3 à 7, les quantités en matière fraîche ont été renseignées en
soustrayant des données fournies pour la catégorie « viande » du rapport AFSSA (2008), les données estimées pour la viande de porc proprement dite (soit les valeurs de consommation totale de viande issue du porc (Tableau 3) moins la consommation de charcuterie), et en y ajoutant les consommations d’abats.

Les quantités consommées exprimées en poids de matières grasses ont été calculées, en reprenant les valeurs utilisées dans le rapport de l’AFSSA de 2000 :

- soit une répartition de la consommation entre la viande de bœuf d’une part et la viande d’agneau et de veau d’autre part, de 81 % et 19 %,
- des pourcentages de matières grasses de 10,4 pour la viande de bœuf, de 11,7 pour la viande d’agneau et de veau et de 8,5 pour les abats.

Tableau 5 : Masse de viande bovine et autres viandes consommées par jour

<table>
<thead>
<tr>
<th>Classe d’âge</th>
<th>Qanim1 (kg fraîch/j)</th>
<th>Qanim1_mg (kg mg/j)</th>
<th>Perc. 97,5 sur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>8,9.10^{-3}</td>
<td>9,4.10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>3,1.10^{-2}</td>
<td>3,3.10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>3,2.10^{-2}</td>
<td>3,4.10^{-3}</td>
<td>≈ 2</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>3,2.10^{-2}</td>
<td>3,4.10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>3,9.10^{-2}</td>
<td>4,1.10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>3,9.10^{-2}</td>
<td>4,1.10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>4,7.10^{-2}</td>
<td>4,9.10^{-3}</td>
<td></td>
</tr>
</tbody>
</table>

3.5.2 Part de la consommation de viande bovine et autres viandes, exposée à la contamination

Un intervalle de valeurs est proposé pour ce paramètre. La borne inférieure correspond à l’autoconsommation pour la population générale, la borne supérieure a été calculée à partir des données relatives à la population agricole.

Tableau 6 : Part de la consommation de viande bovine et autres viandes, exposée à la contamination – f_anim1_exp

<table>
<thead>
<tr>
<th>par rapport à la matière fraîche</th>
<th>par rapport à la matière grasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,03 – 0,35</td>
<td>0,04 – 0,35</td>
</tr>
</tbody>
</table>

3.6 Produits laitiers

3.6.1 Quantité journalière de produits laitiers consommés

Pour les classes d’âge 3 à 7, la quantité journalière de produits laitiers consommés exprimée en masse fraîche a été calculée à partir des données de l’AFSSA (2009) en sommant les consommations des groupes d’aliments suivants : lait, ultra-frais laitier, fromages et beurre.

Les valeurs exprimées en masse de matières grasses ont été estimées en pondérant les consommations de chacun de ces groupes d’aliments par leur taux de matières grasses, puis en les sommant. Les pourcentages de matières grasses employés sont égaux à 2,6 pour le lait 3,3 pour les ultra-frais, 26,5 pour les
fromages (moyenne entre les fromages à pâte pressée cuite et les autres fromages, pondérée par les consommations) et 79 pour le beurre.

Pour les classes d’âge 1 et 2, seule la quantité totale de produits laitiers consommés (hors produits infantiles) totale est disponible. Pour calculer la quantité de matières grasses consommées, issues des produits laitiers, la répartition entre les différents produits laitiers consommés par les enfants de la classe 3 a été appliquée. La part du lait dans la consommation des enfants les plus jeunes étant plus importante et le taux de matières grasses du lait étant plus faible que ceux des autres produits laitiers, cette approche tend à surestimer la quantité de matières grasses issues des produits laitiers, consommées par les classes 1 et 2.

Tableau 7 : Masse de produits laitiers consommés par jour

<table>
<thead>
<tr>
<th>Classe d’âge</th>
<th>Qanim2 (kg/nais/j)</th>
<th>Qanim2 mg (kg mg/j)</th>
<th>Perc. 97,5 sur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>1,2.10⁻¹</td>
<td>7,4.10⁻³</td>
<td>-</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>4,0.10⁻¹</td>
<td>2,4.10⁻²</td>
<td>≈ 3</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>3,1.10⁻¹</td>
<td>1,9.10⁻²</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>3,1.10⁻¹</td>
<td>1,9.10⁻²</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>2,6.10⁻¹</td>
<td>1,8.10⁻²</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>2,3.10⁻¹</td>
<td>1,6.10⁻²</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>2,1.10⁻¹</td>
<td>2,2.10⁻²</td>
<td></td>
</tr>
</tbody>
</table>

3.6.2 PART DE LA CONSOMMATION DE PRODUITS LAITIERS, EXPOSEE A LA CONTAMINATION DU SITE

Un intervalle de valeurs est proposé pour ce paramètre. La borne inférieure correspond à l’autoconsommation pour la population générale, la borne supérieure a été calculée à partir des données relatives à la population agricole.

Tableau 8 : Part de la consommation de produits laitiers, exposée à la contamination – f_anim2_exp

<table>
<thead>
<tr>
<th>par rapport à la matière fraîche</th>
<th>par rapport à la matière grasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,04 – 0,30</td>
<td>0,02 – 0,10</td>
</tr>
</tbody>
</table>

3.7 ŒUFS

3.7.1 QUANTITE JOURNALIERE D’ŒUFS CONSOMMEE

Le tableau suivant donne les consommations d’œufs pour les sept classes d’âge définies dans MODUL’ERS. Le pourcentage de matières grasses pris en compte est égal à 12,5 (AFSSA, 2000).
<table>
<thead>
<tr>
<th>Classe d'âge</th>
<th>Qanim2 (kg frais/j)</th>
<th>Qanim2_mg (kg mg/j)</th>
<th>Perc. 97,5 sur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d'âge 1</td>
<td>1.8.10^{-3}</td>
<td>2.2.10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Classe d'âge 2</td>
<td>1.1.10^{-2}</td>
<td>1.3.10^{-3}</td>
<td>≈ 4 (≈ 3 pour les 65 ans et plus)</td>
</tr>
<tr>
<td>Classe d'âge 3</td>
<td>1.0.10^{-2}</td>
<td>1.3.10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Classe d'âge 4</td>
<td>1.0.10^{-2}</td>
<td>1.3.10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Classe d'âge 5</td>
<td>1.0.10^{-2}</td>
<td>1.3.10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Classe d'âge 6</td>
<td>1.1.10^{-2}</td>
<td>1.3.10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Classe d'âge 7</td>
<td>1.5.10^{-2}</td>
<td>1.9.10^{-3}</td>
<td></td>
</tr>
</tbody>
</table>

3.7.2 Partie de la consommation d’œufs, exposée à la contamination du site

Un intervalle de valeurs est proposé pour ce paramètre. La borne inférieure correspond à l’autoconsommation pour la population générale, la borne supérieure a été calculée à partir des données relatives à la population agricole.

<table>
<thead>
<tr>
<th>Tableau 10 : Part de la consommation d’œufs, exposée à la contamination – f_anim2_exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,15 – 0,60</td>
</tr>
</tbody>
</table>

La valeur en population générale, calculée à partir de données de l’enquête réalisée en 2005 par l’InVS (2009), est supérieure. Elle est égale à 0,26.

3.8 Fruits

3.8.1 Quantité journalière de fruits consommés

Les consommations de fruits de la classe 1 ont été calculées en utilisant les quantités consommées, reportées dans le document de l’AFSSA de 2002, pour fruits produits sur le territoire métropolitain. Les consommations d’agrumes et de bananes, pas ou peu produits sur le territoire métropolitain n’ont donc pas été prises en compte.

Pour les classes 3 à 7, les consommations de fruits, de fruits secs et graines oléagineuses et celles de compotes et fruits cuits ont été sommées.

Pour la classe 2, une moyenne pondérée, telle que définie en section 3.1, a été calculée à partir des données de la classe 3 et des enfants de 13 à 18 mois.
Tableau 11 : Masse de fruits consommés par jour – Qveg (kg frais/j)

<table>
<thead>
<tr>
<th>Classe d’âge</th>
<th>Qveg</th>
<th>Perc. 97,5 sur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>1,6.10^{-2}</td>
<td>-</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>5,3.10^{-2}</td>
<td>≈ 3</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>9,0.10^{-2}</td>
<td>(≈ 4 pour les [18 ans ; 65 ans])</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>9,0.10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>8,3.10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>8,2.10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>1,6.10^{-1}</td>
<td></td>
</tr>
</tbody>
</table>

3.8.2 PART DE LA CONSOMMATION DE FRUITS, EXPOSEE A LA CONTAMINATION DU SITE

Tableau 12 : Part de la consommation de fruits, exposée à la contamination – f_veg_exp

<table>
<thead>
<tr>
<th>Intervalle de valeurs</th>
<th>0,1 – 0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur ponctuelle</td>
<td>0,2</td>
</tr>
</tbody>
</table>

3.9 TUBERCULES

3.9.1 QUANTITE JOURNALIERE DE TUBERCULES CONSOMMES

Tableau 13 : Masse de tubercules consommés par jour – Qveg (kgfrais/j)

<table>
<thead>
<tr>
<th>Classe d’âge</th>
<th>Qveg</th>
<th>Perc. 97,5 sur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>1,8.10^2</td>
<td>-</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>5,2.10^2</td>
<td>≈ 3</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>4,6.10^2</td>
<td>(≈ 2 pour les 3 ans ; 10 ans et les 75 ans et plus)</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>4,6.10^2</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>5,8.10^2</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>6,0.10^2</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>5,8.10^2</td>
<td></td>
</tr>
</tbody>
</table>

3.9.2 PART DE LA CONSOMMATION DE TUBERCULES, EXPOSÉE À LA CONTAMINATION DU SITE

Les valeurs ont été calculées à partir des données de l’INSEE. La valeur ponctuelle a été obtenue à partir des données relatives aux ménages possédant un jardin. Elle tient compte des aliments autoproduits et de ceux reçus en dons (INSEE, 1994). Les bornes inférieure et supérieure correspondent respectivement à l’autoconsommation de la population générale et à celle de la population agricole (INSEE, 1993).

Tableau 14 : Part de la consommation de tubercules, exposée à la contamination – f_veg_exp

<table>
<thead>
<tr>
<th>Intervalle de valeurs</th>
<th>0,25 – 0,75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur ponctuelle</td>
<td>0,45</td>
</tr>
</tbody>
</table>

3.10 LÉGUMES-FEUILLES

3.10.1 QUANTITÉ JOURNALIÈRE DE LÉGUMES-FEUILLES CONSOMMÉES

Les consommations de légumes-feuilles de la classe 1 ont été calculées en utilisant les quantités de laitues, épinards et bettes, endives, persil, poireaux, fenouils, artichauts, champignons, brocolis et différents types de choux, reportées dans le document de l’AFSSA de 2002. Pour les classes 3 à 7, les données de l’AFSSA (2009) ont été utilisées. Mais, en l’absence d’information dans cette publication sur la répartition de la consommation entre les différents types de légumes (légumes-feuilles, légumes racines et légumes-fruits), la part de chacun de ces types de végétaux dans la consommation totale de légumes a été estimée à l’aide des données disponibles dans la base de données CIBLEX. La proportion de légumes-feuilles consommés a ainsi été calculée à partir des consommations moyennes de légumes-feuilles dans l’ensemble de la population (consommateurs et non consommateurs), en utilisant les consommations moyennes des seuls consommateurs et le taux de consommation. La valeur obtenue pour les enfants de 2 à 7 ans a été appliquée à la classe d’âge 3, celles des 7-12 ans à la classe 4, celle des 12-17 ans aux classes 5 et 6. Pour les adultes, la fraction de légumes-feuilles consommés a été calculée en faisant une moyenne pondérée entre les fractions calculées pour les
17-60 ans et les plus de 60 ans. Ces fractions ont ensuite été multipliées par la somme des quantités de légumes (hors pomme de terre) et légumes secs données par l’AFSSA (2009).

Pour la classe 2, une moyenne pondérée, telle que définie en section 3.1, a été calculée à partir des données de la classe 3 et des enfants de 13 à 18 mois.

<table>
<thead>
<tr>
<th>Classe d’âge</th>
<th>Qveg</th>
<th>Perc. 97,5 sur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>6,6.10^{-3}</td>
<td>-</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>2,2.10^{-2}</td>
<td>≈ 3</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>7,6.10^{-3}</td>
<td>(= 2 pour les 65 ans et plus)</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>1,0.10^{-2}</td>
<td>≈ 3</td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>1,2.10^{-2}</td>
<td>≈ 3</td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>1,2.10^{-2}</td>
<td>≈ 3</td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>2,4.10^{-2}</td>
<td>≈ 3</td>
</tr>
</tbody>
</table>

On peut noter dans ce tableau que la consommation de légumes-feuilles par la classe 2 (enfants de 1 à 3 ans) est élevée par rapport à celle des autres classes. Cette valeur, largement influencée par les consommations de légumes-feuilles relevées pour les 13-18 mois dans l’étude Alliance 7-SOFRES-CHU/Dijon, n’est pas en contradiction avec les données de la base CIBLEX : dans celle-ci, les valeurs les plus fortes pour les consommations de légumes-feuilles se rapportent aux nourrissons et aux enfants de 1 à 2 ans.

3.10.2 PART DE LA CONSOMMATION DE LÉGUMES-FEUILLES, EXPOSÉE À LA CONTAMINATION DU SITE

Tableau 16 : Part de la consommation de légumes-feuilles, exposée à la contamination – \(f_{\text{veg.exp}} \)

<table>
<thead>
<tr>
<th>Intervalle de valeurs</th>
<th>0,25 – 0,65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur ponctuelle</td>
<td>0,5</td>
</tr>
</tbody>
</table>

La valeur chez les autoconsommateurs pour les légumes dits « aériens », calculée à partir des données de l’enquête réalisée en 2005 par l’InVS (2009), est inférieure. Elle est égale à 0,31.

3.11 LÉGUMES-FRUIT

3.11.1 QUANTITÉ JOURNALIÈRE DE LÉGUMES-FRUIDS CONSOMMÉS

Les consommations de légumes-fruits de la classe 1 ont été calculées en utilisant les quantités de poivrons, tomates, aubergines, concombres, courgettes, citrouilles, haricots verts, petits pois, lentilles, haricots blancs et petits pois secs, reportées dans le document de l’AFSSA de 2002.

Pour les classes 3 à 7, le principe d’estimation des quantités de légumes-fruits consommés est le même que celui employé pour les légumes-feuilles (cf. section 3.10.1). La proportion de légumes-fruits consommés par rapport à la consommation totale de légumes a été calculée à partir des données de CIBLEX.

Pour la classe 2, une moyenne pondérée, telle que définie en section 3.1, a été calculée à partir des données de la classe 3 et des enfants de 13 à 18 mois.

Tableau 17 : Masse de légumes-fruits consommés par jour – \(Q_{\text{veg}} \) (kg frais/j)

<table>
<thead>
<tr>
<th>Classe d’âge</th>
<th>(Q_{\text{veg}})</th>
<th>Perc. 97,5 sur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>(1,1.10^{-2})</td>
<td>-</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>(4,0.10^{-2})</td>
<td>(\approx 3)</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>(6,6.10^{-2})</td>
<td>(\approx 3)</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>(6,4.10^{-2})</td>
<td>(\approx 3)</td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>(7,0.10^{-2})</td>
<td>(\approx 2)</td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>(7,2.10^{-2})</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>(1,1.10^{-1})</td>
<td></td>
</tr>
</tbody>
</table>

3.11.2 PART DE LA CONSOMMATION DE LÉGUMES-FRUIDS, EXPOSEE A LA CONTAMINATION DU SITE

Les valeurs ont été calculées à partir des données de l’INSEE. La valeur ponctuelle a été obtenue à partir des données relatives aux tomates, courgettes, petits pois et haricots verts chez les ménages possédant un jardin. Elle tient compte des aliments autoproduits et de ceux reçus en dons (INSEE, 1994). Les bornes inférieure et supérieure se rapportent à l’ensemble des légumes consommés. Le mode de calcul de ces valeurs est le même que celui exposé en section 3.10.2.
La valeur chez les autoconsommateurs pour les légumes dits « aériens », calculée à partir des données de l’enquête réalisée en 2005 par l’InVS (2009), est inférieure. Elle est égale à 0,31.

3.12 Légumes-racines

3.12.1 Quantité journalière de légumes-racines consommés

Les consommations de légumes-racines de la classe 1 ont été calculées en utilisant les quantités de carottes, betteraves, céleris, salsifis, navets, oignons et ail+échalotes, reportées dans le document de l’AFSSA de 2002.

Pour les classes 3 à 7, le principe d’estimation des quantités de légumes-racines consommés est le même que celui employé pour les légumes-feuilles (cf. section 3.10.1). La proportion de légumes-racines consommés par rapport à la consommation totale de légumes a été calculée à partir des données de CIBLEX.

Pour la classe 2, une moyenne pondérée, telle que définie en section 3.1, a été calculée à partir des données de la classe 3 et des enfants de 13 à 18 mois.

Tableau 19 : Masse de légumes-racines consommés par jour – Qveg (kgfrais/j)

<table>
<thead>
<tr>
<th>Classe d’âge</th>
<th>Qveg</th>
<th>Perc. 97,5 sur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>1,5.10⁻²</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>2,6.10⁻²</td>
<td>≃ 3</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>7,1.10⁻³</td>
<td>(≈ 2 pour les 65 ans et plus)</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>7,0.10⁻³</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>8,6.10⁻³</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>8,9.10⁻³</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>1,2.10⁻²</td>
<td></td>
</tr>
</tbody>
</table>

On peut noter dans ce tableau que la valeur la plus élevée est obtenue pour la classe 2 (enfants de 1 à 3 ans). Cela est dû aux consommations de légumes-racines relevées pour les enfants de 13 à 18 mois dans l’étude Alliance 7-SOFRES-CHU/Dijon. Dans la base de données CIBLEX, on observe de la même façon que la valeur la plus élevée pour la consommation en légumes-racines est donnée pour les enfants de 1 à 2 ans.

3.12.2 Part de la consommation de légumes-racines, exposée à la contamination du site

Les valeurs ont été calculées à partir des données de l’INSEE. La valeur ponctuelle a été obtenue à partir des données relatives aux carottes, radis et navets chez les ménages possédant un jardin. Elle tient compte des aliments autoproducts et de ceux reçus en dons (INSEE, 1994). Les bornes inférieure et
supérieure se rapportent à l’ensemble des légumes consommés. Le mode de calcul de ces valeurs est le même que celui exposé en section 3.10.2.

<table>
<thead>
<tr>
<th>Tableau 20 : Part de la consommation de légumes-racines, exposée à la contamination – f_veg_exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalle de valeurs</td>
</tr>
<tr>
<td>Valeur ponctuelle</td>
</tr>
</tbody>
</table>

La valeur chez les autoconsommateurs pour les légumes-racines, calculée à partir des données de l’enquête réalisée en 2005 par l'InVS (2009), est supérieure. Elle est égale à 0,53.

3.13 POISSONS D’EAU DOUCE

3.13.1 QUANTITÉ JOURNALIÈRE DE POISSONS D’EAU DOUCE CONSOMMÉS

MODUL’ERS ne permettant pas de modéliser les concentrations de polluants dans l’eau de mer, ce sont préférentiellement les consommations de poissons d’eau douce qui ont été estimées. Les consommations totales de poissons sont toutefois données dans le tableau ci-dessous.

Les consommations de poissons d’eau douce sont définies pour :

- la population générale. Elles servent à renseigner, dans MODUL’ERS, la borne inférieure de l’intervalle de valeurs de ce paramètre ;
- la population des pêcheurs amateurs. Elles servent à renseigner, dans MODUL’ERS, la valeur par défaut et la borne supérieure de l’intervalle de valeurs du paramètre.

Consommations de poissons d’eau douce pour la population générale

Les valeurs sont calculées à partir de la consommation de poissons totale et d’une estimation du pourcentage de poissons d’eau douce dans la consommation totale. Le rapport de l’AFSSA (2009) donne les consommations de poissons d’une part et de crustacées et mollusques d’autre part pour les plus de 3 ans. Faute de données dans le rapport de l’AFSSA de 2002 pour les enfants plus jeunes, les données de CIBLEX sur les poissons et crustacés pour les nourrissons de 0 à 1 an et enfants de 1 à 2 ans sont utilisées pour renseigner respectivement les classes 1 et 2. La valeur pour les nourrissons est basée uniquement sur des recommandations alimentaires. Celle relative aux enfants de 1 à 2 ans, reposant sur différentes études (dont des enquêtes autour de sites nucléaires), est « actualisée » en la multipliant par le rapport :

\[
\text{Consommation des enfants de 2 à 7 ans (source CIBLEX) = Consommation des enfants de 3 à 10 ans (source INCA 2) \times}
\]

L’étude de l’AFSSA (2000), indique que pour les individus de plus de 2 ans le rapport entre la consommation de poissons d’eau douce et la consommation totale de poissons est de 5,9 % et celui entre la consommation de poissons d’eau douce et la consommation totale de poissons et crustacés est de 4,7 %. Les consommations de poissons d’eau douce dans le tableau ci-dessous sont estimées en appliquant ces rapports à l’ensemble des classes d’âge.
La consommation de poissons d'eau douce, exprimée en masse de lipides, est calculée avec le pourcentage de matières grasses donné par l'AFSSA (2000) pour cette catégorie de poissons, soit 3,8 %.

Tableau 21 : Masse de poissons ingérés par jour en population générale – Qanim_aq

<table>
<thead>
<tr>
<th>Classes d’âge</th>
<th>Poissons (INCA 2) (kg frais/j)</th>
<th>Poissons et crustacés (INCA 2 + CIBLEX) (kg frais/j)</th>
<th>Poissons d’eau douce (kg frais/j)</th>
<th>Poissons d’eau douce (kg mg/j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>-</td>
<td>2,4.10⁻²</td>
<td>1,1.10⁻⁴</td>
<td>4,3.10⁻⁶</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>-</td>
<td>1,9.10⁻²</td>
<td>8,8.10⁻⁴</td>
<td>3,3.10⁻⁵</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>1,8.10⁻²</td>
<td>2,0.10⁻²</td>
<td>1,1.10⁻³</td>
<td>4,1.10⁻⁵</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>1,8.10⁻²</td>
<td>2,0.10⁻²</td>
<td>1,1.10⁻³</td>
<td>4,1.10⁻⁵</td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>1,9.10⁻²</td>
<td>2,1.10⁻²</td>
<td>1,1.10⁻³</td>
<td>4,2.10⁻⁵</td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>1,7.10⁻²</td>
<td>1,9.10⁻²</td>
<td>1,0.10⁻³</td>
<td>3,9.10⁻⁵</td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>2,7.10⁻²</td>
<td>3,1.10⁻²</td>
<td>1,6.10⁻³</td>
<td>5,9.10⁻⁵</td>
</tr>
</tbody>
</table>

Consommation de poissons d’eau douce chez les pêcheurs amateurs

Ces consommations sont estimées à partir de la quantité de poissons consommés par occasion de consommation et de la fréquence de consommation. En l’absence d’autres données, la quantité de poisson consommée par occasion de consommation est calculée à partir des données de consommation de produits de la mer (consommation totale de poissons et crustacées moins consommation de poissons d’eau douce) et de la fréquence annuelle de consommation des produits de la mer en population générale (égale à 126,8 par an). L’hypothèse est faite que cette fréquence de consommation, issue de l’étude INCA 2, et rapportée dans l’étude nationale d’imprégnation des consommateurs de poissons d’eau douce (ANSES, 2011), est applicable à toutes les classes d’âge. Les consommations de poissons d’eau douce sont ensuite calculées à partir de la fréquence annuelle de consommation des poissons d’eau douce des adultes appartenant à des foyers de pêcheurs amateurs (ANSES, 2011). L’hypothèse est faite que cette fréquence d’exposition est applicable à l’ensemble d’un foyer et donc à toutes les classes d’âge. La moyenne et le 95ème percentile de cette fréquence sont respectivement égaux à 13 et 52,9 par an, soit une consommation d’une fois par mois en moyenne et d’une fois par semaine au 95ème percentile. Le tableau suivant est obtenu en rapportant la quantité totale de poissons d’eau douce consommés par an au nombre de jours par an.
Tableau 22 : Masse de poissons d'eau douce ingérés par jour dans les foyers de pêcheurs amateurs – Qanim_aq (kg frais/j)

<table>
<thead>
<tr>
<th>Classes d’âge</th>
<th>Moyenne</th>
<th>95ème percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kgfrais/j)</td>
<td>(kg mg/j)</td>
</tr>
<tr>
<td>Classe d’âge 1</td>
<td>2,2.10^{-4}</td>
<td>8,3.10^{-6}</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>1,7.10^{-3}</td>
<td>6,6.10^{-5}</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>1,8.10^{-3}</td>
<td>6,7.10^{-5}</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>1,8.10^{-3}</td>
<td>6,7.10^{-5}</td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>1,9.10^{-3}</td>
<td>7,1.10^{-5}</td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>1,7.10^{-3}</td>
<td>6,6.10^{-5}</td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>2,8.10^{-3}</td>
<td>1,1.10^{-4}</td>
</tr>
</tbody>
</table>

L’étude nationale d’imprégnation des consommateurs de poissons d’eau douce a également déterminé la fréquence annuelle de consommation de poissons d’eau douce chez des pêcheurs professionnels. La médiane est égale à 42,1 et le 95ème percentile à 492,7 par an.

3.13.2 PART DE LA CONSOMMATION DE POISSONS D’EAU DOUCE, EXPOSEE A LA CONTAMINATION DU SITE

La valeur par défaut utilisée dans MODUL’ERS pour le paramètre f_amin_aq_exp est égale à 1.

En effet, il n’y a pas d’information utilisable sur l’origine locale ou éloignée des lieux d’approvisionnement en poissons d’eau douce pour la population générale. Pour les pêcheurs amateurs, l’hypothèse est faite qu’ils consomment exclusivement des poissons d’eau douce pêchés localement, et donc susceptibles d’être exposés à la contamination du site étudié.

D’une manière générale, la contamination des poissons est liée à leur lieu de vie et donc de pêche. Ce paramètre est donc à renseigner de manière spécifique en fonction des lieux de pêche par rapport à la dispersion de la contamination étudiée dans les eaux superficielles.

3.14 QUANTITE JOURNALIERE D’EAU DU ROBINET CONSOMMEE

La classe d’âge 1 de MODUL’ERS a été renseignée à partir des données sur la consommation d’eau de distribution, reportées dans le document de l’AFSSA de 2002 (spécifique aux nourrissons et aux enfants en bas âge).

Beaudeau et al. fournissent des valeurs pour quatre groupes : les 4-14 ans\(^3\), les 15-39 ans, les 40-64 ans et les plus de 65 ans.

Les classes 3 à 5 de MODUL'ERS ont été renseignées à partir du premier groupe défini dans la publication, la classe 6 à partir du deuxième et la classe 7 à partir d'une moyenne pondérée basée sur les valeurs des trois derniers groupes de la publication.

Pour la classe 2, une moyenne pondérée, telle que définie en section 3.1, a été calculée à partir des données de la classe 3 et des enfants de 13 à 18 mois.

<table>
<thead>
<tr>
<th>Classe d'âge</th>
<th>Moyenne</th>
<th>Percentile 99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d'âge 1</td>
<td>9,6.10(^2)</td>
<td>-</td>
</tr>
<tr>
<td>Classe d'âge 2</td>
<td>2,6.10(^{-1})</td>
<td>-</td>
</tr>
<tr>
<td>Classe d'âge 3</td>
<td>3,2.10(^{-1})</td>
<td>1,4</td>
</tr>
<tr>
<td>Classe d'âge 4</td>
<td>3,2.10(^{-1})</td>
<td>1,4</td>
</tr>
<tr>
<td>Classe d'âge 5</td>
<td>3,2.10(^{-1})</td>
<td>1,4</td>
</tr>
<tr>
<td>Classe d'âge 6</td>
<td>5,6.10(^{-1})</td>
<td>2,0</td>
</tr>
<tr>
<td>Classe d'âge 7</td>
<td>5,5.10(^{-1})</td>
<td>2,0</td>
</tr>
</tbody>
</table>

Les moyennes et les percentiles 99 du tableau ci-dessus renseignent respectivement les valeurs par défaut et les valeurs maximales dans MODUL'ERS.

\(^3\) La consommation moyenne d'eau du robinet donnée pour les 4-14 ans dans Beaudeau et al. est inférieure à la consommation moyenne des différents types d'eau donnée dans le rapport de l'AFSSA (2009) pour les 3-10 ans.
4. **INGESTION DE SOL**

4.1 **DEFINITION DU PARAMETRE**

Pour évaluer les risques liés à la matrice sol, il est nécessaire d’estimer la quantité de sol ingéré par les personnes. L’objectif est d’évaluer l’impact de la source de contamination que constitue le sol, par opposition à d’autres sources comme les poussières ayant pour origine l’intérieur des bâtiments. La grandeur à prendre en compte est donc la quantité de matrice « sol » ingérée, que cette ingestion ait lieu à l’extérieur ou à l’intérieur de bâtiments sur le site d’étude considéré. Cette quantité de sol tient donc compte du sol ingéré lors d’activités extérieures, ainsi que des particules de sol présentes à l’intérieur, mais issues de l’extérieur et ingérées pendant le temps passé à l’intérieur.

A l’inverse, parmi les sources d’information consultées, celles qui précisent la notion de « Soil ingestion » (USEPA, 2011 ; Wilson, 2013) n’y incluent que les particules de sol situées à l’extérieur et les poussières sédimentées à l’extérieur. Les particules de sol présentes dans les bâtiments après avoir été entraînées à partir de l’extérieur sont englobées sous le vocable « Dust » (où il y a aussi les poussières d’origine intérieure).

Par conséquent, le paramètre « Quantité de sol ingéré » (Qsol) défini dans MODUL’ERS ne correspond pas exactement à celui défini dans un certain nombre de guides et recommandations existantes.

4.2 **DONNEES BIBLIOGRAPHIQUES**

Les estimations relatives à la quantité de sol ingéré par les individus relèvent de trois types d’étude :

- les études basées sur l’observation des comportements. Cette approche suppose que le transfert main-bouche, par l’intermédiaire ou non d’aliments, constitue le mécanisme principal d’ingestion de sol par les personnes. La quantité de sol ingéré est alors estimée comme le produit de différents facteurs : la quantité de sol qui adhère aux mains, la fréquence de contact main-bouche, la surface des mains en contact avec la bouche, l’efficacité du transfert main-bouche, la durée du contact ;

- les études confrontant les expositions mesurées et les expositions modélisées, par exemple, plombémies mesurées et plombémies modélisées. La quantité de sol ingéré est recherchée à travers le meilleur ajustement possible des deux types de données ;

- les études basées sur les traceurs, dont le principe consiste à quantifier la quantité de sol ingéré à partir de la quantité d’éléments, supposés non absorbés, mesurée dans les selles d’un échantillon de personnes, et de la concentration de ces traceurs dans le sol du lieu de résidence de ces personnes.
4.2.1 Les estimations baseées sur l’observation des comportements

Cette approche a l’avantage de permettre une estimation de la quantité de sol ingéré tenant compte du budget espace-temps-activité et donc de fournir des estimations spécifiques, permettant éventuellement de tenir compte de l’usage du sol (résidentiel, professionnel, terrains de jeux…), de la présence d’un couvert végétal ou non, de la saison… À l’inverse, ces estimations, basées sur les caractéristiques de l’exposition et non sur la source, permettent de distinguer les quantités de matériaux ingérés selon le lieu, mais ne permettent pas d’estimer spécifiquement la quantité de matrice sol ingérée, issue du site.

Par ailleurs, les données d’entrée nécessaires au calcul peuvent être très variables, et incertaines, du fait du manque de données disponibles.

La masse de particules présente sur les mains par unité de surface dépend des caractéristiques du sol (humidité et granulométrie) et de l’activité des personnes. Selon les activités, les moyennes géométriques mesurées pour ce paramètre sur les mains varie de cinq ordres de grandeur (Kissel et al., 1996).

L’efficacité du transfert main-bouche dépend aussi de plusieurs facteurs : type de contact (sucçion, léchage), durée du contact, affinité du polluant pour la salive. Peu de données sont disponibles dans les études pour ce paramètre.

Les valeurs retenues reposent sur des choix qui paraissent parfois arbitraires. Par exemple, pour la surface des mains à prendre en compte dans les calculs, les choix jugés les plus pertinents divergent selon les auteurs : surface de la première phalange des cinq doigts d’une main (Wilson et al., 2013), surface totale de trois doigts (VITO, 2007), surface partielle de deux doigts (Zartarian et al., 2005).

A partir de cette approche, Wilson et al. (2013) ont calculé pour la population canadienne, une ingestion de sol moyenne (à l’extérieur) respectivement de 20, 23 et 1,6 mg/j pour les enfants de 7 mois à 4 ans, les enfants de 5 à 11 ans et les adultes. Dans le cas d’une contamination du sol d’une cour, les auteurs précisent toutefois qu’il n’est pas approprié d’utiliser ces valeurs sans tenir compte du fait que le sol extérieur peut pénétrer dans les bâtiments et entraîner une ingestion de « poussières ». Les moyennes des quantités combinées de sol et de poussières ingérés sont estimées par ces auteurs à 61, 55 et 4,2 mg/j pour les mêmes classes d’âge. Wilson et al. (2013) reconnaissent que les données disponibles pour renseigner des paramètres sensibles nécessaires à cette approche (masse de particules déposées sur les surfaces dures, celles présentes sur les surfaces molles, masse de particules sur les mains, efficacité du transfert main-bouche) reposent sur des données présentant des limites importantes.

Ozkaynak et al. (2011) ont également simulé la quantité de sol et de poussières ingérés par des enfants de 3 à 6 ans sur une année, à l’aide du modèle SHEDS de l’US EPA (2010), qui permet de combiner des données de budget espace-temps avec des facteurs d’exposition comme la fréquence de contact main-bouche ou la masse de particules sur les mains. En intégrant la fréquence et l’efficacité du lavage des mains et l’exposition par contact direct entre les objets et la bouche, contrairement aux auteurs précédents, Ozkaynak et al. ont calculé une ingestion combinée de sol et poussières de 68 mg/j en moyenne, dont 41 mg/j de sol ingéré à l’extérieur. Au 95ème percentile, la quantité calculée de sol et de poussières ingérés est de 224 mg/j, dont 175 mg/j de sol à l’extérieur.
Enfin, après une revue de la littérature sur les valeurs des différents paramètres nécessaires à cette approche, l’institut belge VITO (2007) a recalculé les quantités de sol et de poussières ingérées pour plusieurs scénarios. Les valeurs moyennes d’ingestion de sol calculées pour les enfants vont de 7 à 60 mg/j (jusqu’à 245 mg/j au 95ème percentile). Les quantités de sol ingéré par des travailleurs des services publics et des jardiniers ont également été estimées pour une journée de huit heures de travail. Les valeurs moyennes calculées sont comprises entre 35 et 55 mg/j. Au 95ème percentile, les valeurs vont de 120 à 200 mg/j.

4.2.2 LES ETUDES CONFRONTANT LES EXPOSITIONS MESUREES ET LES EXPOSITIONS MODELISEES

Les biomarqueurs qui ont été utilisés pour ce type d’exercices sont le plomb dans le sang et l’arsenic dans les urines.

Les modèles utilisés peuvent être de simples relations empiriques ou au contraire des modèles pharmacocinétiques.

Le modèle IEUBK (US EPA, 1994) a notamment été utilisé à différentes reprises pour confronter plombémies mesurées et plombémies modélisées, dans un but initial de validation du modèle. Si l’on veut, avec un tel modèle, essayer de définir la quantité de sol ingéré, il est important que l’ingestion de sol soit une voie prépondérante dans l’exposition au plomb de la population. Les estimations obtenues restent néanmoins dépendantes de la justesse des autres hypothèses du modèle (équations et paramètres sensibles).

Le VITO (2007) a effectué une revue des cas d’étude fournissant des données adéquates pour estimer les quantités de sol et de poussières ingérées. Le rapport final présente et synthétise les résultats obtenus avec les deux types de modèles mentionnés ci-dessus.

Avec les relations empiriques, la concentration en plomb dans le sang ou d’arsenic dans les urines doit d’abord être convertie en dose interne, puis en dose externe. Les valeurs obtenues d’après le VITO pour l’ingestion de sol et de poussières par les enfants sont comprises entre 20 et 70 mg/j.

Avec les modèles pharmacocinétiques, la quantité de sol et de poussières ingérés en moyenne par les enfants est estimée entre 50 et 100 mg/jour. Les auteurs du rapport indiquent qu’une estimation plus précise n’est pas possible, compte tenu de l’incertitude sur les autres paramètres entrant dans l’estimation de l’apport de polluant par cette voie (contribution relative entre le sol et les poussières, facteur de biodisponibilité dans le sol et les poussières). La part relative du sol et des poussières ne peut pas non plus être définie par cette approche. Pourtant, le modèle IEUBK repose sur l’hypothèse d’une partition 45/55 entre l’ingestion de sol et de poussières (le sol étant entendu comme les particules ingérées à l’extérieur, et les poussières, celles ingérées à l’intérieur, quelle que soit la composition de ces particules).
4.2.3 LES ESTIMATIONS BASEES SUR LES TRACEURS

Les études basées sur les traceurs les plus adaptées sont celles qui cherchent à établir un bilan massique, en prenant en compte les sources d’apport autres que le sol à travers, notamment l’alimentation. Chez les enfants, six études prenant en compte l’apport de traceurs par l’alimentation ont été relevées. Pour les adultes, trois études sont disponibles.

Ces études présentent néanmoins toutes des limites liées :

- à l’hypothèse de non absorption des traceurs ;
- à l’hypothèse sur le temps de transit des traceurs dans l’organisme. Celui-ci est estimé entre 24 et 36 heures selon les études. Un décalage d’une durée équivalente est pris en compte pour établir le bilan massique des traceurs à travers l’organisme ;
- à l’existence éventuelle de sources de traceurs non prises en compte dans l’étude (exemple : dentifrice, eau consommée, …) ;
- au manque de représentativité annuelle des données. Les études ont été le plus souvent conduites en été, quand le temps passé dehors est plus important. Or, la météorologie et le temps passé dehors ne sont pas indépendants de la quantité de sol ingéré par les enfants (Wijnen et al., 1990) ;
- aux concentrations variables de traceurs mesurées dans les sols, en fonction des lieux fréquentés par les enfants d’une part, et en fonction de la granulométrie des prélèvements de sol d’autre part.

4.2.3.1 ETUDES PORTANT SUR DES ENFANTS

Quatre études ont été menées aux Etats-Unis et deux aux Pays-Bas.

Dans les études américaines (Calabrese et al, 1989, 1997 ; Davies et al, 1990, 2006), la quantité de sol ingéré par un enfant est calculée en soustrayant la quantité de traceurs mesurées dans les excréta de celle contenue dans les aliments et médicaments ingérés, et en divisant le résultat par la concentration dans le sol des parcelles où l’enfant joue.

- L’étude de Calabrese et al. (1989), réalisée en 1987, a porté sur un échantillon de 64 enfants (filles et garçons), non tirés au sort, âgés de 1 à 4 ans, habitants dans l’agglomération d’Amherst, au Massachusetts. Ces enfants vivaient avec leurs deux parents, qui pour la plupart avaient un niveau d’études supérieur. Des prélèvements ont été effectués pendant deux fois quatre jours, avec un décalage de 24 heures entre les aliments et médicaments ingérés d’une part et les selles et urines émises d’autre part. Du dentifrice avec des teneurs non détectables pour les traceurs étudiés, à l’exception du silicium, présent à l’état de traces, a été fourni aux participants. Le sol a été prélevé au domicile et sur les zones préférentielles de jeux de chaque enfant, sur trois pouces de profondeur. Huit traceurs (aluminium, baryum, manganèse, silicium, titane, vanadium, yttrium, zirconium) ont été analysés. La quantité moyenne de sol ingéré pour les 64 enfants pendant la durée totale de l’étude allait de -294 (Mn) à 459 mg/j (Va) selon les traceurs. Parmi ces traceurs, un essai de validation portant sur six adultes a montré que les meilleurs taux de récupération et les résultats les plus précis étaient obtenus avec l’aluminium, le silicium et l’yttrium. Pour ces trois traceurs, la moyenne des quantités de sol
ingéré pour les 64 enfants pendant la durée totale de l'étude était respectivement de 153, 154 et 85 mg/j.

- L'étude de Calabrese et al. (1997), réalisée en 1992, a porté sur un échantillon stratifié de 64 enfants (filles et garçons), âgés de 1 à 4 ans, habitants sur un site contaminé à Anaconda dans le Montana. Apparemment, les enfants séjournant en garderie à l’extérieur du site ont été exclus de l’étude. Les prélèvements d’aliments, de médicaments et d’excrèta ont été effectués pendant sept jours consécutifs. Ces matrices, ainsi que le sol, ont été prélevés selon le même protocole que dans l’étude précédente. Là encore, du dentifrice avec des concentrations non détectables pour la plupart des éléments traces étudiés a été fourni aux participants. Huit traceurs (aluminium, cérium, lanthane, néodyme, silicium, titane, yttrium, zirconium) ont été analysés. Calabrese et al. ont choisi de ne pas prendre en compte les estimations obtenues avec le cérium, le lanthane et le néodyme dont les concentrations variaient de manière importante en fonction de la granulométrie du sol. De plus, l’essai de validation chez les adultes a montré que le lanthane et le zirconium donnent des estimations peu fiables. Pour les autres traceurs, la moyenne des quantités de sol ingéré pour les 64 enfants pendant la durée totale de l’étude allait de 294 (Ti) à 42 mg/j (Y) selon les traceurs. Finalement, dans cette publication, les auteurs estiment la quantité de sol ingéré par chaque enfant en utilisant le traceur pour lequel le rapport « concentration du traceur dans les aliments sur concentration du traceur dans le sol » est le plus faible, afin de limiter l’impact des erreurs liées à l’estimation incorrecte du temps de transit intestinal. La moyenne de sol ingéré par les enfants sur la durée de l’expérimentation, ainsi calculée est de 66 mg/j. Il convient de noter que ce calcul prend en compte en partie les résultats des bilans massiques obtenus pour le titane, pour lequel la concentration dans l’alimentation est très variable.

- L’étude de Davies et al. (1990) concerne un échantillon de 104 enfants de 2 à 7 ans tiré au sort dans des familles vivant dans trois villes du sud-est de l’état de Washington. Dans cette étude, réalisée durant les vacances d’été de l’année 1987, des prélèvements ont été effectués pendant quatre jours, avec un décalage de 24 heures entre les aliments et médicaments ingérés d’une part et les selles et urines émises d’autre part. Du dentifrice avec des teneurs connues en traceurs a été fourni aux participants. L’aluminium, le silicium et le titane ont été utilisés pour calculer la quantité moyenne de sol ingéré par chaque enfant pendant la durée de l’étude. Des valeurs très variables ont été obtenues entre les enfants, en particulier pour le titane. La moyenne des valeurs obtenues est de 39 mg/j pour l’aluminium, de 82 mg/j pour le silicium et de 246 mg/j pour le titane. Les auteurs indiquent avoir mis en évidence une corrélation entre la quantité de sol ingéré calculée et l’ingestion de dentifrice, ce qui s’explique par les concentrations élevées de silicium dans les dentifrices. Dans la partie discussion de la publication, ils effectuent un essai de calcul tenant compte, dans leur bilan massique, d’une estimation de la quantité de silicium pouvant être ingéré par ce biais. Ils obtiennent alors une quantité moyenne de sol ingéré identique pour l’aluminium et le silicium.

- Une année après la précédente étude, Davies et al. (2006), ont réalisé une seconde étude portant sur 20 des 104 familles de la première étude. Les quantités de sol ingéré par un des enfants du foyer et les adultes vivants avec cet enfant ont été mesurées. Les aliments, médicaments, selles et urines ont
été prélevés pendant onze jours consécutifs. Le sol des zones fréquentées par chaque individu a été prélevé en surface à l'aide d’un aspirateur d’une part et sur une épaisseur de un à trois pouces de profondeur d’autre part. Les concentrations relevées dans les deux types de prélèvement étaient quasiment identiques. Les quantités de sol ingéré ont finalement pu être déterminées pour douze enfants de 3 à 8 ans sur sept jours consécutifs. La moyenne mesurée est de 37 mg/j pour l’aluminium, de 38 mg/j pour le silicium et de 207 mg/j pour le titane. Il convient de noter que lorsque la quantité de sol calculée pour un enfant était inférieure à zéro, une valeur nulle a été prise en compte.

Contrairement aux études précédentes, celles réalisées aux Pays-Bas n’incluent pas de prélèvement des aliments et médicaments ingérés par les enfants. Les apports de traceurs par les autres sources que le sol sont estimés de manière indirecte en utilisant une population témoin (enfants hospitalisés) sans ou presque sans contact avec le sol. Les enfants hospitalisés ayant participé à l’étude, n’ayant pas eu un régime alimentaire significativement différent des autres groupes d’enfants testés, la quantité de sol ingéré obtenue par calcul chez les enfants hospitalisés est retranchée de celle obtenue pour les autres groupes d’enfants étudiés, pour tenir compte de l’apport par alimentation.

- **Clausing et al. (1987)** ont estimé la quantité de sol ingéré par 18 enfants de 2 à 4 ans fréquentant une école maternelle et par 6 enfants hospitalisés et alités. Les selles ont été collectées sur une période de cinq jours dans le premier groupe et de huit jours dans le deuxième groupe. Trois traceurs ont été étudiés : l’aluminium, le titane et les résidus insolubles à l’acide. Le calcul de la quantité de sol ingéré par les enfants a été fait en supposant une quantité de selles émises par les enfants de 10 g par jour. Considérant que la quantité de sol ingéré ne peut pas être plus grande que la plus petite des valeurs obtenues entre les trois traceurs, les auteurs ont calculé une quantité moyenne équivalente à 105 mg/j de sol pour les enfants de l’école maternelle et à 49 mg/j pour les enfants hospitalisés. En retranchant la seconde valeur de la première pour tenir compte des apports alimentaires, on obtient une quantité moyenne de sol ingéré par les enfants de 56 mg/j.

- **Van Wijnen et al. (1990)** ont mené le même type d’étude pendant l’été 1986, mais sur nombre important d’enfants de 6 semaines à 5 ans. Les quantités de sol ont été calculées pour des enfants fréquentant des garderies (292 enfants pendant une première période, 187 enfants pendant une seconde période), des terrains de campings (78 enfants) et pour des enfants hospitalisés (15 enfants). Les fèces ont été collectées pendant trois à cinq jours dans les différents groupes d’enfants et les calculs ont été faits en supposant une quantité de selles émises de 15 grammes par jour et par enfant. La prise en compte du traceur donnant la quantité de sol ingéré la plus faible par enfant conduit à une quantité moyenne équivalente à 162 mg/j de sol pour les enfants en garderie, à 213 mg/j pour les enfants en camping et à 93 mg/j pour les enfants hospitalisés. En assimilant cette dernière quantité à la quantité de traceurs ingérés par le biais de l’alimentation, une quantité moyenne de sol ingéré de 69 mg/j (162-93) peut être calculée pour les enfants en garderie et de 120 mg/j (213-93) pour les enfants en camping.

Dans ces deux publications, et suite à la recherche des facteurs pouvant entraîner des erreurs positives ou négatives sur l’estimation des quantités de sol ingéré (Calabrese et al., 1995, 1996), les données de l’étude Anaconda sont traitées en prenant en compte une durée de transit intestinal de 28 heures au lieu de 24 heures, et en utilisant les concentrations dans la fraction de sol inférieure à 250 µm au lieu de celle inférieure à 2 mm. Ce choix repose sur l’hypothèse que les particules adhérant aux doigts des enfants sont de faible diamètre et que « l’incertitude est minimisée » en utilisant cette fraction par rapport à d’autres (Stanek et al., 1999). Ce changement ne modifie pas les concentrations dans les sols pour cinq des traceurs, mais augmente de deux à quatre fois celle du cérium, du lanthane et du néodyme, qui avaient été précédemment éliminés de l’analyse des résultats. Par ailleurs, pour limiter les incertitudes liées en particulier à l’ingestion d’éléments tracés par des vecteurs non maîtrisés, les quantités de sol ingéré estimées à partir de chaque traceur ont été comparées à celle obtenue grâce à la moyenne des autres traceurs. Cette approche a mis en évidence que le niveau d’incertitude des données obtenues est plus élevé avec le titane, ce qui avait déjà été observé dans d’autres études. Enfin, le critère de Tukey4 sur les valeurs aberrantes a été appliqué et 18 observations supplémentaires (sur 2984) ont été écartées. A partir des données ainsi traitées, la quantité moyenne de sol ingéré sur sept jours par les enfants de l’étude est de 31 mg/j, le 95ème percentile est égal à 141 mg/j (Stanek et al., 2000).

La publication de 2000 donne également les valeurs calculées à partir des données de l’étude d’Amherst, après avoir enlevé les données relatives à un enfant identifié comme ayant un comportement de pica. Sur deux fois quatre jours, la quantité moyenne de sol ingéré par enfant est de 57 mg/j et le 95ème percentile est égal à 210 mg/j. Ces valeurs sont calculées à partir de quatre traceurs (Si, Al, Y et Zr).

Un modèle à effet mixte a également été utilisé pour déterminer les composants de la variance de la variable aléatoire « ingestion journalière de sol mesurée ». L’effet « jour » a ainsi pu être dissocié de l’effet « individu » et la distribution de la quantité de sol sur le long terme (en l’absence de l’effet « jour ») a pu être évaluée. Dans la publication de 2000, les estimations données pour le long terme ne semblent toutefois pas intégrer l’incertitude liée aux mesures. Dans l’article de 2001, une approche de type boosatrap est utilisée pour estimer les facteurs du modèle à effet aléatoire à partir de données de l’étude réalisée à Anaconda. Dix réplicas ont été estimés pour définir une distribution de la quantité de sol ingéré parmi les enfants, assortie d’une incertitude pour chaque percentile. Le 95ème percentile de la distribution, est ainsi égal à 91 mg/j avec un écart-type de 16,6 mg/j. La borne supérieure de l’intervalle de confiance à 95 % de cet estimateur est environ égale à 120 mg/j.

4 La méthode de Tukey considère comme aberrante une observation Y telle que Y < (Q1-1,5 IQR) ou Y > (Q3+1,5 IQR) avec Q1 : 1er quantile, Q3 : 3ème quantile et IQR = Q3-Q1
Malgré son intérêt, l’approche calculatoire utilisée pour définir une estimation de la distribution de la quantité de sol ingéré sur le long terme présente quelques limites : 1) l’hypothèse d’une distribution normale de l’incertitude ne repose sur aucune justification ; 2) le modèle utilisé est basée sur l’égalité des variances des quantités de sol ingéré par jour et par individu pour tous les jours et tous les individus, et suppose aussi que la variance entre les jours pour un individu soit égale pour tous les individus ; 3) la médiane des valeurs obtenues avec les différents traceurs est un estimateur peut-être biaisé, car des corrélations ont été observées entre les mesures obtenues avec plusieurs traceurs.

4.2.3.2 ÉTUDE PORTANT SUR DES ADULTES
Dans le cadre des études menées sur les enfants, les auteurs ont pu mesurer la quantité de sol ingéré par de petits groupes d’adultes volontaires, afin de valider leur protocole d’étude.

La première étude pilote (Calabrese et al., 1990), menée pour tester la méthode d’analyse utilisée dans l’expérimentation menée sur les enfants d’Amherst, a porté sur six adultes (trois hommes et trois femmes) en bonne santé, âgés de 21 à 41 ans. Pendant une première semaine, les participants ont ingéré pendant trois jours des gélules vides. Puis la deuxième et troisième semaines, ils ont ingéré, par le biais de gélules identiques, respectivement 100 mg et 500 mg de sol par jour pendant trois jours. Comme pour les enfants, l’apport d’éléments traces par l’alimentation a été mesurée et les selles ont été collectées avec un décalage de 24 heures. Le calcul de la quantité moyenne de sol ingéré par les participants sur l’ensemble des jours de mesure, après avoir ôté l’apport par l’alimentation et les gélules, donne respectivement pour l’aluminium, le silicium et l’yttrium (les trois éléments traces identifiés comme les plus fiables) les valeurs de 77, 5 et 53 mg/j. Après avoir réévalué leurs résultats pour limiter l’impact des biais (Stanek et al., 1995 b), les auteurs estiment que le meilleur indicateur correspond à la médiane des quatre traceurs pour lesquelles le « rapport concentration du traceur dans les aliments sur concentration dans le sol » est le plus faible. Sur les trois semaines de l’étude, l’ingestion moyenne de sol par les adultes donnée par cet indicateur est égale à 64 mg/j. La médiane et le 90ème percentile sont respectivement égaux à 87 et 142 mg/j.

La deuxième étude pilote (Stanek et al., 1997), réalisée pour tester la méthodologie de l’étude sur les enfants habitants dans le secteur d’Anaconda, a porté sur dix adultes volontaires (cinq hommes et cinq femmes) en bonne santé, âgés de 25 à 41 ans, pour lesquels un bilan massique a été pratiqué pendant quatre semaines. Comme précédemment des gélules contenant des quantités connues de sol ont été ingérées par les participants. De la première à la quatrième semaine d’étude, les participants ont ingéré pendant sept jours consécutifs 0, 20, 100 et 500 mg de sol. Une semaine séparait chaque semaine d’étude. La publication rapporte les résultats obtenus, pour chaque élément trace et pour les traceurs, jugés les meilleurs (c’est-à-dire ceux qui présentent pour chaque individu et chaque semaine, les rapports « concentration dans les aliments sur concentration dans le sol » les plus faibles). Sur les quatre semaines, le meilleur traceur donne une quantité moyenne de sol ingéré de 136 mg/j et la médiane des quatre meilleurs traceurs donne une valeur de 6 mg/j. Les médianes des quantités de sol ingéré par les participants, calculés à l’aide de ces deux indicateurs sont respectivement de 21 et -11 mg/j. L’observation du détail des résultats montre toutefois que ces estimateurs donnent des valeurs nettement négatives la
quatrième semaine (moyenne et médiane obtenues avec la médiane des quatre meilleurs traceurs égales à -137 et -143 mg/j), d’où des résultats globaux pour les quatre semaines qui sont bien inférieurs à ceux obtenus sur les trois premières semaines. Les moyennes des quantités de sol ingéré par les participants calculées sur chaque semaine, de la première à la troisième semaine, à l’aide des quatre meilleurs traceurs, sont ainsi comprises entre 44 et 67 mg/j. Les médianes vont de -14 à 18 mg/j selon les semaines. Enfin, pour les deuxième et troisième semaines, le 95ème percentile calculé avec le même estimateur vaut 376 et 285 mg/j (la valeur calculée pour la première semaine n’est pas considérée, car fortement tirée vers le haut par un des participants dont le transit intestinal était irrégulier en début d’étude).

L’étude de Davies et al. (2006), présentée dans la section précédente, a porté sur des enfants et des adultes vivant avec ces enfants. Le même protocole utilisé pour les adultes et les enfants a permis d’obtenir des données pour 16 mères et 17 pères. Les moyennes des quantités de sol ingéré, calculées pour les hommes et pour les femmes avec l’aluminium et le silicium, vont de 23 à 92 mg/j. Les médianes sont comprises entre 0 et 23 mg/j et les valeurs maximales vont de 138 à 814 mg/j selon le sexe et selon le traceur. La variabilité de la quantité de sol ingéré par les adultes dans cette étude est plus importante que chez les enfants. Les auteurs pensent que cette variabilité peut être due aux différences d’activité entre les adultes. Cette étude a mis en évidence une corrélation entre la quantité de sol ingéré et des activités en lien avec le sol.

4.3 VALEURS PROPOSEES DANS MODUL’ERS

Une valeur centrale et une valeur conservatoire sont proposées pour estimer la quantité de sol ingéré par les différentes classes d’âge.

Les valeurs proposées reposent principalement sur les études établissant des bilans massiques par mesure directe des traceurs dans les aliments et les selles des individus.

4.3.1 ESTIMATION POUR LES ENFANTS

La valeur centrale est calculée des valeurs rassemblées dans le Tableau 24. Pour chacune, il s’agit des quantités moyennes de sol ingéré dans la population d’enfants étudiée. Lorsque pour une même étude, plusieurs valeurs, correspondant à plusieurs traceurs, sont données (comme dans la publication de Davies et al. de 1990 par exemple), la médiane des valeurs de cette étude est d’abord calculée5 (l’utilisation de la médiane par rapport à la moyenne limite l’effet des biais de surestimation ou de sous-estimation liés à un traceur particulier). A partir de la valeur retenue pour chaque étude et des effectifs des populations testées dans ces études, une moyenne pondérée est ensuite calculée.

Pour les enfants, la valeur moyenne ainsi obtenue est égale à 51 mg/j. Elle est arrondie à 50 mg/j. Pour information, la valeur calculée selon le même principe à partir des médianes, fournies dans les mêmes publications, est égale à 38 mg/j.

Une valeur conservatoire égale à 200 mg/j est définie. Elle est basée sur les données de Stanek et al. (2000, 2001). La publication de 2000 donne en effet pour l’étude réalisée à Amherst, un percentile 95 de la quantité de sol ingéré égal à 210

5 Les valeurs relevées à partir des publications de Stanek et al. (2000 ; 2001) correspondent déjà aux médianes calculées à partir de la moyenne obtenue pour chaque traceur.
mg/j (hors enfant présentant un comportement de pica). Pour l’étude réalisée à Anaconda, le percentile 95 de la quantité de sol ingéré, calculée sur sept jours, est égal à 141 mg/j et la borne supérieure de l'intervalle de confiance à 95 % du percentile 95 de la quantité de sol ingéré, calculée sur le long terme est de l'ordre de 120 mg/j (cf. section 4.2.3.1).

Ces valeurs sont cohérentes avec les estimations de Clausing et al. (1987) pour des enfants fréquentant une école maternelle (quantité moyenne de sol ingéré égale à 56 mg/j) et celle de Van Wijnen et al. (1990) pour des enfants en garderie (quantité moyenne de sol ingéré égale à 69 mg/j). Elles sont aussi cohérentes avec celles relevées dans les études basées sur l'observation des comportements (valeur moyenne allant jusqu’à 68 mg/j et valeur au 95ème percentile allant jusqu’à 245 mg/j) et celles confrontant données mesurées et données modélisées.

<table>
<thead>
<tr>
<th>Tableau 24 : Valeurs utilisées pour la définition d'une valeur centrale de la quantité de sol ingérée par les enfants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Références bibliographiques</td>
</tr>
<tr>
<td>Etude expérimentale</td>
</tr>
<tr>
<td>Calabrese et al. (1989), Amherst</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Calabrese et al. (1997), Anaconda</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Davies et al. (1990)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Davies et al. (2006)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
4.3.2 Estimation pour les adultes

Les données disponibles pour les adultes reposent sur peu d’adultes. Elles ne sont bien sûr pas représentatives de la population générale.

Par ailleurs, l’étude de Davies et al. (2006) avec des médianes calculées proches ou égales à 0 et des moyennes beaucoup plus élevées, montre clairement que l’exposition des adultes est plus variable que celle des enfants.

Dans ces conditions, il paraît plus pertinent de baser la valeur centrale sur les quantités médianes de sol données dans les études, plutôt que sur les moyennes.

Comme précédemment, la médiane des valeurs relevées et correspondant à différents traceurs dans une même étude est d’abord calculée, puis une moyenne pondérée est ensuite effectuée, en utilisant les effectifs correspondants à chaque valeur (cf. tableau suivant). Le résultat est égal à 22 mg/j. Il est arrondi à 20 mg/j. Pour information, la valeur calculée selon le même principe à partir des moyennes, fournies dans les mêmes publications, est égale à 54 mg/j.

Au vu des percentiles relevés dans les études de Stanek et al. à partir de la moyenne des quatre meilleurs traceurs (142 mg/j pour le percentile 90 dans la publication de 1995 b ; 376 et 285 mg/j pour les deuxième et troisième semaines dans la publication de 1997) et des valeurs maximales données par Davies et al. (médiane des valeurs obtenues avec l’aluminium et le silicium : 476 mg/j pour les femmes, 367 mg/j pour les hommes), la valeur conservatoire proposée pour les adultes est de 400 mg/j.

Ces données sont globalement cohérentes avec les études basées sur les comportements, la valeur haute proposée est toutefois supérieure aux percentiles 95 calculés par le VITO (2007) pour des scénarios de jardiniers et d’ouvriers des travaux publics (valeurs allant de 120 à 200 mg/j).

6 Pour les enfants, l’utilisation de la moyenne peut se justifier par des résultats d’études reposant sur des populations plus importantes, dont certaines tirées au sort. Par ailleurs, le résultat basé sur les moyennes n’est pas très différent de celui obtenu avec les médianes (cf. section 4.3.1).
Tableau 25 : Valeurs utilisées pour la définition d’une valeur centrale de la quantité de sol ingéré par les adultes

<table>
<thead>
<tr>
<th>Référence</th>
<th>Médiane (mg/j)</th>
<th>Commentaire</th>
</tr>
</thead>
</table>
| Stanek et al. (1995) | 87 | 6 adultes volontaires
N*=18 adultes.semaines
Données basées sur la médiane des 4 meilleurs traceurs |
| Stanek et al. (1997), Anaconda | -14 (1ère semaine)
18 (2ème semaine)
-5 (3ème semaine) | 10 adultes volontaires
N*=10 adultes par semaine
Données basées sur la médiane des 4 meilleurs traceurs |
| Davies et al. (2006) | 92 (Al - femmes)
68 (Al - hommes)
23 (Si - femmes)
26 (Si - hommes) | 33 adultes
N*=16 pour les femmes ; N*= 17 pour les hommes
Valeurs nulles ramenées à 0 |

*N : valeur utilisée pour le calcul de la moyenne pondérée des médianes

4.3.3 VALEURS PROPOSEES POUR LES DIFFERENTES CLASSES D’ÂGE

Pour les enfants de 0 à 1 an (classe d’âge 1), la valeur centrale est fixée à la moitié de celle des enfants des classes d’âge supérieures, car l’hypothèse est faite que de 0 à 6 mois les enfants ont peu de contact direct avec le sol. La valeur de 25 mg/j obtenue est ensuite arrondie à un chiffre significatif, soit 30 mg/j.

Les données recueillies à partir des études basées sur les traceurs concernent des enfants allant de 1 à 7 ans, voire 8 ans dans l’étude de Davies et al. (2006), soit des enfants appartenant aux classes d’âge 2, 3 et 4.

Pour les classes d’âge 5 et 6 (de 11 à 18 ans), en l’absence de données adaptées, les données des adultes seront utilisées, considérant que leurs activités sont globalement plus proches de celles d’adultes que de celles de jeunes enfants.

Il convient de rappeler que ces données ne visent pas à couvrir des comportements fortement exposants. En particulier, elles ne prennent pas en compte le cas des enfants ingérant de manière récurrente des quantités très élevées de sol (comportement de pica).

Tableau 26 : Quantité de sol ingéré par jour – Qsol (mg/j)

<table>
<thead>
<tr>
<th>Classe d’âge</th>
<th>Valeur centrale</th>
<th>Valeur conservatoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ces valeurs sont en accord avec les conclusions de la revue bibliographique réalisée par le VITO en 2007. Les auteurs indiquent que les données issues des différents types d’étude « suggèrent que les valeurs moyennes pour l’ingestion de sol/poussières par les enfants ne sont pas supérieures à 100 mg par jour et qu’il se peut qu’elles soient bien inférieures, probablement entre 40 et 80 mg par jour ». Pour les adultes, ils concluent que « les valeurs d’ingestion de sol pour les adultes sont probablement comprises entre 25 mg par jour (médiane) et 45 mg par jour (moyenne) ». Les auteurs calculent aussi des taux horaires d’ingestion de sol à l’extérieur, d’ingestion de sol à l’intérieur et d’ingestion de poussières à l’intérieur. Ils prennent en compte comme base de leur calcul des résultats dérivés des études sur les traceurs, qu’ils assimilent à la somme des quantités de sol ingéré à l’extérieur et à l’intérieur des bâtiments.

Les valeurs proposées dans le Tableau 26 correspondent également assez bien aux valeurs recommandées par l’US EPA (2011) pour l’ingestion de sol. Les différences concernent :

- la valeur centrale définie pour les personnes entre 11 et 21 ans, puisque l’US EPA, faute de données, fait le choix de leur attribuer la valeur définie pour les jeunes enfants et non celle des adultes ;
- la valeur conservatoire pour les adultes qui, dans les documents de l’US EPA est identique à celle des enfants.

D’après la définition donnée par l’US EPA, ces recommandations concernent en revanche uniquement les particules de sol localisées à l’extérieur, celles contenues dans des pots supportant des plantes d’intérieur et les poussières sédimentées à l’extérieur. Les valeurs centrales données par l’US EPA pour l’ingestion de sol plus de poussières (le terme « poussières » englobe les particules déposées sur les surfaces à l’intérieur des bâtiments et les particules de sol ayant pénétré dans les bâtiments à partir de l’extérieur) correspondent le plus souvent au double des valeurs données pour l’ingestion de sol seul. Ces valeurs pour l’ingestion de sol et de poussières sont basées pour les enfants sur la seule publication de Hogan et al. (1998). Dans le but d’apporter une contribution à la validation du modèle IEUBK (US EPA, 1994) dans son ensemble, Hogan et al. ont comparé les résultats du modèle IEUBK avec des données de plombémie mesurées chez 478 enfants habitants sur trois sites différents. En utilisant les concentrations dans l’eau de boisson, le sol et les poussières propres à chaque enfant et les valeurs par défaut pour l’ensemble des autres données d’entrée du modèle, les auteurs ont obtenu, pour chaque site, une moyenne géométrique des plombémies prédites qui est proche de la moyenne géométrique des plombémies mesurées (7 µg/l au maximum de différence) et un pourcentage d’individus dépassant 100 µg/l de plomb dans le sang qui se situent dans les 4 % de celui observé. L’US EPA indique que, « Bien qu’il puisse y avoir des incertitudes dans ces estimations », les résultats suggèrent que les valeurs par défaut des quantités de sol et de poussières ingérées utilisées dans la version du modèle IEUBK (approximativement 50 mg par jour de sol ingéré et 60 mg par jour de poussières ingérées, valeurs moyennées pour les enfants de 1 à 6 ans) peuvent être à peu près exactes pour représenter la tendance centrale pour les quantités de sol et de poussières ingérés sur les trois lieux d’étude ».

INERIS-DRC-14-141968-11173C
L’USEPA donne des valeurs pour les quantités de sol ingéré (à multiplier par la concentration dans le sol extérieur), pour les quantités de poussières ingérées (à multiplier par la concentration dans les poussières intérieures) et pour la somme des deux. Mais, le mode d’utilisation en modélisation de ce dernier paramètre « quantité de sol et de poussières ingérés » n’est pas très clair. Faut-il le multiplier par la concentration dans le sol, par la concentration dans les poussières (rarement mesurée dans les évaluations de risque liées à des sites contaminés et modélisée avec beaucoup d’incertitudes dans les exercices de modélisation prédictive) ou par une moyenne pondérée des deux ?

Enfin, le rapport « Quantité de terre et de poussières ingérées par un enfant de moins de 6 ans et bioaccessibilité des polluants », daté de 2012, de l’InVS (Institut national de Veille Sanitaire) et de l’INERIS propose de retenir les données de la publication de Stanek et al. de 2001, établissant une distribution statistique pour représenter l’exposition chronique par ingestion de sol et de poussières des enfants de moins de 6 ans. Il est proposé d’utiliser un ou plusieurs descripteurs de la distribution pour une estimation déterministe (médiane, moyenne ou un percentile de la distribution). Pour une estimation probabiliste, les auteurs proposent une distribution lognormale ajustée aux percentiles fournis dans la publication de Stanek (2001), mais en limitant cette distribution par une borne inférieure fixée à 0 et une borne supérieure à 200 mg/j. La moyenne arithmétique de la nouvelle distribution est alors égale à 33 mg/j et sa médiane à 26 mg/j.

Dans le cadre de la définition des valeurs de MODUL’ERS, le choix de valeurs pour les enfants a pris en compte la publication de Stanek et al. de 2001, qui offre une analyse intéressante de l’estimation sur le long terme de l’ingestion de sol. Pourtant, il a semblé préférable de ne pas se limiter à cette seule publication. En effet, cette étude est basée sur une population d’enfants vivants sur un site contaminé et pour lesquels la connaissance de cette situation par les familles a pu avoir un impact sur les comportements des enfants. Les valeurs proposées dans ce rapport intègrent les résultats d’autres études de bilan massique à partir de traceurs, afin d’élargir le panel des populations et situations investiguées.

MODUL’ERS est un outil pouvant être utilisé pour différentes types d’étude. Les valeurs proposées visent ainsi à couvrir des situations variées et à répondre aux besoins des divers types d’étude. Dans le cadre de la politique nationale de gestion des sites et sols pollués, il est recommandé pour une étude d’Interprétation de l’Etat des Milieux (IEM) et en première approche, d’utiliser une valeur de 91 mg/j pour les enfants jusqu’à 6 ans et une valeur de 50 mg/j pour les adultes. Néanmoins, ces valeurs sont à adapter au contexte du site.

7 Cornelis et al. ont effectué une revue de la littérature. Les valeurs trouvées pour le paramètre « part de sol extérieur dans les poussières à l’intérieur des bâtiments » et reportées dans le rapport du VITO (2007) vont de 8 à plus de 80 %.

8 Ministère de l’Environnement, de l’Energie et de la Mer, Méthodologie nationale de gestion des sites et sols pollués, Avril 2017
5. Masse Corporelle

La masse corporelle des cibles humaines intervient dans le calcul des doses d'exposition. Celles-ci varient de manière inversement proportionnelle à la masse corporelle.

Les données proposées dans le tableau ci-dessous sont issues du rapport de synthèse de l’Institut de Veille Sanitaire (InVS) de 2012 sur les variables humaines d’exposition. Ce rapport reprend les données de l’enquête décennale de 2002-2003 menée par l’INSEE. Il indique que « cette enquête, réalisée tous les 10 ans, concerne un large échantillon d’individus (34944) couvrant toutes les classes d’âge et répond à la fois aux critères d’effectif et de représentativité requis ». Toutefois, « la principale limite ici est l’utilisation de données déclarées et non mesurées. Une tendance à la sous-estimation de la masse corporelle est en effet constatée lorsque l’on interroge les enquêtés ».

L’objectif dans MODUL’ERS est de fournir une estimation de la masse corporelle d’un individu pour chacune des classes d’âge présentée en section 2, et non une estimation de la masse corporelle dans la population ou dans une sous-population. Les indicateurs proposés dans le tableau suivant sont donc calculés en considérant le temps passé dans chacune des classes d’âge par un individu jusqu’à 80 ans (âge correspondant environ à l’espérance de vie actuelle), mais sans prendre en compte de pondération basée sur le ratio hommes-femmes dans la population ou la répartition de celle-ci entre les classes d’âge. Pour chaque classe d’âge, il s’agit donc d’une moyenne temporelle.

Mode de calcul de la valeur ponctuelle retenue pour la masse corporelle moyenne d’un individu sur chaque tranche d’âge

Pour les individus de 18 et plus (classe d’âge 7), la valeur est calculée comme suit :

\[
B_w = \frac{B_{w,h} + B_{w,f}}{2}
\]

avec \(B_{w,h} \) : masse corporelle moyenne d’un homme entre 18 et 80 ans,

\(B_{w,f} \) : masse corporelle moyenne d’une femme entre 18 et 80 ans,

\[
B_{w,h} = \frac{B_{w,h,18} + B_{w,h,19} + 5 \times B_{w,h,[20;24]} + 5 \times B_{w,h,[25;29]} + \ldots + 5 \times B_{w,h,[75;79]}}{80 - 18}
\]

avec \(B_{w,h,18} \) : masse corporelle moyenne d’un homme âgé de 18 ans,

\(B_{w,h,[75;79]} \) : masse corporelle moyenne d’un homme entre 75 et 79 ans inclus.

Les données sont issues du tableau 3 du rapport de l’InVS. \(B_{w,f} \) est calculée sur le même principe que \(B_{w,h} \).

La même méthode est utilisée pour les autres classes d’âge. Ainsi, pour la masse corporelle des enfants de la classe d’âge 6 ([15 ans ; 18 ans[]), on a :
\[B_{w_classe_6} = \frac{B_{w_g_15} + B_{w_f_15} + B_{w_g_16} + B_{w_f_16} + B_{w_g_17} + B_{w_f_17}}{6} \]

avec
- \(B_{w_g_15} \): masse corporelle moyenne d’un garçon âgé de 15 ans,
- \(B_{w_f_15} \): masse corporelle moyenne d’une fille âgée de 15 ans,
- \(B_{w_g_16} \): masse corporelle moyenne d’un garçon âgé de 16 ans,
- \(B_{w_f_16} \): masse corporelle moyenne d’une fille âgée de 16 ans,
- \(B_{w_g_17} \): masse corporelle moyenne d’un garçon âgé de 17 ans,
- \(B_{w_f_17} \): masse corporelle moyenne d’une fille âgée de 17 ans.

Ces données sont issues du tableau 3 du rapport de l’InVS.

Mode de calcul des valeurs inférieure et supérieure de l’intervalle de variation de la masse corporelle moyenne d’un individu sur chaque tranche d’âge

Afin de représenter l’essentiel des cas, sans chercher à couvrir les situations extrêmes, une estimation des percentiles 2,5 et 97,5 de la variable définie ci-dessus a été recherchée.

Les distributions de probabilité théoriques fournies dans les tableaux 6 et 7 du rapport de l’InVS pour représenter la distribution de la masse corporelle en fonction du sexe et de l’âge ont été utilisées pour les adultes (classe d’âge 7). Les percentiles 2,5 et 97,5 de chacune de ces distributions ont été déterminés, puis interpolés de manière linéaire pour calculer une estimation des percentiles 2,5 et 97,5 de la masse corporelle moyenne (moyenne temporelle) d’un individu de 18 à 80 ans. En l’absence de valeurs propres aux mêmes personnes en fonction de leur âge, cette méthode de calcul est une approximation basée sur l’hypothèse que les personnes de faible (ou forte) masse corporelle « traversent » les différentes classes d’âge données dans la publication de l’InVS, en conservant une masse corporelle correspondant aux percentiles faibles (ou élevés) des masses corporelles dans la population.

Pour les classes d’âge 1 à 6 (enfants de 0 à 18 ans), cette approche ne semble pas toujours appropriée, car au sein de chaque tranche d’âge pour laquelle une distribution de probabilité est donnée, un même individu est susceptible de voir son poids varier de manière significative avec le temps. À titre d’exemple, le percentile 2,5 calculé avec la distribution proposée pour les enfants de 0 à 1 an ([0 ; 1 ans]) est égal à 3,8 kg. Cette valeur n’est pas représentative de la masse corporelle moyenne d’un individu durant sa première année, même pour un enfant de faible corpulence. L’utilisation de ces distributions définies sur des périodes de forte croissance tend à surestimer la variabilité de la masse corporelle moyenne des individus sur ces périodes.

Par conséquent, pour fournir une estimation de la variabilité de la masse corporelle moyenne (moyenne temporelle) des individus pour les classes 1 à 6, les données issues du carnet de santé (Ministère de la Santé et des Solidarités, 2006) ont été utilisées. Les percentiles 3 et 97 de la masse corporelle ont été déterminés graphiquement tous les trois mois de 0 à 3 ans et tous les six mois de 11 à 18 ans. Les valeurs des percentiles 3 d’une part et des percentiles 97 d’autre
part ont ensuite été interpolées de manière linéaire, pour calculer sur chaque classe d’âge une estimation des percentiles 3 et 97 de la masse corporelle moyenne (moyenne temporelle) pour les classes 1 à 6.

<table>
<thead>
<tr>
<th>Tableau 27 : Masse corporelle de la cible (kg) - Bw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge</td>
</tr>
<tr>
<td>Classe d’âge 1</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
</tr>
<tr>
<td>Classe d’âge 5</td>
</tr>
<tr>
<td>Classe d’âge 6</td>
</tr>
<tr>
<td>Classe d’âge 7</td>
</tr>
</tbody>
</table>

L’utilisation des données des distributions de probabilité du rapport de l’InVS donnerait par exemple pour la classe 5 un intervalle de valeurs allant de 32,5 à 69,3 kg.

6. HAUTEUR DE RESPIRATION

Ce paramètre est utilisé dans le calcul de dilution d’un polluant inhalé à l’extérieur. Les valeurs ont été définies en multipliant la taille des individus par un coefficient représentant le ratio « hauteur du nez sur taille des individus ». Ces deux paramètres, dépendants de l’âge, ont été estimés pour chaque classe d’âge.

La taille des individus pour les classes 1 à 6 a été estimée à partir de la médiane des tailles données en fonction de l’âge dans le carnet de santé (Ministère de la Santé et des Solidarités, 2006). Pour les adultes, la source utilisée est la taille moyenne des Français donnée par l’INSEE (2007).

Le ratio « hauteur du nez sur taille des individus » a été estimé à partir de figures sur les proportions du corps humains (Davenport, 1921).

Le ratio « hauteur du nez sur taille des individus » a été estimé à partir de figures sur les proportions du corps humains (Davenport, 1921).

Compte-tenu de l’incertitude sur le paramètre « hauteur de respiration », et plus généralement sur le calcul de dilution utilisant la hauteur de respiration pour estimer la concentration inhalée, les valeurs en centimètres ont été arrondies au multiple de 5 le plus proche.

<table>
<thead>
<tr>
<th>Tableau 28 : Hauteur de respiration (m) - Hresp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge</td>
</tr>
<tr>
<td>Classe d’âge 1</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
</tr>
<tr>
<td>Classe d’âge 5</td>
</tr>
<tr>
<td>Classe d’âge 6</td>
</tr>
<tr>
<td>Classe d’âge 7</td>
</tr>
</tbody>
</table>
7. **BUDGET ESPACE-TEMPS**

Les sources d’information les plus complètes et les plus récentes permettant de renseigner la fraction de temps passée à l’intérieur et celle passée à l’extérieur sont :

- l’étude de l’InVS sur la description du budget espace-temps et l’estimation de l’exposition de la population française dans son logement (2010),
- l’enquête emploi du temps 2009-2010 de l’INSEE.

L’étude de l’InVS donne les temps passés dans les différentes pièces de la résidence principale, tandis que l’enquête de l’INSEE décrit les temps passés par les individus de 11 ans et plus, selon les activités, mais sans notion de lieu. Par conséquent, l’étude de l’InVS a été utilisée pour définir la fraction annuelle de temps à l’intérieur du logement, et les données de l’étude de l’INSEE ont servi à estimer la fraction annuelle de temps à l’extérieur sur ou près du lieu d’habitation.

7.1 **FRACTION DE TEMPS A L’INTERIEUR**

Les fractions de temps passé ont été calculées en faisant la moyenne entre les valeurs reportées pour les femmes et les valeurs reportées pour les hommes.

Pour les classes 1 et 2, la fraction de temps passé à l’intérieur a été estimée à partir de la moyenne fournie pour les enfants de 0 à 4 ans. Pour les classes 3 et 4, elle a été estimée à partir de la moyenne reportée pour les enfants de 5 à 9 ans. Pour les classes 5 et 6, les moyennes données respectivement pour les individus de 10 à 14 ans et de 15 à 19 ans ont été utilisées.

Pour les adultes (classe 7), la fraction de temps passé à l’intérieur a été calculée, en pondérant les valeurs fournies pour chaque tranche d’âge renseignée dans le rapport de l’InVS, par le nombre d’années passées dans chacune de ces tranches par un individu de 18 jusqu’à 80 ans, selon le même principe que pour la masse corporelle.

<table>
<thead>
<tr>
<th>Classe d’âge</th>
<th>Valeur retenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>0,73</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>0,73</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>0,63</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>0,63</td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>0,64</td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>0,61</td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>0,69</td>
</tr>
</tbody>
</table>

Tableau 29 : Fraction de temps passé à l’intérieur du logement (-) f_annuelle_temps_int
Dans une approche conservatoire, une valeur égale à 1 pourra être prise en compte pour la fraction de temps passé à l’intérieur.

Au-delà de ces informations sur les temps passés dans le logement, il est possible d’estimer les temps passés à l’intérieur dans les bureaux et les salles de classes à partir du temps de travail \(f_{\text{annuelle temps int}} = 0,19 \) pour 35 heures par semaine et 47 semaines de travail par an) et des horaires de scolarité \(f_{\text{annuelle temps int}} \approx 0,1 \) pour 24 heures de classe par semaine et 36 semaines par an).

Par ailleurs, le rapport de l’Observatoire de la Qualité de l’Air Intérieur de 2007 donne aussi des informations sur les temps passés par les enfants de 0 à 18 ans dans les lieux de loisirs. Les informations sont basées sur une enquête nationale qui s’est déroulée entre 2006 et 2007. D’après cette étude, par exemple, les enfants de niveau préscolaire qui fréquentent des lieux de garde collectifs, y passent en moyenne 14 % de leur temps en fréquence annuelle (environ 28 %, si on considère le 95ème percentile).

On notera qu’en additionnant la fraction de temps passé dans le logement et celle passée dans les espaces de travail par les adultes, on obtient une valeur proche de 0,9, valeur utilisée par le National Radioecological Protection Board (NRPB) et l’Institut de Protection et de Sûreté Nucléaire (IPSN) pour estimer le temps passé à l’intérieur par la population dans les évaluations d’impact radiologique (Rommens, 1999).

7.2 Fraction de Temps à l’Extérieur

L’enquête de l’INSEE a été menée entre 2009 et 2010 sur plus de 17000 personnes de 11 ans et plus, qui ont décrit leurs activités selon un pas de temps de 10 minutes sur une journée entière.

Pour les classes 5, 6 et 7, la fraction de temps à l’extérieur, en population générale, a été estimée à partir des temps moyens dans les activités suivantes : chasse, pêche, cueillette, promenade (sans distinction entre promenade au jardin et autres), jardinage et sports (bien que certains sports se pratiquent à l’intérieur). Certaines de ces activités pouvant avoir lieu hors domicile, les valeurs proposées peuvent majorer la fraction de temps passé à l’extérieur sur le site d’étude. A l’inverse, certaines activités recensées par l’INSEE peuvent avoir lieu en partie au domicile, à l’extérieur, et n’ont pas été prises en compte ici (exemples : détente, sieste, sociabilité…). En outre, les informations utilisées tenant compte à la fois des personnes pratiquant les activités ci-dessus et de celles ne les pratiquant pas, sont des moyennes nationales. Les valeurs fournies dans le tableau suivant n’ont donc pas de caractère conservatoire. Pour les classes 5 et 6, les données relatives au moins de 18 ans ont été utilisées. Pour les adultes, la valeur a été calculée en utilisant une pondération, basée sur la largeur des tranches d’âge fournies par l’INSEE.

La fraction de temps passée à l’extérieur par les agriculteurs a également été définie à partir des données fournies par l’INSEE pour la catégorie « Agriculteur exploitant, artisan, commerçant ou chef d’entreprise ». Elle a été estimée en ajoutant au temps passé dans les activités listées ci-dessus, la fraction de temps consacrée à l’activité professionnelle, au domicile et hors domicile.

Pour les classes d’âge 1 à 4, aucune enquête de budget espace-temps n’a été trouvée pour définir les temps passés à l’extérieur. Aussi, les données de la publication Roy et al. (1993) sur les temps passés dans les activités de récréation,
jeux et sports, par les enfants de 0 à 17 ans ont été utilisés. Les données relatives aux enfants de 0 à 3 ans, extrapolées à partir de l’emploi du temps de leur mère, ont été utilisées pour les classes d’âge 1 et 2. Les données relatives aux enfants de 4 à 6 et de 7 à 17 ans, ont été employées respectivement pour les classes d’âge 3 et 4.

Tableau 30 : Fraction de temps passé à l’extérieur (sur ou près du lieu d’habitation) (-) $f_{annuelle_temps_ext}$

<table>
<thead>
<tr>
<th>Classe d’âge</th>
<th>Valeur retenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe d’âge 1</td>
<td>$3,1.10^{-2}$</td>
</tr>
<tr>
<td>Classe d’âge 2</td>
<td>$3,1.10^{-2}$</td>
</tr>
<tr>
<td>Classe d’âge 3</td>
<td>$1,0.10^{-1}$</td>
</tr>
<tr>
<td>Classe d’âge 4</td>
<td>$1,0.10^{-1}$</td>
</tr>
<tr>
<td>Classe d’âge 5</td>
<td>$3,6.10^{-2}$</td>
</tr>
<tr>
<td>Classe d’âge 6</td>
<td>$3,6.10^{-2}$</td>
</tr>
<tr>
<td>Classe d’âge 7</td>
<td>$2,8.10^{-2}(0,26)^*$</td>
</tr>
</tbody>
</table>

*: Entre parenthèses, valeur relative aux agriculteurs (valeur utilisée par l’IPSN : 0,28 d’après Rommens, 1999)
8. REFERENCES BIBLIOGRAPHIQUES

ADEME (Agence de l'Environnement et de la Maîtrise de l'Energie), IRSN (Institut de radioprotection et de Sûreté Nucléaire), CIBLEX, Banque de données de paramètres descriptifs de la population française au voisinage d’un site pollué, Version 0, 2003

AFSSA (Agence Française de Sécurité Sanitaire des Aliments), CSHPF (Conseil supérieur d'hygiène publique de France), Dioxines : données de contamination et d'exposition de la population française, Juin 2000

AFSSA (Agence Française de Sécurité Sanitaire des Aliments), Even I., Berta J.L., Volatier J.L., Evaluation de l'exposition théorique des nourrissons et des enfants en bas âge aux résidus de pesticides apportés par les aliments courants et infantiles, 2002

ANSES (Agence Nationale de Sécurité Sanitaire, Alimentation, Environnement, Travail), InVS (Institut de Veille Sanitaire), Étude nationale d'imprégnation aux polychlorobiphényles des consommateurs de poissons d'eau douce, 2011

Boggio, Grossiord, Guyon, Fuchs, Fantino, Consommation alimentaire des nourrissons et des enfants en bas âge en France en 1997, Archives pédiatriques, 6, 740-747, 1999

Calabrese, Preliminary adult soil ingestion estimates: results of a pilot study, Regulatory toxicology and pharmacology, 12, p. 88-95, 1990

Calabrese E., Stanek K., Resolving intertracer inconsistencies in soil ingestion estimation, Environmental health perspectives, 103, p. 454-457, 1995

Calabrese E., Stanek K., Methodology to estimate the amount and particle size of soil ingested by children: implications for exposure assessment at wastes sites, Regulatory toxicology and pharmacology, 24, p. 264-268, 1996
Calabrese E., Stanek E., Pekow P., Barnes R., Soil ingestion estimates for children residing on a Superfund site, Ecotoxicology and environmental safety, 36, 1997

Davenport C.B., Diagrams to show human bodily proportions at different stages of development from Infancy to maturity, cité par Bennett M.A. dans The Journal of heredity, Vol. 12, p.421, 1921

Davis S., Waller P., Buschbom R., White P., Quantitative estimates of soil ingestion in normal children between the ages of 2 and 7 years: population-based estimates using aluminium, silicon, and titanium as soil tracer elements, Archives of environmental health, p. 112-122, 1990

FAO (Food and Agriculture Organization), La qualité et son évolution dans le poisson frais, FAO document technique sue les pêches – 348, M-47 ISBN 92-5-203507-9, 1999

GRNC (Groupe Radioécologique Nord-Cotentin), Analyse de sensibilité et d’incertitude sur le risque de leucémie attributable aux installations nucléaires du Nord-Cotentin, annexe 1 : Distributions de probabilité des paramètres, 2002

INSEE (Institut National de la Statistique et des Etudes Economiques), Bertrand M., Consommation et lieux d’achat des produits alimentaires en 1991, INSEE Résultats n°262-263, 1993

INSEE (Institut National de la Statistique et des Etudes Economiques), Dubeaux D., Les Français ont la main verte, Division conditions de vie des ménages, INSEE Première, n°338, 1994

InVS (Institut de Veille Sanitaire), AFSSA (Agence Française de Sécurité Sanitaire des Aliments), Étude d'imprégnation par les dioxines des populations vivant à proximité d'usines d'incinération d'ordures ménagères, ISBN : 978-2-11-098350-3, Février 2009

InVS (Institut de Veille Sanitaire), INERIS (Institut National de l'Environnement Industriel et des Risques), Quantités de terre et de poussières ingérées par un enfant de moins de 6 ans et bioaccessibilité des polluants : état des connaissances et propositions, 2012

InVS (Institut de Veille Sanitaire), Claire Dereumeaux, Cécile Kairo, Abdelkrim Zeghnoun, Synthèse des travaux du département santé environnement de l'Institut de Veille Sanitaire sur les variables humaines d'exposition, 2012

Ministère de la Santé et des Solidarités, Carnet de santé, Tracés établis à partir de l'étude séquentielle française de la croissance CIE-INSERM. Sempé M., Mise à jour 01/01/2006

Rommens C., Etudes d'impact radiologique autour des sites nucléaires : une revue des données de mode de vie ; les budgets temps et autres paramètres (hors alimentaires), Radioprotection Vol. 34, n°2, 1999

Stanek E., Calabrese E., Preliminary adult soil ingestion estimates: Results of a pilot study, Regulatory toxicology and pharmacology, 12, p. 88-95, 1990

Stanek E., Calabrese E., Daily estimates of soil ingestion in children, Environmental health perspectives, 103, p 276-285, 1995a

Stanek E., Calabrese E., Barnes R., Pekow P., Soil ingestion in adults – Results of a second pilot study, Ecotoxicology and environmental safety, 36, p. 249-257, 1997
Stanek E., Calabrese E., Daily soil ingestion for children at Superfund site, Risk analysis, Vol. 20, n°5, 2000
Verger P., Etude de l'alimentation française totale, 2004
Wijnen van J., Clausing P., Brunekreef B., Estimated soil ingestion by children, Environmental research, 15, p. 147-162, 1990
Zartarian V., Xue J., Ozkaynak H., A probabilistic exposure assessment for children who contact CCA-treated playsets and decks using the Stochastic Human Exposure and Dose Simulation model for the wood preservative scenario (SHEDS-WOOD), Final report. EPA/600/X-05/009, 2005
maîtriser le risque
pour un développement durable

Institut national de l'environnement industriel et des risques
Parc Technologique Alata
BP 2 - 60550 Verneuil-en-Halatte
Tél. : +33 (0)3 44 55 66 77 - Fax : +33 (0)3 44 55 66 99
E-mail : ineris@ineris.fr - Internet : http://www.ineris.fr