Modélisations en aveugle de propagations de flamme dans un réseau d'obstacles

Amita TRIPATHI – FLUIDYN

Thomas VUILLEZ - ODZ

Objectifs

- Objectif :
 - Evaluer les codes CFD pour modéliser un UVCE échelle industrielle
 - Travailler sur un type d'accident dont la gravité a marqué la mémoire
 - Face aux modèles classiques, proposer une approche plus objective pour établir la violence d'une explosion
- Méthodologie:
 - Modélisation d'une déflagration en présence d'obstacles
 - Similaire à une modélisation UVCE en milieu encombré
 - Modélisation en aveugle
 - Conditions d'obtention des résultats pour une étude de dangers

Source : HSE report - Buncefield Explosion Mechanism

Phénoménologie

- Contexte : les modèles classiques reposent sur l'évaluation préalable du potentiel de l'explosion
- Phénoménologie : mécanisme d'accélération d'un front de flamme au travers d'obstacles
- Expériences analysées : DRA72 EXJET3

EXJET03

DRA72

- Origine des données : DRA72 Essai n°20 INERIS
- Gaz inflammable propane / air avec enrichissement en oxygène
- Géométrie
 - Deux rangées d'obstacles en arc de cercle
 - Le long d'une paroi verticale béton
 - Maintien du nuage inflammable au moyen d'une bâche
- Mesures expérimentales:
 - Caméra à prise de vue rapide
 - Capteurs d'oxygène à l'intérieur de la boite
 - Capteurs de pression à l'intérieur / extérieur de la boite
- Essais 21 et 22 : configuration sans obstacles.

Mise en place du nuage inflammable

• Origine des données : DRA72 Essai n°20/21/22 – INERIS

Expérience n°20 avec obstacles

- De 0 à 35 ms
- front de flamme ~ 30 m/s

- De 35 à 50 ms
- front de flamme ~ 50 m/s,

- De 50 à 65 ms
- front de flamme ~ 75 m/s.

Expérience n°20 avec obstacles

Expérience n°21-22 sans obstacles

Conditions de la modélisation

- Points de comparaison avec les résultats expérimentaux :
 - Surpressions enregistrées par les capteurs
 - Vitesse de flamme (m/s) à partir de la visualisation du front de flamme
- Points d'attention
 - Présence du ventilateur non prise en compte par tous les participants
 - Présence de la paroi / bâche
 - Un seul capteur de pression interne
- Rappel :
 - En aveugle pour la première série de modélisation
 - Résultats expérimentaux fournis ensuite

Modélisateurs

- Type d'entités représentées: industriel, bureau d'étude, EPIC
- Type de logiciel représentés :FLACS, Fluidyn-VENTEX, OPENFOAM
- Trois organismes utilisent le même logiciel (versions différentes)

		FLACS		Fluidvn-	OPENFOAM 2.3.0	
Logiciels	V10.4r1	V10.4r1 INERT	V10.3	VENTEX		
Bureaux d'études	DNV-GL		ODZ	FLUIDYN		
Editeurs						
Industriels		GRTGaz				
EPIC					INERIS	

Stratégies de modélisation

Modélisation		Méthodes						
		DNV GRT Gaz		Fluidyn	INERIS	ODZ		
Numérique	Code	FLACS v10.4r1	FLACS INERT v10.4r1	Fluidyn-Ventex	Openfoam 2.3.0	FLACS v10.3		
	Equations de transport	Navier-Stokes	Navier-Stokes	Navier-Stokes	Euler	Navier-Stokes		
	maillage	Cartésien 0.1m dans le nuage puis étirement dans les 3 axes 2 M mailles	Cartésien 0.25m dans le nuage puis étirement dans les 3 axes 0.5 M mailles	Non structuré dans le nuage et structuré en dehors 4cm / 20cm 0.2M mailles	Hexaédrique 3cm pour étirement dans les 3 axes 26 M mailles	Cartésien 5cm pour étirement dans les 3 axes 1 M mailles		
	Modélisation des obstacles	Non résolu, porosité locale	Non résolu, porosité locale	Obstacles résolus avec loi de parois standards	Obsacles maillés avec fonction de paroi	Non résolu, porosité locale		
	Schémas numériques	Temporel :Euler convection : 2ème ordre kappa diffusion : 2ème ordre centré	Temporel :Euler convection : 2ème ordre kappa diffusion : 2ème ordre centré	Temporel: Euler Convection: UDS (ordre 1) diffusion : 2ème ordre centré	Temporel: Euler Schéma centré 2nd ordre (espace)	Temporel :Euler convection : 2ème ordre kappa diffusion : 2ème ordre centré		

Géométrie & maillages

Combustion du nuage

Time: 60 ms

Time: 70 ms

Time: 80 ms

GRT

Expe

ODZ

DNV

Fluidyn

INERIS

Simulations essai 20

Vitesse de flamme moyenne	Méthodes					
	DNV	GRT	FLUIDYN	INERIS	ODZ	
3000 la 1000 vac 764 : 84 image : 108 image : 108 im	-8	-15	+45	-60	-27	
NOR MA 1000 Vac 768 × 84 mage : 102 Host For Frotton	-53	+2	+70	-60	-43	
3000 ls 1000 ls 100	-58	-45	+21	-70	-42	

- Accélération due aux obstacles obtenue pour toutes les simulations
- Retard d'acceleration initiale par rapport à l'expérience

Simulations essai 20

90

70

50

nt session (mbarg) 10 0 0 01-0

Surpro -30

-50 -70

- Le caractère vibratoire observé n'est pas ٠ reproduit
- Surpression entre -85% et +290% •
- Erreur très nettement inférieure à celle du ٠ modèle Multi-energy (+850%)
- Pour un même logiciel, même ordre de grandeur (différence de versions, utilisateurs, maillage)

Conclusions, enseignements et perspectives

- Expériences intéressantes mais conçues pour rendre compte d'un phénomène physique
- Certaines incertitudes demeurent (effet de la bâche, du ventilateur, turbulence initiale)
- Modélisations réalisées en aveugle
- Capacité de la CFD à modéliser l'augmentation de la vitesse de combustion liée à la turbulence dans le sillage des obstacles
- Bon ordre de grandeur pour les pics de surpression par rapport à l'approche analytique.
- Nécessité de la mise en place et de la connaissance de bonnes pratiques

Merci pour votre attention, des questions ?

Evolution du modèle de combustion dans Fluidyn-VENTEX

• Depuis 2016, modifications pour intégrer les différents régimes de combustion

• Amplitude réduite, forme en N générale conservée

