RAPPORT D'ÉTUDE

N° DRC-09-108407-10226A.

Résultats de mesures ponctuelles des émissions d'hydrogène sulfuré et autres composés gazeux potentiellement toxiques issues de la fermentation d'algues vertes (ulves)

Mesures réalisées le 13 août 2009 à Saint-Michel en Grève (22)
Résultats de mesures ponctuelles des émissions d'hydrogène sulfuré et autres composés gazeux potentiellement toxiques issues de la fermentation d'algues vertes (ulves)
Mesures réalisées le 13 août 2009 à Saint-Michel en Grève (22)

MEEDM / DEB (Direction de l'Eau et de la Biodiversité)

Liste des personnes ayant participé à l'étude : Christian Tauziède, Anne Morin, Hugues Biaudet, Hervé Adrien, Nicolas Chatlelier, Claudine Villey, Yannick Dupuis et Karine Adam
PRÉAMBULE

Le présent rapport a été établi sur la base des informations fournies à l’INERIS, des données (scientifiques ou techniques) disponibles et objectives et de la réglementation en vigueur.

La responsabilité de l’INERIS ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes ou erronées.

Les avis, recommandations, préconisations ou équivalent qui seraient portés par l’INERIS dans le cadre des prestations qui lui sont confiées, peuvent aider à la prise de décision. Etant donné la mission qui incombe à l’INERIS de par son décret de création, l’INERIS n’intervient pas dans la prise de décision proprement dite. La responsabilité de l’INERIS ne peut donc se substituer à celle du décideur.

Le destinataire utilisera les résultats inclus dans le présent rapport intégralement ou sinon de manière objective. Son utilisation sous forme d’extraits ou de notes de synthèse sera faite sous la seule et entière responsabilité du destinataire. Il en est de même pour toute modification qui y serait apportée.

L’INERIS dégage toute responsabilité pour chaque utilisation du rapport en dehors de la destination de la prestation.

<table>
<thead>
<tr>
<th>Rédaction</th>
<th>Vérification</th>
<th>Approbation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karine ADAM</td>
<td>Anne MORIN</td>
<td>Christian TAUZIEDE</td>
</tr>
<tr>
<td>Qualité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsable d'études et de recherches à l'Unité Traitement et Procédés Propres et Durables de la Direction des Risques Chroniques</td>
<td>Responsable de la Mission Eau à la Direction des Risques Chroniques</td>
<td>Secrétaire général de l'INERIS</td>
</tr>
<tr>
<td>Visa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Signature]</td>
<td>[Signature]</td>
<td>[Signature]</td>
</tr>
</tbody>
</table>

INERIS-DRC-09-108407-10226A-
TABLE DES MATIÈRES

1. INTRODUCTION .. 6
2. CONTEXTE DES MESURES .. 6
3. CAMPAGNE DE MESURE .. 7
 3.1 Description de la méthodologie employée .. 7
 3.2 Sélection des composés recherchés et méthodes de mesure ... 9
 3.2.1 Hydrogène sulfuré .. 9
 3.2.2 Autres composés soufrés .. 9
 3.2.3 Autres composés détectables sur site ... 9
 3.2.4 Identification des composés organiques volatils .. 10
 3.2.5 Quantification en laboratoire du CH$_4$ et des COVt ... 10
 3.3 Mise en œuvre et difficultés rencontrées .. 10
4. RESULTATS OBTENUS ... 10
5. COMMENTAIRES ET CONCLUSIONS ... 13
6. LISTE DES ANNEXES ... 15

INERIS-DRC-09-108407-10226A-
Page 5 sur 15
1. **INTRODUCTION**

La mort d'un cheval à Saint-Michel en Grève (Côtes d'Armor) le 28 juillet 2009 a relancé les discussions sur l'impact des marées vertes et notamment l'émission potentielle de fortes teneurs d'hydrogène sulfure lors de la décomposition de ces algues.

L'INERIS a été sollicité le 11 août 2009 par le Ministère de l'Ecologie, de l'Energie du Développement durable et de la Mer (MEEDM), en vue d'estimer les teneurs en hydrogène sulfure (ou sulfure d'hydrogène, de formule chimique H₂S) et de déterminer la présence d'autres composés gazeux toxiques susceptibles d'être émis par les algues vertes (ulves) en cours de décomposition (fermentation) sur les plages bretonnes.

L'INERIS est ainsi intervenu le 13 août 2009 dans la baie de Saint-Michel en Grève.

2. **CONTEXTE DES MESURES**

En vue de déterminer les zones les plus critiques vis-à-vis des émissions liées aux phénomènes de décomposition des algues vertes, l'INERIS s'est appuyé sur les connaissances et compétences du CEVA (Centre d'Études et de Valorisation des Algues, situé à Pleubian, Côtes d'Armor).

Il était initialement prévu de comparer les émissions d'hydrogène sulfure et autres composés potentiellement toxiques pour différentes situations d'algues vertes en décomposition:

- algues vertes déposées sur le sable depuis plusieurs jours ;
- algues vertes déposées dans les rochers où leur ramassage s'avère difficile.

Le CEVA, en charge de la cartographie des dépôts d'algues, a informé l'INERIS qu'aucun dépôt n'était présent, au moment de son intervention, dans les baies de Saint-Brieuc et de Saint-Michel en Grève. En effet, en cette période estivale, d'importants efforts de ramassage systématique des algues sont consentis par les communes en vue notamment de limiter les nuisances olfactives qu'elles génèrent.

Il a néanmoins été décidé, d'un commun accord avec le CEVA, de réaliser cette campagne de mesures dans la baie de Saint-Michel en Grève, dans la zone même de l'accident du 28 juillet 2009. Ce secteur vaste se situe à l'embouchure d'un cours d'eau, le Roscoat.

Avec l'appui de l'équipe de ramassage des algues de ce secteur, des mesures exploratoires par détecteurs portatifs ont été réalisées sur la plage de Saint-Michel en Grève et de Plestin les Grèves (dans des criques où les ramassages s'avèrent difficiles). Les algues vertes étaient majoritairement très fraîches (marée du jour) ou très anciennes. Dans ce dernier cas, il s'agissait uniquement de dépôts blancs...
correspondant au desséchement des algues donc non sujets au phénomène de fermentation.

Les détections obtenues au-dessus de la vase présente à l'endroit de l'accident ont montré des teneurs en hydrogène sulfuré beaucoup plus importantes (d'un facteur 10 au moins) qu'en manipulant les algues vertes fraîches rencontrées dans différents secteurs :
- 5 à 10 ppmv\(^1\) d'H\(_2\)S et 20 ppmv d'ammoniac (NH\(_3\))\(^2\) pour les algues vertes déposées par la dernière marée ;
- 200 ppmv d'H\(_2\)S et 200 ppmv d'ammoniac sur la vase.

Les engins de ramassage des algues ne peuvent pas s'approcher de la zone de l'accident, zone irriguée en permanence par le cours d'eau.

De ce fait, la mer recouvre ces algues de sable à marée montante. Ce mélange participe à la formation du sédiment de couleur noire observé sur place.

La campagne de mesures s'est déroulée le 13 août 2009 après-midi (à marée basse) dans la zone de l'accident. Elle s'est intéressée aux émissions issues des sédiments et des algues présents dans ce secteur.

3. CAMPAGNE DE MESURE

3.1 DESCRIPTION DE LA METHODOLOGIE EMPLOYEE

Plusieurs points de mesure ont été échantillonnés en vue d'évaluer la disparité des émissions gazeuses des sédiments (cf. figure n° 1). Pour des questions de sécurité des intervenants, seules les zones les moins sujettes à l'enlisement ont été considérées. Cinq points ont ainsi été étudiés :
- trois points pour évaluer les émissions des sédiments : points n° 1, 2 et 4 ;
- un point pour évaluer les émissions des algues vertes fraîches : point n° 3 ;
- un point près de l'embouchure du cours d'eau, à l'endroit exact de l'accident : point n° 5.

En vue d'obtenir un gaz homogène et le moins dilué possible en isolant les mesures de l'influence des conditions météorologiques (vitesse et direction du vent), des petites chambres métalliques (diamètre de 50 cm, hauteur de 20 ou 50 cm) ont été placées aux différents points de mesure sélectionnés. La photographie de la figure n° 1 illustre les chambres et situe leurs emplacements approximatifs.

\(^1\) ppmv : parties par million, en volume.
\(^2\) À 25 °C et 101 kPa, 1 ppmv d'H\(_2\)S correspond à 1,4 mg/m\(^3\) et 1 ppmv de NH\(_3\) correspond à 0,7 mg/m\(^3\).

INERIS-DRC-09-108407-10225A-
Figure n° 1 : Emplacement des points de mesures sur les sédiments à l'arrivée du ruisseau le Roscoat – le 13/08/09

N° Numéro du point de mesure
3.2 SELECTION DES COMPOSES RECHERCHES ET METHODES DE MESURE

3.2.1 HYDROGÈNE SULFURE

Le composé principalement recherché est l'hydrogène sulfuré (H₂S). Plusieurs méthodes distinctes ont été employées afin de déterminer, lors des mesures préliminaires, les zones les plus émissives :

- détection multigaz portable ;
- tubes colorimétriques (0-2 000 ppmv).

Des prélèvements spécifiques en ampoules de verre (0.25 litre), préalablement mises sous vide, ont ensuite été réalisés en vue de déterminer en laboratoire la concentration précise en H₂S selon la méthode décrite ci-après. L'H₂S de l'ampoule a été piégé dans une solution d'hydroxyde de cadmium, entraînant la formation d'un précipité de sulfate de cadmium. Plusieurs réactifs (solution de chlorure ferrique et solution de N-N-diméthyl p. phényle diamine) ont été ajoutés à une fraction de la solution de piégeage, générant la formation de bleu de méthylène. La coloration bleue est d'autant plus intense que la concentration en hydrogène sulfuré est élevée (détermination à l'aide d'un spectrophotomètre réglé à 655 nm). La quantification a ensuite été réalisée à l'aide d'une gamme d'étalonnage.

3.2.2 AUTRES COMPOSES SOUFFRES

Afin d'identifier la présence d'autres composés soufifes réduits³ (H₂S, mercaptans, diméthylsulfure), des prélèvements en sacs adaptés⁴ (20 litres) ont été réalisés. Pour des raisons de sécurité pendant le transport de ces échantillons volumineux vers le laboratoire, l'INERIS s'est limité à des prélèvements sur les zones les moins émissives.

De fortes dilutions ont été nécessaires pour permettre l'analyse de ces prélèvements par chromatographie gazeuse et détection par photométrie de flamme (CG/FPD). Ces dilutions ont permis de déterminer, dans le mélange gazeux émis, un ordre de grandeur des concentrations en espèces soufifes listées précédemment.

3.2.3 AUTRES COMPOSES DETECTABLES SUR SITE

Les appareils multigaz portables employés pour l'H₂S permettent également la détection d'autres gaz dans des gammes de concentrations correspondant aux concentrations limites admissibles au poste de travail : monoxyde de carbone (CO), dioxyde de carbone (CO₂), méthane (CH₄) et hydrocarbures et ammoniac (NH₃).

³ Hors SOx.
⁴ La nature du matériau constituant le sac limite l'adsorption sur ses parois des composés prélevés.

INERIS-DRC-09-108407-10226A-
3.2.4 IDENTIFICATION DES COMPOSES ORGANIQUES VOLATILS

Afin de mettre en évidence la présence éventuelle de composés organiques, une caractérisation globale a été réalisée selon le protocole suivant :

- prélèvement à faible débit d'un volume connu des gaz à analyser ;
- piégeage des produits à analyser dans une cartouche garnie d'un support adsorbant (carbone graphité) ;
- récupération en laboratoire des produits par chauffage à 150 °C avec transfert direct des produits désorbés en tête de colonne chromatographique, séparation et identification de chaque composé par son spectre de masse et estimation de leur concentration (CG/SM).

Les seuils de détection de cette méthode sont estimés au ppbv (1/1000 ppmv) voire sont plus faibles pour certains composés.

3.2.5 QUANTIFICATION EN LABORATOIRE DU CH₄ ET DES COVₜ

Sur les prélèvements réalisés en sacs de 20 litres (cf. paragraphe 3.2.2), des analyses ont été réalisées en laboratoire par ionisation de flamme (FID) en vue de déterminer les teneurs en composés organiques volatils non méthaniques. La méthode d'analyse consiste à déterminer la concentration en composés organiques volatils totaux (COVₜ, soit méthane et non méthaniques) et, en parallèle, à déterminer la concentration en méthane. On a ainsi accès, par différence, à la concentration en composés organiques volatils non méthaniques.

3.3 MISE EN ŒUVRE ET DIFFICULTÉS RENCONTRÉES

L'urgence de l'intervention et le contexte du site (accès difficile pour des engins, absence de source d'électricité...) ont nécessité le déploiement sur le terrain des méthodes et des moyens « légers » décrits précédemment. L'analyse des résultats obtenus à partir des différentes méthodes complémentaires employées permet cependant d'assurer que les ordres de grandeur des concentrations mesurées sont fiables.

4. RESULTATS OBTENUS

Les résultats sont présentés ci-dessous sous forme d'un tableau récapitulant l'ensemble des mesures réalisées sur les 5 points échantillonnés tels que présentés à la figure n°1.
<table>
<thead>
<tr>
<th>Type de mesure</th>
<th>emplacement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3bis⁵</th>
<th>4</th>
<th>4⁶</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heure</td>
<td>17:20</td>
<td>17:00</td>
<td>20:00</td>
<td>16:55</td>
<td>18:40</td>
<td>16:50</td>
<td>19:45</td>
<td>18:30</td>
</tr>
<tr>
<td>Détecteur multigaz</td>
<td>H₂S (ppmv)</td>
<td>20</td>
<td>Saturé (>100)</td>
<td>33</td>
<td>-</td>
<td>-</td>
<td>15 à 20</td>
<td>Saturé (>100)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>NH₃ (ppmv)</td>
<td>20</td>
<td>Saturé (>300)</td>
<td>14</td>
<td>4</td>
<td>-</td>
<td>40</td>
<td>Saturé (>300)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CH₄ (% de la LIE⁷)</td>
<td>-</td>
<td>2,8</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CO₂ (% vol)</td>
<td>-</td>
<td>0,6</td>
<td>1,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tubes colorimétriques</td>
<td>H₂S (ppmv)</td>
<td>-1000 et -600</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>800</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Méthylmercaptan (ppmv)</td>
<td>Traces (<1 ppm)</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Heure</td>
<td>17h05</td>
<td>-</td>
<td>-</td>
<td>19h38</td>
<td>19h39</td>
<td>19h50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prélèvement en ampoule pour dosage en laboratoire</td>
<td>H₂S (ppmv)</td>
<td>1 030</td>
<td>-</td>
<td><4</td>
<td>15</td>
<td>370</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁵ Déplacé, par rapport à l'emplacement 3, de quelques dizaines de cm et posé sur 20 cm algues fraîches.
⁶ Après mise en dépression de la chambre par pompage.
⁷ Limite Inférieure d'Explosivité. Cette valeur, pour le méthane, est de 5 % vol., soit 50 000 ppmv.

INERIS-DRC-09-108407-10228A-
<table>
<thead>
<tr>
<th>Type de mesure</th>
<th>emplacement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3bis</th>
<th>4</th>
<th>4</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heure</td>
<td>19h15</td>
<td>19h37-20h</td>
<td>18h35-19h15</td>
<td>18h28-19h56</td>
<td>18h40-19h15</td>
<td>20h-20h45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prélèvement en sac pour dosage en laboratoire</td>
<td>H₂S (ppmv)</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
</tr>
<tr>
<td></td>
<td>Diméthylsulfure (ppmv)</td>
<td>−200</td>
<td>−200</td>
<td>−200</td>
<td>−200</td>
<td>−200</td>
<td>−200</td>
<td>−200</td>
<td>−200</td>
</tr>
<tr>
<td></td>
<td>Méthylmercaptan (ppmv)</td>
<td>ND (< 1)</td>
</tr>
<tr>
<td></td>
<td>CH₄ (ppmv)</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>COV₂ (ppmv)</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>Prélèvement sur charbon actif pour dosage en laboratoire (composés détectés)</td>
<td>DMS (ppmv)</td>
<td>> 50</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>Dithiapentane (ppmv)</td>
<td>0,004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1,2,4-trithiole (ppmv)</td>
<td>0,002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Toluène (ppmv)</td>
<td>0,005</td>
<td>0,01</td>
<td>0,02</td>
<td>0,003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Paraffines</td>
<td>traces</td>
<td>-</td>
<td>traces</td>
<td>traces</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DMSO (ppmv)</td>
<td>-</td>
<td>0,01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,05</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ethyl-2-hexanol (ppmv)</td>
<td>-</td>
<td>0,003</td>
<td>0,002</td>
<td>-</td>
<td>0,01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Acide propanoïque</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>traces</td>
<td>traces</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Chlorobenzène (ppmv)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,003</td>
</tr>
</tbody>
</table>
5. COMMENTAIRES ET CONCLUSIONS

Les mesures réalisées le 13 août 2009 à Saint-Michel en Grève (22) montrent, d’un point de prélèvement à l’autre, une forte disparité dans la composition et les concentrations des gaz émis par les sédiments étudiés (vasse).

Les composés détectés et les gammes de concentrations rencontrées sont :
- \(\text{H}_2\text{S} \) (hydrogène sulfuré) : de quelques ppmv à 1 000 ppmv ;
- \(\text{NH}_3 \) (ammoniac) : de moins de 1 ppmv à plus de 300 ppmv ;
- \(\text{DMS} \) (diméthylsulfure) : de moins de 1 ppmv à 200-300 ppmv ;
- Méthylmercaptan : de traces à 6 ppmv ;
- \(\text{DMSO} \) (diméthylsulfoxide) : jusqu’à 0,05 ppmv ;
- Toluène : jusqu’à 0,02 ppmv ;
- Chlorobenzène : 1 mesure à 0,003 ppmv ;
- Autres composés soufrés (1,2,4-trithiolane et dithiapentane) : une mesure de l’ordre de 0,005 ppmv.

Cette disparité spatiale et temporelle peut probablement s’expliquer par :
- des quantités variables d’algues vertes dans les sédiments ;
- leur degré de décomposition plus ou moins avancé.

À ce stade, il n’est pas possible d’apprécier l’importance relative de chacune de ces causes. Enfin, le prélèvement lui-même (par mise en dépression plus ou moins importante de la chambre métallique) a pu influencer le résultat.

Deux tendances de composition semblent se dessiner :
- l’une avec de fortes teneurs en diméthylsulfure et de relativement faibles concentrations en hydrogène sulfuré, correspondant, a priori, à une fermentation peu avancée de la matière organique ;
- l’autre avec de fortes concentrations en hydrogène sulfuré, de faibles teneurs en diméthylsulfure et la présence de méthane plus marquée, l’ensemble traduisant une fermentation plus avancée.

Les principaux composés observés sur le site sont ceux qui ressortent d’un rapide survol de la littérature scientifique relative à la décomposition des algues. Par ailleurs, selon son expérience à travers différents prélèvements et observations sur des sites industriels (stations de traitement des eaux usées, par exemple) ou dans des ambiances particulières (égouts, ouvrages souterrains), l’INERIS n’a rencontré des concentrations en \(\text{H}_2\text{S} \) de 1 000 ppmv que rarement et cela, plutôt en milieu confiné.

Les mesures réalisées sur le site de Saint-Michel en Grève ont été limitées dans l’espace et dans le temps et ne peuvent, en l’état actuel des connaissances de l’INERIS, être généralisées. Elles ont néanmoins montré ponctuellement que le gaz émis par les sédiments contenant notamment des algues vertes en
décomposition pouvait être dangereux et qu'il convenait, en conséquence, d'en maîtriser les expositions.

Le principal composé mis en évidence, l'hydrogène sulfuré, est toxique par inhalation. À 1 000 ppmv, valeur observée localement sur le site, il peut être mortel en quelques minutes. À titre d'information, on trouvera en annexe des valeurs de référence correspondant aux seuils de toxicité aigue et aux valeurs limites admissibles au poste de travail.

Les résultats obtenus lors cette campagne de mesure complètent les données synthétisées par la DDASS des Côtes d'Armor en 20078, et renforcent ses préconisations en matière de gestion du risque. En particulier, on soulignera la nécessité :
- à titre conservatoire, d'interdire l'accès à la zone investiguée (la délimitation précise reste à faire) et d'identifier d'autres zones similaires dans lesquelles les algues vertes sont sujettes à des phénomènes de fermentation avancée ;
- d'équiper de systèmes de détection portables le personnel chargé du ramassage des algues vertes sur les plages ;
- de réaliser une évaluation des risques sur la filière complète du ramassage au traitement des algues vertes (épandage, compostage...).

Rappelons enfin que les zones rocheuses au sein desquelles les algues vertes sont susceptibles de s'accumuler et de stagner durablement n'ont pas pu faire l'objet d'investigations lors de cette campagne.

8 Synthèse des informations acquises à l'occasion d'études menées de 2004 à 2006 portant sur l'exposition par inhalation aux gaz de décomposition des algues vertes – Département des Côtes d'Armor. DDASS des Côtes d'Armor - Service Santé-Environnement – Mai 2007.
6. LISTE DES ANNEXES

<table>
<thead>
<tr>
<th>Repère</th>
<th>Désignation</th>
<th>Nombre de pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annexe A</td>
<td>Sulfure d'hydrogène : fiches INERIS, INRS et ICSC</td>
<td>18</td>
</tr>
<tr>
<td>Annexe B</td>
<td>Ammoniac : fiches INERIS, INRS et ICSC</td>
<td>16</td>
</tr>
<tr>
<td>Annexe C</td>
<td>Méthylmercaptan : fiches INRS et ICSC</td>
<td>12</td>
</tr>
<tr>
<td>Annexe D</td>
<td>Diméthylsulfure : fiche ICSC</td>
<td>6</td>
</tr>
<tr>
<td>Annexe E</td>
<td>Diméthylsulfoxide : fiches INRS et ICSC</td>
<td>14</td>
</tr>
<tr>
<td>Annexe F</td>
<td>Toluène : fiches INERIS, INRS et ICSC</td>
<td>16</td>
</tr>
<tr>
<td>Annexe G</td>
<td>Chlorobenzène : fiches INRS et ICSC</td>
<td>14</td>
</tr>
<tr>
<td>Annexe H</td>
<td>Ethyl-2-hexanol : fiche ICSC</td>
<td>4</td>
</tr>
<tr>
<td>Annexe I</td>
<td>Acide propionique : fiche ICSC</td>
<td>6</td>
</tr>
</tbody>
</table>
ANNEXE A

Sulfure d’hydrogène : fiches INERIS, INRS et ICSC

(18 pages)
Hydrogène sulfuré

Identification

<table>
<thead>
<tr>
<th>Formule Chimique</th>
<th>N° CAS</th>
<th>N° Index</th>
<th>N° EINECS</th>
<th>Dénominations (Designations)</th>
<th>Etat physique (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂S</td>
<td>7783-06-4</td>
<td>016-001-00-4</td>
<td>231-977-3</td>
<td>Acide sulhydrique, Sulfure d'hydrogène, Dihydrogen monosulfide, Dinitrogen sulfide, Hydrogen sulfide, Hydrosulfuric acid</td>
<td>Gaz</td>
</tr>
</tbody>
</table>

(*) à T et P ambiante (20°C / 1 atm)

Principales utilisations

Il est utilisé dans la production de soufre élémentaire, la fabrication d'acide sulfurique, de sulfures inorganiques (hydrogénosulfure de sodium), de composés organiques sulfurés (thiols) et d'additifs pour lubrifiants dans la production d'eau lourde pour l'industrie nucléaire et la purification des minerais en métallurgie.

Étiquetage

T+, F+, N | R12, R26, R50 | S1/2, S9, S16, S36, S38, S45, S61

Paramètres physico-chimiques

- Masse molaire (g/mol) 34,08
- Pression de vapeur (Pa) 1,8.10⁴
- Concentration de vapeur saturante à 20°C en g/m³ 25 170
- Densité de la phase vapeur (par rapport à l'air) 1,19
- Seuil de perception (SP) 0,03 à 0,14 mg/m³ (25°C, 1 atm) 0,02 à 0,1 ppm
- Solubilité dans l'eau à 20°C (g/L) 3,98
- Température de fusion (°C) 85,5
- Température d'ébullition (°C) -60,3
- Température d'auto-inflammation (°C) 260
- Point éclair (°C) ... (-)°
- Limites d'explosivité (% dans l'air) Inférieure (LLE) 4
- Supérieure (LSE) 46
- Facteur de conversion (à 25°C / 1 atm) 1 ppm = 1,40 mg/m³
- 1 mg/m³ = 0,71 ppm

(*) Non concerné
Hydrogène sulfuré

Seuils des effets toxiques (Janvier 2000 / Août 2004)

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Temps (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Seuil des effets létaux significatifs - SELS</td>
<td>2 408</td>
</tr>
<tr>
<td></td>
<td>1 720</td>
</tr>
<tr>
<td>Seuil des premiers effets létaux - SPEL</td>
<td>2 129</td>
</tr>
<tr>
<td></td>
<td>1 521</td>
</tr>
<tr>
<td>Seuil des effets irréversibles - SEI</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>320</td>
</tr>
<tr>
<td>Seuil des effets réversibles - SER</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>ND</td>
</tr>
</tbody>
</table>

ND : Non déterminé

Justification scientifique

Effets létaux :
- Étude critique : Zwart et al., 1990; et Vernot et al., 1972 (études de bonne qualité).
- Études expérimentales chez des souris, mesures de mortalité.
- Première étude : trois, six, sept et six concentrations d'exposition, quatre durées d'exposition (respectivement 5, 10, 30 et 60 minutes).
- Deuxième étude : quatre concentrations d'exposition, une durée d'exposition (50 minutes).
- Utilisation du logiciel probit-standard pour détermination des LC50.
- Pas d'application de facteurs d'incertitude.

Effets irréversibles :
- Première étude : étude expérimentale chez des rats, toxicité oculaire, deux concentrations d'exposition, deux temps d'exposition (10 et 180 minutes).
- Deuxième étude : étude expérimentale chez des lapins, toxicité cardiaque, deux concentrations d'exposition, deux temps d'exposition (50 minutes et 30 minutes/jour pendant 5 jours).
- Utilisation de la loi de Haber et moyenne entre les valeurs.
- Pas d'application de facteurs d'incertitude.

Hydrogène sulfuré

Effets réversibles :
La détermination des SER n’a pas été possible compte tenu des études disponibles.

- **Remarques importantes**

 Pour les effets irréversibles, les seuils ont été obtenus en faisant la moyenne entre les seuils obtenus chez les rats et chez les lapins.

 La perception de l’odeur peut disparaître à forte concentration (> 150 ppm, anesthésie olfactive).

- **Courbes des seuils SELS, SPEL, SEI et SP en fonction du temps d’exposition**

![Diagramme des seuils de toxicité et seuil de perception en cas d’émission accidentelle de l’Hydrogène sulfuré](#)
Hydrogène sulfuré

Notes
Sulfure d’hydrogène

Fiche établie par les services techniques et médicaux de l’INRS
(N. Bonnard, T. Clavel, M. Faucy, A. Hesbert, D. Jargot, M. Reynier, O. Schneider)

CARACTÉRISTIQUES

UTILISATIONS
Le sulfure d’hydrogène est utilisé dans l’industrie chimique pour la fabrication d’acide sulfurique, de sultures inorganiques (en particulier le sulfate et l’hydrogénosulfure de sodium), de composés organiques sulfurés tels que des thiols et des additifs pour lubrifiants. Il sert également à la production d’eau lourde dans l’industrie nucléaire et en métallurgie pour l’élimination, sous forme de sultures, des impuretés présentes dans certains minerais.

SOURCES D’EXPOSITION
Les sources naturelles de sulfure d’hydrogène sont variées ; il est notamment présent dans le charbon, le pétrole et le gaz naturel et se forme par fermentation anaérobie des substances organiques les plus diverses. Par ailleurs, de nombreuses activités industrielles peuvent dégager du sulfure d’hydrogène résultant de réactions chimiques sur des composés soufrés.

En dehors des utilisations de ce gaz, il existe donc de nombreuses circonstances au cours desquelles les travailleurs peuvent être exposés, en particulier les suivantes :
- cassage et épuration du gaz naturel ;
- raffinage et cracking de pétroles riches en soufre ;
- vulcanisation du caoutchouc ;
- fabrication de la viscose ;
- tanneries ;
- travaux dans les fosses d’aisance, les égouts et les stations d’épuration, en particulier lors de traitements en milieu acide.

SULFURE D’HYDROGÈNE

DANGER

- H 220 – Gaz extrêmement inflammable.
- H 330 – Mortel par inhalation.
- H 400 – Très toxique pour les organismes aquatiques.

Selon le règlement CE n° 1272/2008 intégrant les critères du SGIH.
Propriétés physiques (1 à 5)

À température ambiante et pression atmosphérique, le sulfure d’hydrogène est un gaz incolore, plus lourd que l’air, d’odeur fétide caractéristique (« œuf pourri »). La sensation effaçante n’augmente pas avec la concentration du gaz dans l’air; il peut même arriver que l’odeur décèle à de très faibles concentrations (0.02 à 0.1 ppm) s’atténue ou même disparaisse à forte concentration (anesthésie de l’odorat au-dessus de 100 ppm).

Le sulfure d’hydrogène est soluble dans certains solvants organiques (notamment éthanol, acétone, oxyde de diéthyle, hydrocarbures, glycols) et dans l’eau (0,398 g/100 g de solution à 20 °C et 101 kPa). Les solutions obtenues sont faiblement acides et connues sous le nom d’acide sulhydrique; elles s’oxydent lentement en soufre et en eau sous l’action de l’oxygène dissoas.

Les principales caractéristiques physiques du sulfure d’hydrogène sont les suivantes:

- **Massé moléculaire:** 34.08
- **Point d’ébullition:** -87 °C
- **Point triple:** -89.5 °C
- **Point de congélation:** 100.4 °C à 9010 kPa
- **Densité du gaz (à 1):** 1,19
- **Flash de l’évaporation:** 0,960 g/g à 60 °C et 1,717 kPa (pression saturante)
- **Pression de vapeur:** 1,780 kPa à 25 °C
- **Température d’auto-inflammation:** 260 °C
- **Limites d’explosivité dans l’air (% en volume):**
 - **Limite inférieure:** 4%
 - **Limite supérieure:** 46%

À 25 °C et 101 kPa, 1 ppm = 1,4 mg/m³.

Propriétés chimiques (1 à 5)

À température ordinaire, le sulfure d’hydrogène est un composé stable. En l’absence de catalyseur, sa dissociation en hydrogène et soufre intervient à des températures très élevées.

Le sulfure d’hydrogène libéré dans l’air ou l’oxygène en donnant des fumées hautement toxiques d’oxydes de soufre. C’est un composé réducteur qui peut réagir dangereusement (risques d’inflammation spontanée et d’explosion) avec les agents oxydants.

Un grand nombre de métaux et d’alliages (aluminium, titane, inconel®, aciers inoxydables 304 et 316) peuvent être utilisés au contact du sulfure d’hydrogène anhydre. En présence d’humidité, seuls les aciers inoxydables type 316 et 18-8 chrome-nickel et l’aluminium ne sont pas attaqués. La résistance des caoutchoucs et des matières plastiques au sulfure d’hydrogène est variable.

Récipients de stockage

Le sulfure d’hydrogène est stocké dans des bouteilles en acier, soit pur et liquéfié sous pression, soit à l’état gazeux dilué dans d’autres gaz.

Valeurs limites d’exposition professionnelle

Des VLEP indicatifs ont été établis pour le sulfure d’hydrogène.

<table>
<thead>
<tr>
<th>PAYS</th>
<th>VLEP Moyenne pondérée sur 8 h</th>
<th>Courbe terme</th>
</tr>
</thead>
<tbody>
<tr>
<td>France (VLEP indicatifs-circulaire)</td>
<td>5 7 10 14</td>
<td></td>
</tr>
<tr>
<td>États-Unis (ACGHIH)</td>
<td>5 7 10 14</td>
<td></td>
</tr>
<tr>
<td>Allemagne (Valeur MAK)</td>
<td>5 7 10 14</td>
<td></td>
</tr>
</tbody>
</table>

(*) L’ACGIH propose d’abaisser les VLEP respectivement à 1 ppm (TLV-TWA) et 5 ppm (TLV-STEEL) (proposition 2008).

Méthodes de détection et de détermination dans l’air

- Prélèvement au travers d’un échantillonneur (protégé de la lumière), constitué d’un tampon en cellulose humidiifié juste avant le prélèvement (pour stabiliser l’hygromètre) et de deux filtres en fibre de quartz imprégnés d’acétate de cadmium : conversion du sulfure d’hydrogène en sulfure de cadmium. Celui-ci est déposé à l’aide de dichlorhydrate de N,N-diméthyl-1,4-phenylendiamine en milieu acide, en présence de chlorure ferrique. Dosage du bleu de méthylène formé par spectrophotométrie [6].
- Prélèvement au travers d’un échantillonneur spécial, comprenant un filtre (de diamètre 13 mm) en fibre de verre imprégné de carbonate de sodium (pour supprimer une possible interférence par le dioxyde de soufre) suivi d’un tube rempli de gel de silice traité au nitrate d’argent. Extraction du sulfate d’argent formé sur le gel de silice par un mélange d’cyanure de sodium et de soude puis action du peroxyde d’hydrogène pour convertir le sulfate en sulfure. Analyse du sulfate par chromatographie ionique avec une détection conductimétrique [7].
- Prélèvement sur un filtre en cellulose imprégné de nitrate d’argent : conversion du sulfure d’hydrogène en sulfure d’argent qui précipite. Dissolution du sulfate d’argent dans une solution alcaline de cyanure. Analyse du sulfate par polarographie impulsionnelle différentielle avec une électrode à goutte de mercure [19].
- Prélèvement au travers d’un échantillonneur constitué d’un préfiltre en polyamide fluoré (PTFE) suivi d’un tube rempli de deux plages (400 mg/200 mg) de charbon actif. Extraction du sulfure et conversion en sulfure par un mélange d’ammoniac et de peroxyde d’hydrogène. Analyse du sulfate par chromatographie ionique avec détection conductimétrique [20].
- Utilisation d’appareils à résonance instantanée équipés des tubes réactifs colorimétriques Draeger (Sulfure d’hydrogène 0.2/a, 0.2/b, 0.5/a, 1/d, 2a, 2b), RAE, MSA (H2S-0.1 et H2S-1) et Casterc (Sulfure d’hydrogène 4L 4L, 4K) ou de tubes colorimétriques de longue durée : Draeger 10/a-D, avec prélèvement par diffusion passive. Certains tubes
colorimétriques peuvent donner une réponse de même nature pour d'autres substances interférentes (mercaptans, par exemple).

- L'utilisation de détecteurs de gaz portatifs est également envisageable sous réserve de la validation de leur procédure d'étalonnage.

INCENDIE – EXPLOSION

Le sulfure d’hydrogène est un gaz extrêmement inflammable, qui peut former des mélanges explosifs avec l’air. D’autre part, le contact avec les produits oxydants peut être une source d’incendie et d’explosion.

En cas d’incendie, le dioxyde de carbone et les poussières chimiques pourront être utilisés comme agent extincteur, mais seulement si on est certain de pouvoir stopper l’émission de gaz. Dans le cas contraire, il est préférable d’éloigner de la flamme tout élément combustible et de laisser brûler.

En raison de la toxicité du sulfure d’hydrogène et des fumées émises, les intervenants seront équipés d’appareils de protection respiratoire isolants autonomes et de combinaisons de protection spéciales.

PATHOLOGIE – TOXICOLOGIE

Métabolisme – Toxicocinétique [8, 12, 13]

Le sulfure d’hydrogène est absorbé par inhalation. L’absorption cutanée est minime. Il est distribué chez le rat et le cobaye dans le cerveau, le foie, les reins, le pancréas et l’intestin grêle après fixation aux protéines plasmatiques, essentiellement à l’albumine.

Chez l’animal, le sulfure d’hydrogène serait métabolisé par trois voies principales:
- oxydation du sulfure en sulfate essentiellement dans le foie mais aussi dans les reins;
- méthylation en méthionine et sulfure de diméthyl dans la muqueuse intestinale et le foie; cette voie métabolique est utilisée lors de la dégradation du sulfure d’hydrogène produit par les bactéries intestinales; son importance n’est pas connue dans le métabolisme du sulfure d’hydrogène exogène;
- réaction avec les métalloprotéines (cytochrome oxydase, méthémoglobin, ferritine, catalase, peroxydase) et les protéines contenant un groupement disulfure (succinate-déshydrogénase).

L’élimination du sulfure d’hydrogène administré par voie intraveineuse est minimale dans l’air expiré (5%) chez le chien, le lapin et le rat et s’arrête après 1 minute.

L’excrétion urinaire du sulfure d’hydrogène n’a pas été étudiée quantitativement. Toutefois, des études menées avec d’autres sulfates ont montré que l’excrétion des sulfates est essentiellement urinaire (50% d’une dose orale de sulfate de baryum);

l’intoxication humaine a lieu essentiellement par voie respiratoire. Le sulfure d’hydrogène ne s’accumule pas dans l’organisme. Il n’est ni exhalé ni éliminé sous forme inchangée dans les urines, mais rapidement oxydé et éliminé par voies intestinale et urinaire sous forme de thiosulfates, sulfites et sulfates. Pour la surveillance biologique, les thiosulfates ont été proposés comme indicateurs d’exposition. Ils apparaissent dans l’urine après un temps de latence d’environ 17 heures. Malgré son manque de sensibilité, le dosage des ions sulfures dans le sang, effectué dans les 45 min après l’exposition, peut refléter la gravité d’une intoxication.

Mode d’action [8, 13]

Le sulfure d’hydrogène est un puissant inhibiteur de la cytochrome-oxidase mitochondriale en se fixant au ferriréactif contenu dans l’enzyme. La cytochrome-oxidase est la dernière enzyme de la chaîne des cytochromes qui transmet ses électrons à l’hydrogène, le combinant à l’hydrogène pour former de l’eau. En présence de sulfure d’hydrogène, le transfert d’électrons à l’oxygène ne peut pas avoir lieu. Toute la chaîne de transport d’électrons est bloquée et la respiration tissulaire, source primaire d’énergie, est arrêtée engendrant une hypoxie qui endommage les organes fortement oxygène-dépendants comme le cerveau, les reins et le cœur.

L’hypoxie tissulaire est aussi associée à la peroxydation des lipides, qui est la cause directe des modifications dans les neurotransmetteurs membranaires de la cellule nerveuse et de l’inhibition de la synthèse protéique.

La réaction avec d’autres métalloprotéines (peroxydase, catalase...) ou avec des protéines contenant un groupement disulfure (succinate-déshydrogénase) conduit soit à des inhibitions enzymatiques, qui contribuent à l’action toxique, soit à une détoxification (par capture des sulfures sur le fer de la méthémoglobin ou sur le pont disulfure du glutathion oxydé).

Enfin, le sulfure d’hydrogène aqueux est un acide faible contenant le produit de dissociation HS⁻ formé, en milieu alcalin au niveau des muqueuses, du sulfure de sodium caustique, responsable de l’effet irritant.

TOXICITÉ EXPÉRIMENTALE

Toxicité aiguë [8 à 10]

Le sulfure d’hydrogène est toxique par inhalation. Chez le rat, la CL50 est de 444 ppm pour une exposition de 4 heures; chez la souris, elle est de 1000 ppm pour une exposition de 30 minutes ou 100 ppm pour une exposition de 7 h 30.

Dans la majorité des espèces, l’inhalation est responsable:
- d’un effet local irritation des yeux, du nez et de la gorge à partir de 200 ppm pendant 1 heure. Des hémorragies nasales et buccales surviennent chez le chien après une exposition à 1 200 ppm;
- d’effets systémiques: neurologiques centraux (excitation, convulsions, tremblements puis, après une exposition de plusieurs heures à 700 ppm ou immédiatement à 1800 ppm, paralysie, collapsus et mort), respiratoires et cardiaques (augmentation des fréquences respiratoire et cardiaque dans les premières minutes de l’exposition puis ralentissement; l’arrêt cardiaque suit l’arrêt respiratoire), stimulation des cholinérgiques cardiaques chez le chien (900 ppm, 5 min) ou le lapin (1 700 ppm, 5 min) entraînant une contraction splénique (d'où une augmentation du nombre d'érythrocytes circulants et une stimulation des surrénales ayant pour conséquence une hyperglycémie).
L'examen histopathologique révèle :
- des lésions de la corne : œdème des cellules de la couche superficielle du stroma cornéen (chez le rat après 10 min à 1 300 ppm ou 3 h à 54 ppm) ;
- une nécrose du cortex cérébral et une réduction du nombre de cellules de Purkinje dans le cortex cérébelléux chez le singe après 22 minutes à 500 ppm ; une réduction de la synthèse protéique cérébrale est observée chez la souris 24 et 48 heures après exposition de 2 heures à 100 ppm ;
- une hyperémie hépatique modérée chez le singe exposé 22 minutes à 500 ppm ;
- un œdème pulmonaire dans la majorité des espèces.

Chez le lapin (exposé 5 min à 600 ppm ou 10 min à 400 ppm), le sulfure d'hydrogène provoque l'arrêt définitif des mouvements ciliaires des cellules de la troche.

Toxicité subchronique, chronique [8, 9]
L'inhalation répétée de sulfure d'hydrogène induit :
- chez le rat et la souris, une inflammation de la muqueuse nasale, une baisse de poids corporel et de l'œil (80 ppm/j, 90 j) ;
- chez le rat, une hyperplasie des cellules sécrétrices thyroïdiennes, dépendant de la dose (14-28 ppm, 4 h/j, 5 /sem, 4 mois) ;
- chez le lapin, des extrasystoles ventriculaires et des troubles de la repolarisation ventriculaire (71.4 ppm, 30 min/j, 5 j) ;
- chez le cobaye, une baisse des lipides et des phospholipides intracérébraux sans modification du taux de cholestérol (20 ppm/j, 11 j) ;
- dans de nombreuses espèces, des modifications d'activités enzymatiques cérébrales, pulmonaires, cardiaques, rénales et sériques.

Effets génotoxiques [8]
L'effet génotoxique du sulfure d'hydrogène gazéux n'a pas été étudié. Quelques études ont été menées avec du sulfure de sodium qui s'hydrolyse en milieu physiologique. Deux de ces études se sont révélées négatives (inhibition de mutation chez Micrococcus aureus et de micronoyaux dans la moelle osseuse de souris) et une troisième a montré un pouvoir mutagène faible pour Salmonella typhimurium (dans des conditions expérimentales très particulières) et pour la drosophile.

Effets cancérogènes [8]
Aucune étude de cancérogenèse n'a été menée avec le sulfure d'hydrogène. L'administration de sulfure de sodium, par gavage chez le rat (9-18 mg/kg, 2 fois/j, 56 sem plus 2 à 3 fois/j, 22 sem) ne montre pas d'effet cancérogène ; cependant, le faible taux de survie des animaux ne permet pas de conclure.

Effets sur la reproduction [11]
Chez le rat, une exposition préanale à une dose ne provoquant pas de toxicité maternelle (100 ppm, 6 h/j, du 6e au 20e jour de gestation) entraîne une baisse légère mais significative du poids corporel fœtal, sans anomalie externe.

Toxicité sur l'homme
Toxicité subaiguë, aiguë [8 à 10, 14 à 18]
Les effets observés sont essentiellement liés aux propriétés irritantes et anoxiantes de ce gaz. Aux concentrations supérieures à 1 000 ppm, le décès survient de façon très rapide en quelques minutes. À partir de 500 ppm, une rapide perte de conscience est suivie d'un coma parfois convulsif, accompagné de troubles respiratoires (dyspnée et cyanose), d'un œdème pulmonaire, de troubles du rythme cardiaque (brady- ou tachycardie, fibrillation) et de modifications tensionnelles (hypotension le plus souvent). Si l'exposition n'est pas interrompue, la mort survient rapidement.

Par contre, si le sujet peut être retiré de la zone polluée et correctement traité, la récupération est le plus souvent rapide mais peut être marquée par une encéphalopathie réversible et des séquelles neuropsychiques (troubles du comportement, amnésie, hallucinations...) ou respiratoires (fibrose).

Au cours de ces intoxications, on note une acidose métabolique intense.

Des formes plus discrètes se caractérisent, dès 100 ppm, par une irritation des muqueuses oculaires et respiratoires se traduisant par une conjonctivite, une rhinite, une dyspnée, voire un œdème pulmonaire retardé. Ces manifestations peuvent s'accompagner de céphalée, nausée, sialorrhée et perte de conscience brève.

Dans un cas, des effets oculaires ont été rapportés : il s'agissait d'une kératite et d'un œdème papillaire avec hémorragie rétinienne, qui furent réversibles.

Toxicité subaiguë, chronique [8 à 10, 16 à 18]
Les signes observés ne sont pas spécifiques et intéressent divers organes, en particulier :
- le système nerveux : céphalée, fatigue, insomnie, perte de la libido, troubles de la mémoire, ataxie et mouvements choré-athétosiques ;
- l'œil : quelques heures après le début d'une exposition à de faibles doses apparaissent une irritation oculaire, avec sensation de brûlure, un inconfort et une photophobie ; dans quelques cas, un œdème cornéen peut survenir et se traduire par un halo autour des objets ; ces signes régressent 24 à 72 heures après l'arrêt de l'exposition ;
- le système digestif, dont l'atteinte est caractérisée par nausée, anorexie, douleurs abdominales et éventuellement diarrhée.

Enfin l'exposition répétée au sulfure d'hydrogène peut être à l'origine de bronchites irritatives et d'une irritation cutanée qui entraîne souvent un érythème douloureux et prurigineux.

Chez les femmes exposées de façon chronique, le taux d'avortements spontanés serait un peu plus élevé que dans la population générale.

RÈGLEMENTATION

1. Mesures de prévention des risques chimiques (agents chimiques dangereux)
 - Circulaire DRT n° 12 du 24 mai 2006 (non parue au JO).

2. Aération et assainissement des locaux
 - Circulaire du ministère du Travail du 9 mai 1985 (non parue au JO).
 relatifs aux contrôles des installations.

3. Prévention des incendies et des explosions
 - Décret 86-1030 modifié du 19 novembre 1996 (JO du 24 novembre 1996) relatif aux appareils destinés à être
 utilisés en atmosphère explosive.

4. Valeurs limites d'exposition professionnelle

5. Maladies de caractère professionnel
 - Articles L. 461-6 et D. 461-1 et annexe du Code de la santé sociale : déclaration médicale de ces affections.

6. Classification et étiquetage
 a) du sulfure d'hydrogène pur
 ember 2008), dit « Règlement CLP », introduit dans l'Union européenne le nouveau système général harmonisé de
 classification et étiquetage ou SGH. La classification et étiquetage du sulfure d'hydrogène harmonisés selon les
 deux systèmes (Directive 67/548/CEE et règlement) figurent dans l'annexe VI du règlement. La classification est :
 - selon la directive 67/548/CEE ou l'arrêté du 4 août 2005
 JO du 11 août 2005) modifiant l'arrêté du 20 avril 1994
 (JO du 8 mai 1994)
 Extrêmement inflammable ; R 12
 Très toxique ; R 26
 Dangereux pour l'environnement ; N, R 50.
 - selon le règlement (CE) n° 1272/2008
 Gaz inflammables catégorie 3 ; H 220
 Gaz sous pression (note U)
 Toxicité aiguë catégorie 2 ; H 330
 Danger pour le milieu aquatique ; danger aigu catégorie 1 ; H 400.
 Se reporter aux étiquettes en début de la fiche toxico-
 logique.
 b) des mélanges (préparations) contenant du sulfure d'hy-
 drogène :
 - Arrêté du 9 novembre 2004 modifié (JO du 18 novembre
 2004) transposant la directive 1999/45/CE
 ou
 - Règlement (CE) n° 1272/2008.

7. Entreprises extérieures
 - Arrêté du 19 mars 1993 (JO du 27 mars 1993) fixant la
 liste des travaux dangereux pour lesquels il est établi
 par écrit un plan de prévention.

PROTECTION DE LA POPULATION
 - Article L. 5132-2, articles R. 5132-43 à R. 5132-73, arti-
 ciels R1342-1 à R1342-13 du Code de la santé publique :
 • détention dans des conditions déterminées (art.
 R. 5132-66);
 • étiquetage (cf. 6);
 • cession réglementée (art. L. 5132-58 et R. 5132-59).

PROTECTION DE L'ENVIRONNEMENT
 Installations classées pour la protection de l'environ-
 nement, Paris, imprimerie des journaux officiels, brochure
 n° 1001 :
 - n° 1110 : substances et préparations très toxiques,
 fabrication industrielle.
 - n° 1111 : substances et préparations très toxiques,
 emploi ou stockage.
 - n° 1410 : fabrication de gaz inflammables
 - n° 1411 : gazomètres et réservoirs renfermant des gaz
 inflammables.
 - n° 1412 : gaz inflammables liquéfiés, stockage en résé-
 voir manufactu.

TRANSPORT
 Se reporter éventuellement aux règlements suivants.

1. Transport terrestre national et international
 (route, chemin de fer, voie de navigation
 intérieure) :
 - ADR, RID, ADR : Sulfure d'hydrogène
 N° ONU : 1053
 Classe : 2

2. Transport par air
 - IATA

3. Transport par mer
 - IMDG

RECOMMANDATIONS

Le sulfure d'hydrogène est un gaz très toxique et très
inflammable. Des mesures de prévention et de protection
particulièrement strictes s'imposent lors de sa mani-
façant et de toute opération au cours de laquelle il peut
apparaître.

I. AU POINT DE VUE TECHNIQUE

Stockage
- Stocker les bouteilles de sulfure d'hydrogène à l'air libre
 ou dans des locaux frais, munis d'une ventilation efficace,
 à l'abri de l'humidité et de toute source d'ignition ou de
 chaleur (rayons solaires, flamme, étincelles...) et à l'écart
des produits incompatibles (oxygène, tout produit oxydant).
- FERMER et étiqueter soigneusement les récipients.
- INTERDIRE de fumer.
- METTRE le matériel électrique, y compris l'éclairage, en conformité avec la réglementation en vigueur.
- PRENDRE toutes dispositions pour éviter l'accumulation d'électricité statique.

Manipulation

Les prescriptions relatives aux zones de stockage sont applicables aux ateliers où est utilisé le sulfure d'hydrogène. En outre :
- INSTRUIRE le personnel des risques graves d'intoxication, d'incendie et d'explosion présentés par le sulfure d'hydrogène, des précautions à observer et des mesures à prendre en cas d'accident. Les procédures spéciales en cas d'accident feront l'objet d'exercices d'entraînement.
- INTERDIRE l'accès des zones où existe un risque d'exposition aux personnes non autorisées.
- EFFECTUER en appareil clos ou sous hotte toute opération susceptible de dégager du sulfure d'hydrogène. Prévoyer une aspiration du gaz à sa source d'émission, ainsi qu'une ventilation générale des locaux, tenant compte du fait que le gaz, plus lourd que l'air, se rassemble dans les parties basses.
- Prévoir également des appareils de protection respiratoire autonomes isolants pour certains travaux de courte durée, à caractère exceptionnel, et pour les interventions d'urgence.
- CONTRôLER en continu la teneur de l'atmosphère en sulfure d'hydrogène et donner l'alarme dès que la concentration dépasse le seuil compatible avec la sécurité du personnel (10 ppm dans un atelier). **NE PAS se fier à l'odeur**, car le gaz provoque rapidement une anesthésie olfactive. Si possible, maintenir la concentration à des valeurs notaiblement plus faibles que la valeur limite d'exposition pour assurer simultanément la salubrité du local et le confort des salariés.
- ÉVITER l'exposition de la peau et des yeux. Mettre à la disposition du personnel des vêtements de protection, des gants et des lunettes de sécurité.
- Pour la manipulation et l'utilisation des bouteilles contenant le sulfure d'hydrogène, se conformer aux instructions du fabricant.
- Soumettre les installations à un entretien préventif programmé, axé sur l'étanchéité. Ne jamais utiliser une flamme pour détecter les fuites.
- Ne jamais procéder à des travaux sur et dans des cuves et réservoirs ou tout autre endroit susceptible de contenir ou ayant contenu du sulfure d'hydrogène sans appliquer strictement les précautions d'usage [21].

Autres activités

La plupart des mesures préconisées ci-dessus sont applicables aux opérations où le sulfure d'hydrogène peut apparaître de manière inattendue, en particulier lors des interventions en espace confiné. Ces opérations devraient être réalisées uniquement par du personnel bien informé, respectant scrupuleusement les mesures de prévention, notamment :
- la présence de deux travailleurs au moins sur le lieu de travail :
- le maintien, à proximité immédiate, d'un appareil de protection respiratoire pour chaque opérateur ;
- l'utilisation d'un système de détection du gaz.

II. AU POINT DE VUE MÉDICAL

- À l'embaufrage, éviter d'exposer les personnes présentant des affections respiratoires, neurologiques ou oculaires chroniques.
- Lors des examens ultérieurs, étudier ces diverses fonctions : rechercher en particulier tout signe traduisant un effet irritant sur les muqueuses (oculaire et respiratoire) ou des troubles digestifs. En fonction des effets constatés, une radiographie pulmonaire ou des épreuves fonctionnelles respiratoires pourront être demandées.
- En cas d'inhalation, faire évacuer immédiatement la victime de la zone polluée : les secouristes devront se mettre aux mêmes à l'abri de tout risque d'intoxication (possibilité d'intoxications collectives mortelles) et d'explosion. Maintenir la victime au repos et en position latérale de sécurité. Si elle est inconsciente, transférer en milieu hospitalier, par ambulance médicalisée, pour surveillance et traitement symptomatique.
- En cas de projection oculaire, laver immédiatement et abondamment à l'eau et consulter un ophtalmologiste.

Fiches internationales de sécurité chimique

SULFURE D'HYDROGÈNE

ICSC: 0165

N° CAS : 7783-06-4
N° RTECS : MX1225000
N° ICSC : 0165
N° ONU : 1053
N° CE : 016-001-00-4

<table>
<thead>
<tr>
<th>TYPES DE RISQUES/EXPOSITIONS</th>
<th>RISQUES/SYMPOTÔMES AIGUS</th>
<th>PREVENTION</th>
<th>PREMIER SECOURS/AGENTS D'EXTINCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCENDIE</td>
<td>Extrêmement inflammable.</td>
<td>PAS de flammes nues, PAS d'étincelles et interdiction de fumer.</td>
<td>Couper l'alimentation, en cas d'empêchement et sans danger à proximité, laisser le feu s'éteindre; sinon, pour l'éteindre: eau pulvérisée, poudre, dioxyde de carbone.</td>
</tr>
<tr>
<td>EXPLOSION</td>
<td>Les mélanges air/gaz sont explosifs.</td>
<td>Système en vace clos, ventilation, équipement électrique et éclairage protégés contre les explosions. Eviter l'accumulation de charges électrostatiques à l'état liquide (par mise à la terre, par exemple). NE PAS employer d'air comprimé pour remplir, vider ou manipuler.</td>
<td>En cas d'incendie: maintenir les bombes à basse température en les arrosant d'eau.</td>
</tr>
<tr>
<td>CONTACT PHYSIQUE</td>
<td></td>
<td>EVITER TOUT CONTACT!</td>
<td>DANS TOUS LES CAS, CONSULTER UN MEDECIN!</td>
</tr>
<tr>
<td>PEAU</td>
<td>LORS DU CONTACT AVEC LE LIQUIDE: GELURES.</td>
<td>Gants de protection contre le froid.</td>
<td>EN CAS DE GELURES: rincer abondamment à l'eau, NE PAS retirer les vêtements. Consulter un médecin.</td>
</tr>
<tr>
<td>YEUX</td>
<td>Rougeur, Douleur, Brûlures profondes graves.</td>
<td>Lunettes à coques, ou protection oculaire associée à une protection respiratoire.</td>
<td>Rincer d'abord abondamment à l'eau pendant plusieurs minutes (retirer si possible les lentilles de contact), puis consulter un médecin.</td>
</tr>
<tr>
<td>INGESTION</td>
<td></td>
<td>Ne pas manger, ne pas boire ni fumer pendant le travail.</td>
<td></td>
</tr>
</tbody>
</table>
DEVERSEMENTS & FUITE
Evacuer la zone dangereuse! Consulter un expert! Ventilation (protection individuelle spéciale: appareil de protection respiratoire autonome).

STOCKAGE
A l’épreuve du feu. Séparer des oxydants forts.

CONDITIONNEMENT & ETIQUETAGE
- Symbole F+
- Symbole T+
- Symbole N
- R: 12-26-30
- S: (1/2-9)-16-28-36-37-45-61
- Classe de danger ONU: 2.3
- Classe de danger subsidiaire ONU: 2.1

VOIR IMPORTANTES INFORMATIONS AU DOS

ICSC: 0165

Fiches internationales de sécurité chimique

SULFURE D'HYDROGÈNE

ICSC: 0165

ASPECT PHYSIQUE: APPARÈNCE:
GAZ COMPRISE LIQUÉFIÉE, INCOLORE, D'ODEUR CARACTÉRISTIQUE D'ODEURS POURRIS.

DANGERS PHYSIQUES:
Le gaz est plus lourd que l'air, et peut se propager au niveau du sol; inflammation à distance possible.

DANGERS CHIMIQUES:
La chaleur peut provoquer une violente combustion ou explosion. La substance se décompose en brûlant, produisant un gaz toxique (dioxyle de soufre - voir ICSC # 0074). Réagit violemment avec les oxydants forts, en provoquant des risques d'incendie et d'explosion. Attaque de nombreux métaux et certains plastiques.

LIMITES D'EXPOSITION PROFESSIONNELLE (LEP):
- TLV: 10 ppm; 14 mg/m³ (as TWA); 15 ppm; 21 mg/m³ (STEL) (ACGIH 1997).

PROPRIÉTÉS PHYSIQUES
- Point d'ébullition: -60°C
- Point de fusion: -85°C
- Solubilité dans l'eau à 20°C: 0,5 g/100 ml
- Densité de vapeur relative (air = 1): 1,19

DONNÉES ENVIRONNEMENTALES
La substance est très toxique pour les organismes aquatiques.

NOTES
Suivant le niveau de l'exposition, une surveillance médicale périodique est recommandée. Les symptômes de l'œdème pulmonaire ne se manifestent souvent qu'après quelques heures et sont aggravés par l'effort physique. Le repos et la surveillance médicale sont par conséquent essentiels. Un traitement spécifique est nécessaire dans le cas d'un empoisonnement avec cette substance. Des moyens appropriés et les instructions y afférentes doivent être disponibles. L'odeur n'est pas un signal fiable lorsque la valeur limite d'exposition est dépassée.

Carte de données d'urgence pour le transport: TREMCARD (R)-826.
AUTRES INFORMATIONS

ICSC: 0165

SULFURE D'HYDROGENE

© PISSC; CE; 1993

<table>
<thead>
<tr>
<th>NOTICE LEGALE IMPORTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>La CE de même que le PISSC ou toute personne agissant au nom de la CE ou du PISSC ne sauraient être tenues pour responsables de l'utilisation qui pourrait être faite de ces informations. Cette fiche exprime l'avis du comité de révision du PISSC et peut ne pas toujours refléter les recommandations de la législation nationale en la matière. L'utilisateur est donc invité à vérifier la conformité des fiches avec les prescriptions en usage dans son pays.</td>
</tr>
</tbody>
</table>

ANNEXE B

Ammoniac : fiches INERIS, INRS et ICSC

(16 pages)
Ammoniac

Identification

<table>
<thead>
<tr>
<th>Formule Chimique</th>
<th>N° CAS</th>
<th>N° Index</th>
<th>N° EINECS</th>
<th>Dénominations (Designation)</th>
<th>État physique (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃</td>
<td>7664-41-7</td>
<td>007-001-09-5</td>
<td>231-635-3</td>
<td>Hydroxyde d'ammonium Ammonia Ammonia gas Anhydrous ammonia</td>
<td>Gaz</td>
</tr>
</tbody>
</table>

(*) à T et P ambiantes (20°C / 1 atm)

Principales utilisations

Il est utilisé dans la fabrication de fertilisants agricoles, d'explosifs, de fibres textiles synthétiques, de produits d'entretien ménagers, de colorants. Il est également utilisé en synthèse organique, comme agent frigorifique et pour le traitement des métaux.

Étiquetage

T, C, N | R10, R23, R34, R50 | S1/2, S9, S16, S26, S36/37/39, S45, S61

Paramètres physico-chimiques

- Masse molaire (g/mol) 17,03
- Pression de vapeur (Pa) 8,57.10³ à 20°C
- Concentration de vapeur saturante à 20°C en g/m³ 5 990
- Concentration de vapeur saturante à 20°C en ppm 8 456 620
- Densité de la phase vapeur (par rapport à l'air) 0,59
- Seuil de perception (SP) 3,5 à 35 mg/m³
- Solubilité dans l'eau à 20°C (g/L) 5,24.10³
- Température de fusion (°C) 77,7
- Température d'ébullition (°C) 33,4
- Température d'auto-inflammation (°C) 651
- Point éclair (°C) 25
- Limites d'explosivité (% dans l'air) 16
- Inférieure (LEL) 9,5
- Supérieure (UEL) 25
- Facteur de conversion (à 25°C / 1 atm) 1 ppm = 0,70 mg/m³
- 1 mg/m³ = 1,44 ppm

(*) Non concerné
Ammoniac

Seuils des effets toxiques (Août 2003 / Août 2004)

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Temps (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Seuil des effets létaux significatifs – SELS</td>
<td></td>
</tr>
<tr>
<td>mg/m³</td>
<td>19 623</td>
</tr>
<tr>
<td>ppm</td>
<td>28 033</td>
</tr>
<tr>
<td>Seuil des premiers effets létaux – SPEL</td>
<td></td>
</tr>
<tr>
<td>mg/m³</td>
<td>17 710</td>
</tr>
<tr>
<td>ppm</td>
<td>25 300</td>
</tr>
<tr>
<td>Seuil des effets irréversibles – SEI</td>
<td></td>
</tr>
<tr>
<td>mg/m³</td>
<td>1 050</td>
</tr>
<tr>
<td>ppm</td>
<td>1 500</td>
</tr>
<tr>
<td>Seuil des effets réversibles – SER</td>
<td></td>
</tr>
<tr>
<td>mg/m³</td>
<td>196</td>
</tr>
<tr>
<td>ppm</td>
<td>280</td>
</tr>
</tbody>
</table>

ND : Non déterminé

Justification scientifique

Effets létaux :
- Étude critique : Appelman et al., 1982 (citation de Klimisch 1).
- Étude expérimentale chez le rat, mesure de la létalité. Cinquième concentration d’exposition pour chaque temps, quatre temps d’exposition (10, 20, 40 et 60 minutes).
- Utilisation du logiciel probit-standard pour détermination des C.L.50.
- Utilisation d’un facteur d’incertitude (3 – inter-espèces).

Effets irréversibles :
- Études critiques : Wallace, 19781 et Silverman et al., 19492 (études de bonne qualité).
- Études expérimentales chez des volontaires sains.
- Première étude : anomalies fonctionnelles respiratoires et irritation oculaire, une concentration d’exposition (500 ppm), un temps d’exposition (30 minutes).
- Deuxième étude : anomalies fonctionnelles respiratoires et irritation oculaire, plusieurs concentrations d’exposition (150 à 1 500 ppm), plusieurs temps de d’exposition (1 à 3 minutes).
- Deux couples concentration-temps (Wallace, 1978) et utilisation de loi de Haber (Silverman et al., 1949).
- Pas d’utilisation de facteurs d’incertitude.

Ammoniac

Effets réversibles :
- Études critiques : Cole et al., 1977⁴ et Verbeck, 1977⁵ (études de bonne qualité).
- Études expérimentales chez des volontaires sains.
Première étude : anomalies fonctionnelles respiratoires, plusieurs concentrations d'exposition (72 à 495 ppm), un temps d'exposition (en moyenne 10 minutes).
Deuxième étude : irritation des voies respiratoires supérieures, quatre concentrations d'exposition, jusqu'à 2 heures d'exposition.
- Utilisation de la loi de Haber (lecture sur papier logarithmique).
- Pas de facteurs d'incertitude.

Remarques importantes
Attention aux réactions vives, voire violente ou explosive, avec de nombreux composés.
Pour les effets irréversibles, les données toxicologiques des deux études critiques induisent une rupture de pente.

Courbes des seuils SELS, SPEL, SEI, SER et SP en fonction du temps d'exposition

Seuils de toxicité et seuil de perception en cas d'émission accidentelle d'ammoniac

Ammoniac

Notes
FICHE TOXICOLOGIQUE

Ammoniac et solutions aqueuses

Fiche établie par les services techniques et médicaux de l’INRS

AMMONIAQUE... (≥ 25%)**

- **R. 34** - Provoque des brûlures.
- **R. 50** - Très toxique pour les organismes aquatiques.
- **S. 6** - En cas de contact avec les yeux, laver immédiatement et abondamment avec de l'eau et consulter un spécialiste.
- **S. 45** - En cas d'accident ou de malaise, consulter immédiatement un médecin (si possible lui montrer l'étiquette).
- **S. 61** - Éviter le rejet dans l'environnement. Consulter les instructions spécialisées/la fiche de données de sécurité.

215-647-6 - Étiquetage CE

AMMONIAC

- **R. 10** - Inflammable.
- **R. 23** - Toxique par inhalation.
- **R. 34** - Provoque des brûlures.
- **R. 50** - Très toxique pour les organismes aquatiques.
- **S. 9** - Conserver le récipient dans un endroit bien ventilé.
- **S. 16** - Conserver à l'écart de toute flamme ou source d'étincelles. Ne pas fumer.
- **S. 26** - En cas de contact avec les yeux, laver immédiatement et abondamment avec de l'eau et consulter un spécialiste.
- **S. 45** - En cas d'accident ou de malaise, consulter immédiatement un médecin (si possible lui montrer l'étiquette).
- **S. 61** - Éviter le rejet dans l'environnement. Consulter les instructions spécialisées/la fiche de données de sécurité.

231-635-3 - Étiquetage CE

CARACTÉRISTIQUES

Utilisations

- Fabrication des engrais.
- Pétrole et carburants.
- Traitement des métaux.
- Synthèse organique.
- Industrie du froid.
- Industrie des fibres textiles.
- Produits d'entretien.
- Industrie du papier.

FT 16

NH₃
Ammoniac (1)

NH₄OH
Ammoniaque (2)

Numéros CAS
7664-41-7 (1)
1336-21-6 (2)

Numéros CE (EINECS)
231-635-3 (1)
215-647-6 (2)

Numéros Index
007-001-000-5 (ammoniac anhydre) (1)
007-001-011-2 (en solution aqueuse ... %) (2)

Synonyme
Hydroxyde d'ammonium (2)

(*) Mise à jour partielle de l'édition 1997.
Propriétés physiques [1 à 4, 9]

L'ammoniac est un gaz incolore à odeur piquante, plus léger que l'air. Il se liquéfie facilement.

Ses principales caractéristiques physiques sont les suivantes.

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse molaire</td>
<td>17,03</td>
</tr>
<tr>
<td>Point de fusion</td>
<td>777,7 °C</td>
</tr>
<tr>
<td>Point d'ébullition</td>
<td>33,5 °C</td>
</tr>
<tr>
<td>Densité (ammoniac liquide)</td>
<td>0,682 à 33,3 °C</td>
</tr>
<tr>
<td>Température critique</td>
<td>132 °C</td>
</tr>
<tr>
<td>Densité de vapeur (air = 1)</td>
<td>0,59</td>
</tr>
<tr>
<td>Viscosité de vapeur</td>
<td>860 kPa à 20 °C</td>
</tr>
</tbody>
</table>

Limites d'explosivité dans l'air (% en volume)
- Limité inférieur: 15%
- Limité supérieur: 28%

Limites d'explosivité dans l'oxygène (% en volume)
- Limité inférieur: 15,5%
- Limité supérieur: 79%

Température d'auto-inflammation: 651 °C

L'ammoniac est très soluble dans l'eau (33,1 % en poids à 20 °C). La dissolution s'accompagne d'un dégagement de chaleur. Les solutions obtenues sont connues sous le nom d'ammoniac aqueux.

Propriétés chimiques [1 à 8]

À température ordinaire, l'ammoniac est un composé stable. Sa dissociation en hydrogène et azote ne commence que vers 450-550 °C. En présence de certains métaux comme le fer, le nickel, l'osmium, le zinc et l'uranium, cette décomposition commence dès 250 °C et est presque complète vers 500-600 °C.

L'ammoniac brûle à l'air en contact d'une flamme en donnant principalement de l'azote et de l'eau.

L'ammoniac réagit, généralement violemment, sur de nombreux oxydes et peroxydes.

Les halogènes (fluor, chlore, brome, iodé) réagissent vivement sur l'ammoniac et ses solutions aqueuses.

Des réactions explosives peuvent également se former avec l'acide acétique, l'acide hydrochlorique, l'hexacyano­fonate (3-) de potassium.

La plupart des métaux ne sont pas attaqués par l'ammoniac rigoureusement anhydre. Toutefois, en présence d'humidité, l'ammoniac, gazeux ou liquide, attaque rapidement le cuivre, le zinc et de nombreux alliages, particulièrement ceux qui contiennent du cuivre. Il agit également sur l'or, l'argent et le mercure en donnant des composés explosifs.

 Certaines catégories de plastiques, de caoutchous et de revêtements peuvent être attaquées par l'ammoniac liquide.

Récipients de stockage

Le stockage de l'ammoniac s'effectue généralement dans des récipients en acier.

Valeurs limites d'exposition professionnelle

Des VLEP contraintes dans l'air des locaux de travail ont été établies au niveau français pour l'ammoniac anhydre (art. R. 231.58 du Code du travail):
- 10 ppm soit 7 mg/m³ (8 h).
- 20 ppm soit 14 mg/m³ (court terme).

À titre d'information, voici quelques VLEP Indicatives:

- Union européenne
 - 20 ppm soit 14 mg/m³ (8 h)
 - 50 ppm soit 36 mg/m³ (court terme)

- États-Unis (ACGIH)
 - 25 ppm (TLV-TWA) ; 35 ppm (TLV-STEL)

- Allemagne (MAK)
 - 20 ppm soit 14 mg/m³

Méthodes de détection et de détermination dans l'air

- Prélèvement sur un ensemble constitué d'un filtre en PTFE (pour retenir les sels d'ammonium partielles en suspension dans l'air) et d'un tube contenant une couche de charbon traité à l'acide sulfurique (pour collecter l'ammoniac). Desorption du tube à l'aide d'une solution acétylène d'acide sulfurique. Dosage par chromatographie ionique avec suppression chimique [10].

- Prélèvement sur un ensemble constitué d'un filtre en fibre de quartz ou d'une autre membrane (qui retient les particules de sels d'ammonium en suspension dans l'air) et d'un filtre en fibre de quartz imprégné d'acide sulfurique et de glycérol (pour collecter l'ammoniac). Desorption dans l'eau déionisée. Dosage par chromatographie ionique avec suppression chimique [11].

- Appareils à réponse instantanée équipés des tubes réactifs colorimétriques DRAEGER (Ammoniac 0,25, 2 ou 5/a), GASTEC (Ammoniac 0,3, 3/a ou Ammonia 180) et MSA (NH₃-2) pouvant couvrir différentes fractions de la gamme [0,25-100 ppm et plus].

Risques

Risques d'incendie

L'ammoniac, gaz relativement peu inflammable, peut former des mélanges explosifs avec l'air dans les limites de 15 à 28 % en volume.

Le contact de l'ammoniac avec certains produits tels que le mercure, les halogènes, le calcium, l'oxyde d'argent... est une source d'incendies et d'explosions.

Les feux provoqués par l'ammoniac sont difficiles à éteindre ; les agents d'extinction préconisés sont le dioxyde de carbone et les poudres.

Il faut refroidir les récipients voisins exposés au feu en les arrosant avec de l'eau pour éviter les risques d'explosion.
PATHOLOGIE – TOXICOLOGIE

Toxicocinétique – Métabolisme [4, 12]

Au contact avec l’humidité, l’ammoniac est rapidement transformé en ammoniacique responsable de l’effet caustique de la peau et des muqueuses. La pénétration du gaz dans l’arbre respiratoire a été étudiée chez l’animal et chez l’homme. La plus grande partie de l’ammoniac inhalé est réduite (transformée en ammoniac) au niveau des voies aériennes supérieures. Chez le lapin, lorsque la concentration atmosphérique est de 2 000 ppm, celle mesure au niveau de la trachée n’est plus que de 100 ppm.

L’absorption digestive, respiratoire ou parcutanée de l’ion ammonium formé par la combinaison d’ammoniac et d’eau n’a pas fait l’objet d’étude. L’absorption d’ions ammonium est certainement faible. Elle n’est jamais responsable d’hyperréactions. Les ions ammonium absorbés sont transformés en urée et servent à la synthèse des acides aminés. L’excès d’ammonium est surtout rénal (il existe également une faible élimination urinaire).

Toxicologie expérimentale

Aiguë [4, 12 à 15]

La DL50 par voie orale chez le rat est de 350 mg/kg et chez le chat de 750 mg/kg.

La CL50, par inhalation, chez le rat est de 7 600 mg/m³, pour une exposition de 2 heures.

Chez la souris, la CL50 varie de 10 150 ppm pour une exposition de 10 minutes à 4 837 ppm pour une exposition de 1 heure ; elle est de 3 310 mg/m³ pour une exposition de 2 heures.

L’exposition à de fortes concentrations d’ammoniac produit une irritation intense, puis des lésions caustiques des muqueuses oculaires, des voies respiratoires et de la peau. À l’autopsie des animaux, on constate des ulcerations des épithéliums oculaires et respiratoires, un œdème aigu pulmonaire hémorragique et, parfois, des atéctasies. La rétention de l’ammoniac dans les voies aériennes supérieures est importante : les lésions latentes sont toujours plus importantes que les atteintes broncholaires et alvéolaires. Chez les survivants, les séquelles oculaires définitives (opacité corneenne, cécité) sont fréquentes.

L’administration orale de solutions aqueuses d’ammoniac est responsable de lésions caustiques du tube digestif (ulcération, hémorragies, perforations).

L’ammoniac et ses solutions aqueuses sont caustiques pour la peau et les muqueuses ; la gravité des lésions produites dépend de la quantité de la solution appliquée, de la concentration et du temps de contact. Les lésions oculaires sont particulièrement sévères, les ulcéractions conjonctivales et cornéennes s’accompagnent presque toujours d’une irritable et, parfois, d’un glaucome. À terme, les séquelles invasantes (opacités cornéennes, cataracte, glaucome) sont fréquentes. Les solutions hautement alcalines (pH > 11,5) sont très irritantes.

Quelle que soit la voie d’administration, l’intoxication systémique par l’ion ammonium ne semble pas participer au tableau observé.

Chronique [4, 12, 14, 16]

L’exposition répétée ou prolongée à l’ammoniac est responsable d’une irritation oculaire et respiratoire dans toutes les espèces testées. Elle apparaît dès 100 ppm. À concentration constantes, lorsque l’exposition est poursuivie, une tolérance apparaît : les signes d’irritation s’amendent ou disparaissent. En raison de la forte rétention de l’ammoniac par les voies aériennes supérieures, les lésions sont toujours plus marquées à ce niveau. L’irritation chronique de l’arbre respiratoire favorise le développement d’infections broncho-pulmonaires. Les signes d’intoxication systémique sont toujours discrets ou absents : élévation modérée de l’urée sanguine, vraisemblablement secondaire à l’absorption de l’ion ammonium.

Toxicité sur l’homme

Aiguë [4, 12, 15, 17 à 21]

L’ingestion d’une solution concentrée d’ammoniac (pH > 11,5) est immédiatement suivie de douleurs buccales, stéatorrhées et épigastriques. Les vomissements sont fréquents, ils sont habituellement sanglants. L’examen de la cavité buccopharyngée révèle, presque toujours, des brûlures sèches. La fibroscopie oesogastroduodénale permet de faire le bilan des lésions caustiques du tractus digestif supérieur. Le bilan biologique révèle une acido-ose métabolique et une élévation des enzymes tissulaires témoignant de la nécrose. L’hyperréactions est constante. Les complications pourraient survivre dans les jours suivant l’ingestion sont :

- des hémorragies digestives,
- des perforations oesophagiennes ou gastriques,
- un choc, secondaire à une hémorragie abondante ou à une perforation,
- une acidose métabolique intense et/ou une coagulation intravasculaire disséminée (évoquant une nécrose étendue ou une perforation),
- une dérèglement respiratoire révélant un œdème laryngé, une destruction du carrefour aérodigestif, une pneumopathie d’inhalation ou une fistule esophagale.

L’évolution ultérieure est dominée par le risque de constitution de sténo-ses gastroduodénales.

L’exposition à l’ammoniac provoque, immédiatement, une irritation des muqueuses oculaires et respiratoires. À concentrations élevées, on observe :

- une irritation trachéobronchique : toux, dyspnée asthmatiforme, le bronchospasme est parfois intense, responsable d’embolie d’une détresse respiratoire,
- une atteinte oculaire : larmoiement, hyperhémie conjonctivale, ulcérations conjonctivales et cornéennes, iritis, cataracte, glaucome,
- des brûlures chimiques cutanées au niveau des parties découvertes,
- des ulcération et un œdème des muqueuses nasale, oesophagienne et laryngée.

À court terme, le pronostic dépend de l’instabilité des troubles respiratoires : bronchospasme et cédème laryngé, puis œdème aigu pulmonaire lésionnel (survenant habituellement entre la 6e et la 24e heure, après une phase de rémission apparente). Secondairement, l’hypersécrétion bronchique et la désquamation de la muqueuse sont responsables d’obstructions tronculaires et d’atéctasies ; la surinfection bactérienne est habituelle.
Les séquelles respiratoires (œdèmes bronchiques, bronchite obstruante, bronchopneumonie, fibrose pulmonaire) et oculaires (opacités cornéennes, cataracte, glaucome) sont fréquentes.

Les projections cutanées et oculaires d’ammoniac sont responsables de lésions caustiques locales sévères, si une décontamination n’est pas rapidement réalisée. En cas de projection oculaire, les séquelles (opacités cornéennes, retards, glaucome, cataracte) sont fréquentes.

Chronique [4, 22, 29]

L’exposition prolongée et répétée à l’ammoniac entraîne une tolérance : l’odeur et les effets irritants du gaz sont perçus à des concentrations plus élevées qu’initialement (le seuil de perception olfactif de l’ammoniac est très variable : quelques dizaines de ppm à plus de 100 ppm).

Les effets de l’ammoniac sur la fonction respiratoire des travailleurs exposés au long cours ne semblent avoir fait l’objet que d’une étude ; la population était de petite taille (41 personnes), exposée depuis en moyenne 15 ans à l’ammoniac et à des variations d’humidité et de température. Les concentrations atmosphériques du gaz ne sont pas précisées. Les seules anomalies notées sont des diminutions (non significatives) de la capacité vitale et du VEMS.

Deux cas d’erupcions urticariennes chez des personnes exposées à des concentrations d’ammoniac élevées ont été décrits. Il n’est pas possible d’être certain du mécanisme allergique de ces manifestations.

Effet cancérogène [4, 24]

Un cancer de la cloison nasale est survenu après une brûlure par un mélange d’ammoniac et d’huile, il est impossible de faire la part de la responsabilité de l’ammoniac dans la genèse de la tumeur.

Selon une équipe de la République démocratique allemande, la mortalité et l’incidence des tumeurs cancéreuses pulmonaires, laryngées, orphelines, gastriques et lymphomatoses étaient élevées dans une usine où l’ammoniac et des amines étaient manipulés. La publication est trop imprécise pour que la responsabilité de l’ammoniac puisse être déterminée.

RÉGLEMENTATION

Hygiène et sécurité du travail

1. **Règles générales de prévention des risques chimiques**
 - Articles R. 231-54 à R. 231-54-17 du Code du travail.

2. **Aération et assainissement des locaux**
 - Circulaire du ministère du Travail du 9 mai 1985 (non parue au JO).

3. **Prévention des incendies et des explosions**

Protection de la population

- Article L. 5132-2 et articles R. 5132-43 à R. 5132-73 du Code de la santé publique :
 - détention dans des conditions déterminées (art. R. 5132-56) ;
 - étiquetage (cf. 7) ;
 - cession réglementée (art. R. 5132-58 et R. 5132-59) ;
 - ammoniac anhydride.

Protection de l’environnement

Installations classées pour la protection de l’environnement, Paris, imprimé à la maison des journalistes officiels, brochure n° 1001 :
- n° 1135 : fabrication industrielle d’ammoniac.
- n° 1136 : emploi ou stockage de l’ammoniac.
Transport

Se reporter éventuellement aux réglements suivants.

1. Transport terrestre national et international (route, chemin de fer, voie de navigation intérieure)
 - ADR, RID, ADNR
 - Ammoniac amylé
 N° ONU: 1005
 Classe: 2
 Groupe d'emballage: I ou II
 Ammoniac en solution aqueuse (10% < NH₃ ≤ 35%)
 N° ONU: 1076
 Classe: 3
 Groupe d'emballage: I ou II
 Ammoniac en solution aqueuse (35% < NH₃ ≤ 50%)
 N° ONU: 2473
 Classe: 2
 Groupe d'emballage: I ou II
 Ammoniac en solution aqueuse (NH₃ > 50%)
 N° ONU: 3318
 Classe: 2
 Groupe d'emballage: I ou II

2. Transport par air
 - IATA

3. Transport par mer
 - IMDG

RECOMMANDATIONS

I. AU POINT DE VUE TECHNIQUE [25 à 28]

Stockage

- Le stockage s'effectuera dans des locaux spéciaux, largement ventilés, soit par des ouvertures placées à la partie supérieure, soit par une cheminée de section suffisante et s'élèvant au-dessus des immeubles voisins.
- L'installation électrique sera du type étanche à l'abri de l'action corrosive des vapeurs d'ammoniac. Le matériel électrique, y compris l'éclairage, sera conforme à la réglementation en vigueur.
- Ne pas fumer.
- Le sol des locaux sera imperméable et formera cuvette de rétention afin qu'en cas de déversement accidentel, les solutions ne puissent se répandre au dehors.
- Prévoir, à proximité et à l'extérieur, des équipements de protection, notamment des appareils de protection respiratoire isolants autonomes, un poste d'eau à débit abondant, des douches de sécurité et des fontaines oculaires en cas d'accident.

II. AU POINT DE VUE MÉDICAL

- Écouter des postes comportant un risque d'exposition les sujets atteints d'affections cutanées, cardio-pulmonaires chroniques ou de troubles du tractus digestif supérieur.
- Recommander aux porteurs de lentilles de contact d'utiliser des verres correcteurs lors des travaux où ils peuvent être exposés à des vapeurs ou à des aerosols du produit.
- Lors des examens systématiques, rechercher des lésions cutanées, oculaires, dentaires et pulmonaires ainsi que des signes d'irritation digestive.
- Lors d'accidents aigus, demander dans tous les cas l'avis d'un médecin. Lui préciser, si possible, le pH de la solution responsable. Les risques sont particulièrement graves lorsque le pH est supérieur à 11,5.
- En cas de contact cutané, laver immédiatement à l'eau pendant quinze minutes. Retirer s'il y a lieu les vêtements souillés et ne pas utiliser qu'après décontamination.
- En cas de projection oculaire, laver immédiatement à grande eau pendant quinze minutes. Toujours consulter un ophtalmologiste.
- En cas d'ingestion de vapeurs ou d'aérosols, retrouver la victime de la zone polluée, après avoir pris toutes les précautions nécessaires. Mettre en œuvre s'il y a lieu des manœuvres de réanimation. Laisser le sujet au repos en raison du risque d'accident respiratoire aigu retardé.
- En cas d'ingestion de solutions diluées [pH inférieur à 11,5], en très faible quantité, faire boire un ou deux verres d'eau. S'il apparaît des douleurs rétropéritonéales et abdominales, des nausées et des vomissements, consulter un médecin.
- En cas d'ingestion de solutions concentrées dont le pH est supérieur à 11,5 ou de solutions dont le pH n'est pas connu, ne pas faire boire, ne pas tenter de provoquer des vomissements ; faire transférer rapidement en milieu hospitalier.
Fiches internationales de sécurité chimique

AMMONIAC (ANHYDRE)

AMMONIAC (ANHYDRE)
(bonnebne)
NH₃
Masse moléculaire : 17.03

N° CAS : 7664-41-7
N° RTECS : BO0875000
N° ICSC : 0414
N° ONU : 1005
N° CE : 007-001-00-5

TYPES DE RISQUES/EXPOSITIONS

RISQUES/SYMPTOMES AIGUS

PREVENTION

PREMIER SECOURS/AGENTS D'EXTINCTION

INCENDIE
Inflammable.
PAS de flammes nues, PAS d’étincelles et interdiction de fumer.
En cas d’incendie à proximité: tous les agents d’extinction sont autorisés.

EXPLOSION
Les mélanges air/gaz sont explosifs.
Système en vace clos, ventilation, équipement électrique et éclairage protégés contre les explosions.
En cas d’incendie: maintenir les bonbonnes à basse température en les arrosant d’eau.

CONTACT PHYSIQUE

EVITER TOUT CONTACT!

- INHALATION
Sensation de brûlure, Toux.
Ventilation, aspiration locale ou protection respiratoire.

- ÉSSUIEMENT. Mal de gorge.
Symptômes d’effets retardés (voir
Sensations de brûlure, Toux.
Ventilation, aspiration locale ou protection respiratoire.

- SYMPTOMES ET EFFETS RETARDÉS (VOIR NOTES)
Désagréable. Mal de gorge.
Symptômes d’effets retardés (voir
Sensations de brûlure, Toux.
Ventilation, aspiration locale ou protection respiratoire.

- PEAU
Rougeur, Brûlures cutanées,
Douleur, Ampoules. LORS DU CONTACT AVEC LE LIQUIDE : GELURES.
Gants de protection contre le froid. Vêtements de protection.
EN CAS DE GELURES: rincer abondamment à l’eau, NE PAS retirer les vêtements. Consulter un médecin.

- YEUX
Rougeur, Douleur, Brûlures
profondes graves.
Eau en face, ou protection oculaire associée à une protection respiratoire.
Rincer d’abord abondamment à l’eau pendant plusieurs minutes (relever si possible les lèvres de contact), puis consulter un médecin.

- INGESTION
Evacuer la zone dangereuse! Consulter un expert! Ventilation. NE JAMAIS arroser le liquide au jet. Rabattre le gaz avec de l’eau pulvérisée. (protection individuelle spéciale: tenue de protection chimique étanche aux gaz comprenant un appareil de protection).

DEVERSEMENTS & FUITE S

STOCKAGE

CONDITIONNEMENT & ETIQUETAGE

Evacuer la zone dangereuse! Consulter un expert! Ventilation. NE JAMAIS arroser le liquide au jet. Rabattre le gaz avec de l’eau pulvérisée. (protection individuelle spéciale: tenue de protection chimique étanche aux gaz comprenant un appareil de protection).

Symbole T
Symbole N
R: 10-23-34-50
S: (1/2)-39-16-26-36/37/39-45-61
Classe de danger ONU: 2.3
Classe de danger subsidiaire ONU: 8
Fiches internationales de sécurité chimique

AMMONIAC (ANHYDRE)

ASPECT PHYSIQUE; APPARENCE:
GAZ COMPRIME LIQUEFIÉ, INCOLORE, D'ODEUR ACRE.

DANGERS PHYSIQUES:
Le gaz est plus léger que l'air.

DANGERS CHIMIQUES:
Des composés sensibles aux chocs se forment avec les oxydes de mercure, d'argent et d'or. La substance est une base forte, qui réagit violemment avec les acides et qui est corrosive. Réagit violemment avec les oxydes forts et les halogènes. Attaque le cuivre, l'aluminium, le zinc et leurs alliages. Se dissout dans l'eau en dégageant de la chaleur.

LIMITES D'EXPOSITION PROFESSIONNELLES (LEP):
- TLV: 25 ppm; 17 mg/m³ (TWA); 35 ppm; 24 mg/m³ (STEL) (ACGIH 1997).
- MAK: 20 ppm; 14 mg/m³ (1993).

PROPRIÉTÉS PHYSIQUES
- Point d'ébullition: -33°C
- Point de fusion: -78°C
- Densité relative (eau = 1): 0.7 à -33°C
- Solubilité dans l'eau à 20°C: 54 g/100 ml

DONNÉES ENVIRONNEMENTALES
La substance est très toxique pour les organismes aquatiques.

VOIES D'EXPOSITION:
La substance peut être absorbée par l'organisme par inhalation.

RISQUE D'INHALATION:
Une concentration dangereuse de ce gaz dans l'air est très vite atteinte s'il s'échappe de son contenant.

EFFETS DES EXPOSITIONS DE COURTE DURÉE:
La substance est corrosive pour les yeux, la peau et les voies respiratoires. L'inhalation de concentrations élevées peut causer un œdème pulmonaire (voir Notes). L'évaporation rapide du liquide peut provoquer des鹅heres.

EFFETS DES EXPOSITIONS PROLONGÉES OU REPÉTÉES:

NOTES
Les symptômes de l'œdème pulmonaire ne se manifestent souvent qu'après quelques heures et sont aggravés par l'effort physique. Le repos et la surveillance médicale sont par conséquent essentiels. L'administration immédiate d'une thérapie inhalatoire appropriée (par ex., aérosol) devrait être envisagée par un médecin ou par une personne habilitée par lui. Orienter la bombe pour qu'elle fasse vers le haut et pour éviter ainsi l'échappement de gaz à l'état liquide.

Carte de données d'urgence pour le transport: TREMCARD (R)-1. Code NFPA: H 3; F 1; R 0.

AUTRES INFORMATIONS

ICSC: 0414

© PISSC, CE, 1993

NOTICE LEGALE IMPORTANT:
La CE de même que le PISSC ou toute personne agissant au nom de la CE ou du PISSC ne sauraient être tenues pour responsables de l'utilisation qui pourrait être faite de ces informations. Cette fiche exprime l'avis du comité de révision du PISSC et peut ne pas toujours refléter les recommandations de la législation nationale en la matière. L'utilisateur est donc invité à vérifier la conformité des fiches avec les prescriptions en usage dans son pays.
ANNEXE C

Méthylmercaptan : fiches INRS et ICSC

(12 pages)
Fiche Toxicologique

CH₃-SH Méthanethiol
CAS n° 74-93-1
CE (EINECS) n° 200-822-1
Index n° 016-021-00-3
Synonyme : Méthylmercaptan

CH₃-CH₂-SH Éthanethiol
CAS n° 75-08-1
CE (EINECS) n° 200-837-3
Index n° 016-022-00-9
Synonyme : Éthylmercaptan

CH₃-(CH₂)₂-SH 1-Butanethiol
CAS n° 109-79-5
Synonymes : n-Butylmercaptan, Butane-1-thiol

CARACTÉRISTIQUES

UTILISATIONS
Les alcanethiols sont essentiellement des intermédiaires de synthèse dans la fabrication de la méthionine, des produits phytosanitaires, d'antioxydants, etc. L'éthanethiol est utilisé comme additif odorant pour gaz liquéfiés.

PROPRIÉTÉS PHYSIQUES [1 à 7]

À pression atmosphérique et à 20 °C, le méthanethiol est un gaz plus lourd que l'air. L'éthanethiol et le 1-butaneethiol sont des liquides volatils.

Ces composés sont incolores et présentent une odeur caractéristique très désagréable, détectable à très faible concentration (par exemple, le seuil olfactif de l'éthanethiol se situe au-dessous de 0,1005 ppm).

Ils sont légèrement solubles dans l'eau et très solubles dans les alcools, les éthers et les hydrocarbures.

MÉTHANETHIOL

État : Étendrement inflammable.
État : Toxique par inhalation.
État : Très toxique pour les organes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique.
S 16 : Conserver à l'écart de toute flamme ou source d'éclipses – Ne pas fumer.
S 25 : Éviter le contact avec les yeux.
S 60 : Éliminer le produit et son récipient comme un déchet dangereux.
S 61 : Futer le récit dans l'environnement.
Consultez les instructions spéciales de la fiche de données de sécurité.
200-822-1 – Étiquetage CE.

ÉTHANETHIOL

État : Facilement inflammable.
État : N’Aucun par inhalation.
État : Très toxique pour les organes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique.
S 16 : Conserver à l'écart de toute flamme ou source d'éclipses – Ne pas fumer.
S 25 : Éviter le contact avec les yeux.
S 60 : Éliminer le produit et son récipient comme un déchet dangereux.
S 61 : Futer le récit dans l'environnement.
Consultez les instructions spéciales de la fiche de données de sécurité.
200-817-3 – Étiquetage CE.

Le méthanethiol, l'éthanethiol et le 1-butaneethiol sont les plus connus des alcanethiols de formule générale CₙH₂n₊₁-SH. Ils renferment le groupe caractéristique SH de la famille des thioles ou mercaptans.
Leurs principales caractéristiques physiques sont indiquées dans le tableau.

<table>
<thead>
<tr>
<th></th>
<th>Méthanéthiol</th>
<th>Éthanéthiol</th>
<th>1-Butanéthiol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse moyenne</td>
<td>43,11</td>
<td>62,13</td>
<td>90,19</td>
</tr>
<tr>
<td>Point de fusion</td>
<td>-123 °C</td>
<td>-148 °C</td>
<td>-115,9 °C</td>
</tr>
<tr>
<td>Point d'ébullition</td>
<td>45-75 °C</td>
<td>35-36 °C</td>
<td>97,98 °C</td>
</tr>
<tr>
<td>Densité (25 °C)</td>
<td>0,868 (gaz liquéfié)</td>
<td>0,839</td>
<td>0,834</td>
</tr>
<tr>
<td>Densité de vapeur (air = 1)</td>
<td>1,7</td>
<td>2,1</td>
<td>3,1</td>
</tr>
<tr>
<td>Température critique</td>
<td>196,8 °C</td>
<td>225,5 °C</td>
<td>290 °C</td>
</tr>
<tr>
<td>Pression critique</td>
<td>7140 kPa</td>
<td>5420 kPa</td>
<td>3940 kPa</td>
</tr>
<tr>
<td>Tensions de vapeur</td>
<td>200 kPa à 26 °C</td>
<td>58,6 kPa à 70 °C</td>
<td>4,8 kPa à 70 °C</td>
</tr>
<tr>
<td></td>
<td>1000 kPa à 83 °C</td>
<td>4000 kPa à 80 °C</td>
<td>19 kPa à 50 °C</td>
</tr>
<tr>
<td>Point éclaire (en coupelle fermée)</td>
<td>< -18 °C</td>
<td>-45 °C</td>
<td>0,5 °C</td>
</tr>
<tr>
<td>Limites d'explosivité dans l'air (% en volume)</td>
<td>3,9 %</td>
<td>2,8 %</td>
<td>1 %</td>
</tr>
<tr>
<td></td>
<td>- immaturee</td>
<td>- superieure</td>
<td>-</td>
</tr>
<tr>
<td>Solubilité dans l'eau</td>
<td>23,8 g/l</td>
<td>6,76 g/l</td>
<td>0,6 g/l</td>
</tr>
</tbody>
</table>

Propriétés chimiques [1, 6 à 8]

Les alcane-thiols sont stables à température ordinaire et ne se décomposent qu'à des températures élevées. La décomposition de l'éthanéthiol a été étudiée sous atmosphère inerte : elle commence à 430 °C et devient complète vers 600 °C.

La décomposition en présence d'oxygène ou la combustion donne lieu à un dégagement de dioxyde de soufre toxique.

Les alcane-thiols s'oxydent facilement et peuvent réagir violemment avec les produits oxydants. Ils donnent le sulfide correspondant et le dioxyde de soufre avec l'acide sulfurique concentré. Avec l'acide nitrique ou le permanganate de potassium, il se forme des acides sulfuriques.

L'oxydation en sulfitre par une solution diluée d'hydrochlorure de sodium ou de calcium a été proposée pour neutraliser l'odeur nauséabonde de ces composés.

Au contact du fer non passif, du cuivre et de ses alliages, les alcane-thiols donnent naissance à des sulfures complexes très inflammables.

Récipients de stockage

Les alcane-thiols sont généralement stockés dans des récipients en acier inoxydable. Ils sont également compatibles avec l'aluminium et sous atmosphère sèche et inerte, avec le fer et l'acier préalablement passivés. Le cuivre et ses alliages sont à proscrire.

Certaines matières plastiques ne résistent pas à ces composés. Il est recommandé d'utiliser des joints ou revêtements en polyéthylène, polytétrafluoroéthylène ou polychlorotrifluoroéthylène.
RISQUES

RISQUES D'INCENDIE

- Le méthanethiol est un gaz extrêmement inflammable qui peut former des mélanges explosifs avec l'air.
- En cas d'incendie, les agents d'extinction préconisés sont le dioxyde de carbone, les poudres et les mousses. Toutefois, il est conseillé avant tout de stopper l'arrivée du gaz et, si la chose est impossible, de ne pas étendre le feu. Les bouteilles menacées seront refroidies au moyen de jets d'eau.
- L'éthanethiol et le 1-butanol sont des liquides très inflammables dont les vapeurs peuvent former des mélanges explosifs avec l'air.
- Les agents d'extinction préconisés sont l'eau pulvérisée, le dioxyde de carbone, les poudres et les mousses.
- En raison de la toxicité des fumées émises lors de la combustion de ces composés, les intervenants seront équipés d'appareils de protection respiratoire autonomes et isolants et de combinaisons de protection spéciales.

PATHOLOGIE - TOXICLOGIE

Toxicité expérimentale [11 à 14]

Aiguë

<table>
<thead>
<tr>
<th>DL50 (rana, rat)</th>
<th>Éthanethiol 880 à 2000 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Butanol 1 560 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CL50 (rat)</th>
<th>Éthanethiol 1 350 mg/m³/4 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 840 mg/m³/4 h</td>
<td></td>
</tr>
<tr>
<td>1-Butanol 12 009 mg/m³/4 h</td>
<td></td>
</tr>
</tbody>
</table>

- Les signes observés lors des expérimentations sont :
 - dépression du système nerveux central avec, aux fortes concentrations, un coma parfois convulsif qui précède la mort des animaux ;
 - augmentation de la fréquence respiratoire, suivie d'une dépression accompagnée de cyanose ;
 - paralysie musculaire progressive.
- Les troubles, lorsqu'ils entraînent pas le décès, persistent plusieurs jours.
- L'examen histologique des animaux les plus atteints révèle quelques lésions rénales, essentiellement tubulaires, plus rarement glomérulaires. Le tissu hépatique est modifié de façon exceptionnelle.
- En plus de ces signes, une irritation des muqueuses se traduisant par un larmoiement et un écoulement nasal est observée. Le méthanethiol provoque une grave irritation respiratoire pouvant conduire à l'œdème aigu du poumon. L'étude du tissu pulmonaire révèle la présence de zones hémorragiques. L'action est voisine de celle du sulfure d'hydrogène.
- Lors des essais sur la peau et les yeux du lapin, l'irritation est d'intensité modérée et disparaît au bout de 24 à 48 heures.

Chronique

Les expérimentations connues sont peu nombreuses et concernent le méthanethiol et l'éthanethiol. Elles ne permettent pas d'évaluer une dose sans effet.

Dans tous les cas, les signes restent mineurs et intéressent les lignes sanguines (anémie, diminution des globules blancs). Une atteinte cardiovasculaire est rapportée avec l'éthanethiol.

Toxicité sur l'homme [13 à 16]

Aiguë

Les alcanethiols dégagent une odeur caractéristique qui est ressentie par les individus à de très faibles concentrations. Malgré une accoutumance de l'odorat, ceci permet souvent de prévenir les accidents.

La plupart des cas d'intoxication aiguë rapportés font suite à l'inhalation de méthanethiol. Les symptômes constatés sont une irritation pulmonaire (douleur thoracique et toux), des nausées, vomissements et diarrhées, puis des troubles de conscience, une dépression respiratoire et une cyanose avec sulfhémoglobinémie ou méthémoglobinémie (pouvant se compliquer d'hémolyse). Il est noté une sensibilité des sujets déficients en glucose-phosphate déshydratase. Dans les cas les plus graves, l'irritation respiratoire peut conduire à un œdème aigu du poumon, le poumon lésionnel. Une atteinte rénale transitoire peut ensuite apparaître.

Les autres alcanethiols ont un effet similaire mais survenant à des doses plus élevées. Les signes observés se réduisent souvent à des céphalées, une asthénie, des nausées et des vomissements.

Chronique

Il s'agit essentiellement de manifestations liées à l'effet irritant des produits sur la peau et les muqueuses oculaires et respiratoires.

RÉGLEMENTATION

HYGIÈNE ET SÉCURITÉ DU TRAVAIL

1. Règles générales de prévention des risques chimiques
- Articles R. 231-54 à R. 231-54-17 du Code du travail.
- Circulaire DRT n° 12 du 24 mai 2006 (non parue au JO).

2. Aération et assainissement des locaux
- Circulaire du ministère du Travail du 9 mai 1985 (non parue au JO).
3. Prévention des incendies et des explosions

4. Valeurs limites d'exposition professionnelle

5. Maladies de caractère professionnel
- Articles L. 461-4 et D. 461-1 et annexe du Code de la sécurité sociale : déclaration médicale de ces affections.

6. Classification et étiquetage
 a) des alcanéthiols purs :
 Méthanethiol
 Extremement inflammable, R12
 Exotoxic, R23
 Dangereux pour l'environnement, R50/53
 Ethanethiol
 Facilement inflammable, R11
 Non OC, R20
 Dangereux pour l'environnement, R50/53
 b) des préparations contenant des alcanéthiols :

7. Entreprises extérieures

PROTECTION DE LA POPULATION
- Article L. 5132-2, articles R. 5132-43 à R. 5132-73, articles R. 1342-1 à R. 1342-12 du Code de la santé publique :
 - détention dans des conditions déterminées (art. R. 5132-66) ;
 - étiquetage (cf. 5) ;

PROTECTION DE L'ENVIRONNEMENT

- n° 1310 : substances et préparations toxiques, fabrication industrielle ;
- n° 1311 : substances et préparations toxiques, emploi ou stockage ;
- n° 1412 : gaz inflammables liquéfiés, stockage en réservoirs manufacturés ;
- n° 1414 : gaz inflammables, installations de remplissage ou de distribution ;
- n° 1171 : dangereux pour l'environnement, très toxiques et/ou toxiques pour les organismes aquatiques, fabrication industrielle de substances ou préparations ;
- n° 1172 : dangereux pour l'environnement, très toxiques pour les organismes aquatiques, stockage et emploi de substances ou préparations.

Éthanethiol
- n° 1432 : liquides inflammables, stockage en réservoirs manufacturés ;
- n° 1433 : liquides inflammables, installations de mélange ou d'emploi ;
- n° 1171 : dangereux pour l'environnement, très toxiques et/ou toxiques pour les organismes aquatiques, fabrication industrielle de substances ou préparations ;
- n° 1172 : dangereux pour l'environnement, très toxiques pour les organismes aquatiques, stockage et emploi de substances ou préparations.

Butanethiol
- n° 1432 : liquides inflammables, stockage en réservoirs manufacturés ;
- n° 1433 : liquides inflammables, installations de mélange ou d'emploi . (Voir aussi méthanethiol, éthanethiol.)

TRANSPORT

Se reporter éventuellement aux réglementations suivantes.

1. Transport terrestre national et international (route, chemin de fer, voie de navigation intérieure)
 - ADR, RID, ADNR :
 - Mercaptan méthyle :
 N° ONU : 1064
 Classe : 2
 - Mercaptan éthyle :
 N° ONU : 2363
 Classe : 3
 - Groupe d'emballage : I
 - Mercaptan butyle :
 N° ONU : 2347
 Classe : 3
 - Groupe d'emballage : II

2. Transport par air
 - IATA

3. Transport par mer
 - IMDG.

RECOMMANDATIONS

En raison de la nocivité, de l'inflammabilité et de l'odeur désagréable des alcanéthiols, des mesures sévères de prévention et de protection s'imposent lors du stockage et de la manipulation de ces composés.
I. AU POINT DE VUE TECHNIQUE

Stockage
- Le stockage s'effectuera dans un endroit frais, à l'air libre ou dans un local bien ventilé.
- Le sol des locaux sera imperméable, incombustible et formera une cuvette de rétention afin qu'en cas de déversement accidentel les liquides ne puisse pas se répandre au-dehors.
- Le matériel électrique sera conforme à la réglementation en vigueur.
- Il sera interdit de fumer.
- Les récipients seront tenus éloignés de toute source d'ignition ou de chaleur, à l'abri des rayons solaires et à l'écart des substances oxydantes. Ils seront soigneusement fermés et porteront en caractères apparents l'indications de leur contenu.
- Des appareils de protection respiratoire autonomes et isolants pour intervention d'urgence seront prévus à proximité immédiate des locaux.

Manipulation
Les prescriptions relatives aux locaux de stockage sont applicables aux ateliers où sont manipulés les produits. En outre :
- Avertir le personnel des risques présentés par les alcanethiols, des précautions à observer et des mesures à prendre en cas d'accident.
- Utiliser les produits en système clos. Dans tous les cas, capter les vapeurs à leur source d'émission.
- Pour la manipulation des récipients, se conformer strictement aux indications du fabricant.
- Intervenir l'emploi d'air ou d'oxygène comprimé pour effectuer le transvasement ou la circulation des liquides.
- Ne jamais utiliser une flamme pour détecter les fuites de gaz. Celles-ci pourront être localisées au moyen de papiers réactifs ou d'une solution aqueuse contenant un tétrazolium-actif.
- Mettre à la disposition du personnel des appareils de protection respiratoire pour les travaux exceptionnels de courte durée ou les interventions d'urgence. Des vêtements de protection, des gants et des lunettes de sécurité seront également prévus. Ces effets seront maintenus en bon état et nettoyés après usage.
- Ne pas fumer, boire et manger dans les ateliers.
- Observer une bonne hygiène corporelle.
- Ne pas procéder à des travaux sur et dans les cuves contenant ou ayant contenu des alcanethiols sans prendre les précautions d'usage [38].
- Éviter tout rejet de ces produits à l'égout ou dans l'atmosphère.
- En cas de fuite ou de déversement accidentel, seul le personnel muni d'un équipement de protection adapté sera autorisé à rester dans la zone polluée. Éliminer toutes les sources d'ignition. Récupérer les produits liquides (par exemple en les épongant avec un matériel absorbant). Conserver les déchets dans des récipients étanches spécialement prévus à cet effet.
- Les déchets d'alcaneñothiols pourront être détruits par combustion dans un incinérateur muni d'un épurateur. Lorsque les quantités à détruire sont importantes, éliminer les déchets dans les conditions autorisées par la réglementation (traitement dans l'entreprise ou dans un centre spécialisé).

II. AU POINT DE VUE MÉDICAL [16,17]
- A l'embaumage, rechercher les affections respiratoires et cutanées chroniques.
- Par la suite, l'examen portera surtout sur la recherche d'intolérances réactives (tube digestif, peau et poumons).
- En cas de projections cutanées ou oculaires, laver immédiatement et abondamment à l'eau pendant quinze minutes. Retirer les vêtements souillés. Si une douleur persiste, consulter un médecin.
- En cas d'inhalation, retirer la victime de la zone polluée et la maintenir au calme et au repos. Si elle ne respire pas, entreprendre une ventilation assistée avec oxygénothérapie si possible. Transférer en milieu hospitalier en vue d'un traitement symptomatique (coma, convulsions, œdème aigu du poumon) avec recherche de méthémoglobinémie et de signes d'hémolyse.
- En cas d'ingestion, tenter de faire vomir si le sujet est parfaitement conscient. Administrer du charbon actif et hospitaliser si la quantité ingérée est importante. Le traitement sera symptomatique.

18. Couches et réservoirs. Recommandation CNAM R 276. INRS.
Fiches Internationales de Sécurité Chimique

METHYLMERCAPTAN

Méthanethiol
Mercaptométhane
Sulhydrate de méthyle
Thiométhanol
CIH₃SH
Masse moléculaire: 48.1
(bonbonne)
(bonbonne)
(bonbonne)

N° ICSC : 0299
N° CAS : 74-93-1
N° RTECS : PB4375000
N° ONU : 1064
N° CE : 016-021-00-3
06.05.2003 Revu en réunion

<table>
<thead>
<tr>
<th>TYPES DE RISQUES / EXPOSITIONS</th>
<th>RISQUES / SYMPTOMES AIGUS</th>
<th>PREVENTION</th>
<th>PREMIER SECOURS / AGENTS D'EXTINCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCENDIE</td>
<td>Extrêmement inflammable.</td>
<td>PAS de flammes nues, PAS d'étincelles et interdiction de fumer.</td>
<td>Couper l'alimentation, en cas d'empêchement et sans danger à proximités, laisser le feu s'éteindre, sinon, pour l'éteindre: poudre, dioxyde de carbone.</td>
</tr>
<tr>
<td>EXPLOSION</td>
<td>Les mélanges air/gaz sont explosifs.</td>
<td>Système en vaste clos, ventilation, équipement électrique et éclairage protégés contre les explosions.</td>
<td>En cas d'incendie: maintenir les bonbonnes à basse température en les arrosant d'eau.</td>
</tr>
<tr>
<td>CONTACT PHYSIQUE</td>
<td></td>
<td>OBSERVER UNE HYGIENE STRICTE!</td>
<td></td>
</tr>
<tr>
<td>• PEAU</td>
<td></td>
<td>Gants de protection contre le froid.</td>
<td>Retirer les vêtements contaminés. Consulter un médecin. EN CAS DE GELURES: rincer abondamment à l'eau, NE PAS retirer les vêtements.</td>
</tr>
<tr>
<td>• YEUX</td>
<td></td>
<td>Lunettes de protection fermées ou protection oculaire associée à une protection respiratoire.</td>
<td>Rincer d'abord abondamment à l'eau pendant plusieurs minutes (retirer si possible les lentilles de contact), puis consulter un médecin.</td>
</tr>
<tr>
<td>• INGESTION</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEVERSEMENTS & FUITES</th>
<th>STOCKAGE</th>
<th>CONDITIONNEMENT & ETIQUETAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>ASPECT PHYSIQUE; APPARENCE:</td>
<td>VOIES D’EXPOSITION:</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>D</td>
<td>GAZ INCOLORE, D’ODEUR</td>
<td>La substance peut être absorbée par l’organisme par inhalation.</td>
</tr>
<tr>
<td>O</td>
<td>CARACTERISTIQUE.</td>
<td>RISQUE D’INHALATION:</td>
</tr>
<tr>
<td>N</td>
<td>DANGERS PHYSIQUES:</td>
<td>Une concentration dangereuse de ce gaz dans l’air est très vif et atteint s’il s’échappe de son contenant.</td>
</tr>
<tr>
<td>N</td>
<td>Le gaz est plus lourd que l’air et peut se propager au niveau du sol; inflammation à distance possible.</td>
<td>EFFETS DES EXPOSITIONS DE COURTE DURÉE:</td>
</tr>
<tr>
<td>E</td>
<td>DANGERS CHIMIQUES:</td>
<td>La substance est iritante pour les yeux et les voies respiratoires. La substance peut avoir des effets sur le système nerveux central, entraînant une respiration affaiblie.</td>
</tr>
<tr>
<td>E</td>
<td>La substance se décompose en brûlant, produisant des fumées toxiques comprenant des oxydes de soufre et du soufre d’hydrogène. Réagit violemment avec les oxydants forts. Réagit avec l’eau, la vapeur d’eau ou les acides, produisant un gaz inflammable et toxique.</td>
<td>EFFETS DES EXPOSITIONS PROLONGÉES OU REPÉTÉES:</td>
</tr>
<tr>
<td>E</td>
<td>LIMITES D’EXPOSITION PROFESSIONNELLE (LEP):</td>
<td>L’exposition à des concentrations élevées peut entraîner une perte de conscience. L’exposition à des concentrations élevées peut entraîner la mort. Les effets peuvent être retardés. L’observation médicale est conseillée.</td>
</tr>
<tr>
<td>I</td>
<td>TLV: 0.5 ppm TWA, (ACGIH 2004).</td>
<td>EFFETS DES EXPOSITIONS PROLONGÉES OU REPÉTÉES:</td>
</tr>
<tr>
<td>M</td>
<td>MAK: 0.5 ppm, 1.0 mg/m³;</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Classe de limitation des taux les plus élevés: II(2); Classe de substances pouvant présenter un risque pendant la grossesse: Ile; (DFG 2004).</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Classe de danger ONU: 2.3</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Classe de danger subsidiaire ONU: 2.1</td>
<td></td>
</tr>
</tbody>
</table>

Fiches Internationales de Sécurité Chimique

METHYLMERCAPTAN
<table>
<thead>
<tr>
<th>PROPRIETES PHYSIQUES</th>
<th>DONNEES ENVIRONNEMENTALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point d'ébullition : 6°C</td>
<td>La substance est très toxique pour les organismes aquatiques. Il est fortement recommandé de ne pas laisser ce produit contaminer l'environnement.</td>
</tr>
<tr>
<td>Point de fusion : -123°C</td>
<td>Tension de vapeur à 26,1°C : 202 kPa</td>
</tr>
<tr>
<td>Densité relative (eau = 1) : 0,9</td>
<td>Densité de vapeur relative (air = 1) : 1,65</td>
</tr>
<tr>
<td>Solubilité dans l'eau à 20°C : 2,3 g/100 ml</td>
<td>Point d'éclair : Gaz Inflammable</td>
</tr>
<tr>
<td></td>
<td>Limites d'explosivité en volume % dans l'air : 3,9-21,8</td>
</tr>
</tbody>
</table>

NOTES

Orienter la bombe pour qu'elle fasse vers le haut et pour éviter ainsi l'échappement de gaz à l'état liquide. Cette fiche a été mise à jour partiellement en octobre 2004. Voir sections: Limites d'exposition professionnelle, Classification Européenne et Intervention en cas d'urgence.

Carte de données d'urgence pour le transport: TREMCARD (R)-20G2TF.

Code NIPPA: H 4; F 4; R 0.

AUTRES INFORMATIONS

Valeurs limites d'exposition professionnelle d'application en Belgique.

ICSC: 0299

METHYLMERCAPTAN

(C) PISSC, CCE, 1999

NOTICE LEGALE IMPORTANTE:

La CCE de même que le PISSC, les traducteurs ou toute personne agissant au nom de la CCE ou du PISSC ne sont pas responsables de l'utilisation qui pourrait être faite de cette information. Cette fiche exprime l'avis du comité de révision du PISSC et peut ne pas toujours refléter les recommandations de la législation nationale en la matière. L'utilisateur est donc invité à vérifier la conformité des fiches avec les prescriptions en usage dans son pays.
ANNEXE D

Diméthylsulfure : fiche ICSC

(6 pages)
Fiches internationales de sécurité chimique

SULFURE DE DIMETHYLMETHANESULFIDE (SDM)

ICSC: 0878

CAS Number
- N° CAS : 75-18-3
- N° RTECS : PV5075000
- N° ICSC : 0878
- N° ONU : 1164

Types de Risques/Expositions

<table>
<thead>
<tr>
<th>Incendie</th>
<th>Explosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrêmement inflammable. Emission de fumées (ou de gaz) irritantes ou toxiques lors d'incendie.</td>
<td>Les mélanges air/vapeur sont explosifs.</td>
</tr>
</tbody>
</table>

Risques/Symptômes Aigus

- **INCENDIE:** Extrême inflammabilité. Emission de fumées ou de gaz irritants ou toxiques lors d'incendie.

Prévention

- **INCENDIE:** En cas d'incendie: maintenir les feux, etc., à basse température en les arrosant d'eau.

Premier Secours/Agents d'Extinction

- **INCENDIE:** Poudre, AFFF, mousse, dioxyde de carbone.
- **EXPLOSION:** Système en vase clos, ventilation, équipement électrique et éclairage protégés contre les explosions. NE PAS employer d'air comprimé pour remplir, vider ou manipuler. Employer des outils antistatiques.

Contact Physique

- **YEUX:** Lunettes de protection. Rincer d'abord abondamment à l'eau pendant plusieurs minutes (retirer si possible les lentilles de contact), puis consulter un médecin.
- **INGESTION:** Ne pas manger, ne pas boire ni fumer pendant le travail. Rincer la bouche. Consulter un médecin.

Déversements & Fuites

- **Déversements:** Évacuer la zone dangereuse! Consulter un expert! Ventilation. Recueillir le liquide répandu dans des récipients hermétiques. Absorber le liquide restant avec du sable ou avec un absorbant.

Stockage

- **Stockage:** A l'épreuve du feu. Séparer des oxydants forts. Conserver au froid.

Conditionnement & Étiquetage

- **Conditionnement & Étiquetage:** Réceptacle inassurable, mettre les récipients fragiles dans un emballage inassurable fermé. Classe de danger ONU: 3 Classe d'emballage ONU: 1
Fiches internationales de sécurité chimique

SULFURE DE DIMETHYLE

ICSC: 0878

DONNÉES IMPORTANTES AU DOS

Préparé dans le cadre de la coopération entre le Programme International sur la Sécurité Chimique et la Commission Européenne (C) 1991

ASPECT PHYSIQUE; APPARENCE:
LIQUIDE INCOLORE A JAUNE, D'ODEUR CARACTÉRISTIQUE.

DANGERS PHYSIQUES:
La vapeur est plus lourde que l'air et peut se propager au niveau du sol; inflammation à distance possible.

DANGERS CHIMIQUES:
La substance se décompose en chauffant fortement et en brûlant, produisant des fumées toxiques et corrosives (du sulfure d'hydrogène et des oxydes de soufre), réagit violemment avec les oxydants forts, en provoquant des risques d'incendie et d'explosion.

LIMITES D'EXPOSITION PROFESSIONNELLE (LEP):
Pas de TLV établi.

VOIES D'EXPOSITION:
La substance peut être absorbée par l'organisme par inhalation de ses vapeurs et par ingestion.

RISQUE D'INHALATION:
Aucune indication ne peut être donnée sur la vitesse à laquelle une concentration dangereuse dans l'air est atteinte lors de l'évaporation de cette substance à 20°C.

EFFETS DES EXPOSITIONS DE COURTE DURÉE:
L'exposition peut entraîner une perte de conscience.

EFFETS DES EXPOSITIONS PROLONGÉES OU REPÉTÉES:

PROPRIÉTÉS PHYSIQUES

Point d'ébullition : 37°C
Point de fusion : -58°C
Densité relative (eau = 1) : 0.85
Solubilité dans l'eau : faible (0.6 g/100 ml)
Densité de vapeur relative (air = 1) : 2.14

Densité relative du mélange air/vapeur à 20°C (air = 1) : 1.6
Point d'éclaire : -38°C
Temperature d'autonflamme : 206°C
Limites d'explosivité en volume % dans l'air : 2.2-19.7

DONNÉES ENVIRONNEMENTALES

Une concentration élevée dans l'air provoque un déficit en oxygène avec un risque de perte de conscience ou de mort.

Code NFPA: H 2; F 4; R 0.

NOTES

AUTRES INFORMATIONS

ICSC: 0878

© PISSC.CEC. 1993

SULFURE DE DIMETHYLE

La CE de même que le PISSC ou toute presse agissant au nom de la CE ou du PISSC ne sauraient être tenus pour responsables de l'utilisation qui pourrait être faite de ces informations. Cette fiche exprime l'avis du comité de révision du PISSC et peut ne pas toujours refléter les recommandations de la législation nationale en la matière. L'utilisateur est donc invité à vérifier la conformité des fiches avec les prescriptions en usage dans son pays.
ANNEXE E

Diméthylsulfoxyde : fiches INRS et ICSC

(14 pages)
Diméthylsulfoxide

Fiche établie par les services techniques et médicaux de l’INRS
(N. Bonnard, M.-T. Brondeau, M. Falcy, D. Jargot, O. Schneider)

CARACTÉRISTIQUES

UTILISATIONS [1 à 4]
- Solvant pour la polymérisation de l’acrylonitrile et le filage de fibres synthétiques.
- Solvant pour la cellulose, les esters et éthers cellullosiques, les polyuréthanes...
- Solvant pour produits phytopharmaceutiques.
- Solvant d’extraction, notamment dans l’industrie pétrolière.
- Milieu réactionnel de synthèses organiques et de nombreuses réactions.
- Solvant de nettoyage industriel utilisé également dans l’industrie électronique, décapant peintures.
- Autres applications : agent antigel pour fluides hydrauliques, agent de cryoconservation en biologie et médecine, produits pharmaceutiques médicaments vétérinaires.

PROPRIÉTÉS PHYSIQUES [1 à 7]

Le diméthylsulfoxide est un liquide incolore, inodore ou d’odeur légèrement alliée selon la pureté, fortement hygroscopique.

Il est miscible à l’eau en toutes proportions et soluble dans de nombreux solvants organiques (éthanol, acétone, oxyde de diéthyle, hydrocarbures aromatiques...). Il dissout un grand nombre de produits organiques, dont certains polymères et des composés minéraux.

Ses principales caractéristiques physiques sont indiquées dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse moléculaire</td>
<td>78,13</td>
</tr>
<tr>
<td>Point de fusion</td>
<td>18,5 °C</td>
</tr>
<tr>
<td>Point d’ébullition</td>
<td>189 °C</td>
</tr>
<tr>
<td>Densité (DP)</td>
<td>1,10</td>
</tr>
<tr>
<td>Densité de vapeur (air = 1)</td>
<td>1,27</td>
</tr>
<tr>
<td>Pression de vapeur</td>
<td>0,6 hPa à 20 °C</td>
</tr>
<tr>
<td></td>
<td>4 hPa à 50 °C</td>
</tr>
<tr>
<td></td>
<td>45 hPa à 100 °C</td>
</tr>
<tr>
<td>Viscosité</td>
<td>2,14 mPa.s à 20 °C</td>
</tr>
<tr>
<td>Point d’éclair (couvercle fermé)</td>
<td>87 °C</td>
</tr>
<tr>
<td>Température d’auto-inflammation</td>
<td>300-302 °C</td>
</tr>
<tr>
<td>Limites d’explosivité (% en volume dans l’air) : limite inférieure</td>
<td>2,5 %</td>
</tr>
<tr>
<td></td>
<td>28,5 % ; 42 % ; 63 % (variable selon les sources)</td>
</tr>
<tr>
<td>Coefficient de partage octanol/eau : log Pow</td>
<td>-1,35</td>
</tr>
</tbody>
</table>

À 25 °C et 101 kPa, 1 ppm = 3,24 mg/m³.
PROPRIÉTÉS CHIMIQUES [4-6]

Le diméthylsulfoxide est un produit stable dans les conditions normales. Il commence à se décomposer lorsqu'il est chauffé longuement à 150 °C. La décomposition a surtout lieu au-dessus de 190 °C en donnant des produits tels que méthanol, formaldéhyde, disulfure de diméthyle, diméthylsulfone, sulfure de méthyle, disulfures de soufre.

Le diméthylsulfoxide réagit avec de nombreux composés chimiques. Il se décompose violemment au contact des chlorures de cyanure, d'acétyle, de benzyle, de benzène, de benzène, de benzène, de tolyle, de dérivés halogénés du phosphore ou du soufre (chlorure de phosphore, de thio-nyle, trichlorure de phosphore...). La réaction avec les acides perchlorique et périodique peut conduire à des explosions. Le diméthylsulfoxide réagit dangereusement avec l'hydrure de sodium et avec les oxydants puissants tels que les perchlorates, nitrates, permanganate de potassium solide.

Le diméthylsulfoxide n'est pas corrosif à l'état pur, mais certains métaux peuvent être attaqués par le produit en solution aqueuse.

RÉCIPIENTS DE STOCKAGE

Le stockage s'effectue habituellement dans des récipients en acier inoxydable. Le polyéthylène et le polypropylène sont également utilisables pour de petites quantités. Le cuivre, l'acier ordinaire, le zinc, le caoutchouc naturel et certaines matières plastiques sont à éviter.

VALEURS LIMITES D'EXPOSITION PROFESSIONNELLE

Aucune VELP spécifique n'a été établie pour le diméthylsulfoxide en France, en Allemagne, au niveau de l'Union européenne ou par l'ACGIH (États-Unis).

MÉTHODES DE DÉTECTION ET DE DÉTERMINATION DANS L' AIR

La méthode suivante est envisageable, mais elle n'a pas été validée [17]:
- prélèvement par pompage de 10 litres d'air à un débit de 0,1 l/min au travers d'un tube rempli de deux plages de charbon actif (100/50 mg),
- désorption par un mélange de dichlorométhane et de méthanol (95/5),
- dosage par chromatographie en phase gazeuse avec détection par ionisation de flamme.

INCENDIE — EXPLOSION [3, 4]

Le diméthylsulfoxide est un liquide moderément inflammable (point d'éclair : 87 °C) dont les vapeurs peuvent former des mélanges explosifs avec l'air.

Par contact avec certains composés, il peut provoquer incendie et explosions (cf. propriétés chimiques).

Les agents d'extinction préconisés sont le dioxyde de carbone, les poudres et les mousses spéciales. En général, l'eau en jet direct n'est pas recommandée, car elle peut favoriser la propagation de l'incendie. On pourra toutefois l'utiliser sous forme pulvérisée pour étendre un feu peu important ou refroidir les fûts exposés ou ayant été exposés au feu.

En raison de la toxicité des fumées émises lors de la combustion du diméthylsulfoxide, les intervenants qualifiés seront équipés d'appareils de protection respiratoire autonomes isolants et de combinaisons de protection spéciales.

PATHOLOGIE — TOXICOLOGIE [7]

La toxicité générale du diméthylsulfoxide est faible, les effets décrits ont toujours été obtenus lors d'administrations de quantités importantes de cette substance. Cependant, il faut tenir compte de sa capacité à dissoudre de nombreux produits chimiques et à faciliter leur pénétration dans l'organisme (par voie orale ou cutanée).

TOXICOCHIMÉTRIQUE ET MÉTABOLISME

Le diméthylsulfoxide est bien absorbé par la peau et le tractus gastro-intestinal; il se distribue largement dans l'organisme, est transformé dans le foie et les reins et éliminé principalement dans l'urine sous forme inchangée et sous forme de diméthylsulfone.

Chez l'animal

Absorption

Le diméthylsulfoxide (DMSO) est bien absorbé par voie orale et cutanée; la voie inhalatoire n'a pas été testée.

Chez le rat exposé par voie orale ou cutanée au 15S-DMSO (0,55 g/kg [0,5-11 µCi]), la concentration plasmatique atteint son maximum respectivement en 0,5 heure ou 2 heures, puis décèle avec une demi-vie d'environ 6 heures. Chez le singe exposé par voie orale (3 g/kg, dans l'eau de boisson, pendant 14 jours), le plateau sanguin est atteint en 4 jours; la demi-vie d'élimination sanguine après arrêt de l'exposition est d'environ 38 heures.

Distribution

La molécule se distribue largement dans l'organisme avec des niveaux plus importants dans les reins, le foie, la rate, les poumons, le cœur et les testicules. Après 24 heures, la concentration de molécules radiomarquées est minimale dans le plasma et les tissus.

Métabolisme

Le diméthylsulfone est métabolisé principalement dans le foie et les reins; le métabolite principal est la diméthylsulfone (DMSO).
Chez l'homme
Le diméthylsulfoxide se comporte chez l'homme comme chez l'animal :
- absorption : il est bien absorbé par voies orale et cutanée, avec un pic plasmatique atteint en 4 à 8 heures et une demi-vie d'élimination de 20 heures et 11 à 14 heures respectivement. Le passage excrétion, mesuré in vitro à travers la peau humaine, est de 176 g/m²/h ;
- distribution : il est largement distribué dans l'organisme ;
- métabolisation : le pic plasmatique de DMSO₂ est observé entre 72 et 96 heures après exposition et décime avec une demi-vie de 60 à 72 heures ;
- élimination : il est éliminé dans l'urine sous forme inchangée (13 % de la dose cutanée et 51 % de la dose orale) et sous forme de diméthylsulfone (18 % de la dose cutanée et 10 % de la dose orale). L'excrétion urinaire de diméthylsulfoxide débute immédiatement après l'exposition et se poursuit pendant 120 heures ; le métabolite n'apparaît dans l'urine qu'après 20 heures, et on l'y retrouve pendant 20 jours ; une faible proportion (3 %) est exprimée sous forme de sulfure de diméthyle. Aucune élimination fœle n'a été trouvée.
Après une administration répétée par voie orale (0,5 g/kg/j pendant 14 jours), le plateau de concentration sanguine est atteint après 9 jours ; après arrêt de l'exposition, le concentration diminue pendant 72 heures. L'excrétion urinaire du diméthylsulfoxide est linéaire pendant toute l'exposition avec un total de 53,7 % de la dose administrée ; celle du DMSO₂ est exponentielle avec un total de 17,3 % après 20 jours.

TOXICITÉ EXPÉRIMENTALE

Toxicité aiguë
Le diméthylsulfoxide est peu toxique chez l'animal en exposition aiguë.

<table>
<thead>
<tr>
<th>Voie</th>
<th>Espèce</th>
<th>DL₅₀/CL₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orale</td>
<td>Rat</td>
<td>28 300 mg/kg</td>
</tr>
<tr>
<td></td>
<td>Souris</td>
<td>21 400 mg/kg</td>
</tr>
<tr>
<td>Cutanée (immersion corps entier)</td>
<td>Rat</td>
<td>10 000 mg/kg</td>
</tr>
<tr>
<td></td>
<td>Souris</td>
<td>5 000 mg/kg</td>
</tr>
<tr>
<td>Inhalatoire (Mélange d'aérosol et de vapeurs)</td>
<td>Rat</td>
<td>> 5 000 mg/m³/4 h</td>
</tr>
</tbody>
</table>

Tableau 1. DL₅₀/CL₅₀ du diméthylsulfoxide

Les symptômes observés, après administration de doses letales par voie orale, sont ceux d'une atteinte du système nerveux central (ataxie, faiblesse musculaire, baisse de l'activité motrice, bradycardie) ainsi qu'une polyurie. Après administration par inhalation, aucune létalité au signe clinique ne sont observés jusqu'à la concentration de 5 330 mg/m³/h ; au niveau pulmonaire, on note quelques aires d'œdème. Les animaux exhibent une odeur caractéristique d'ail.
Le diméthylsulfoxide est très faiblement irritant pour la peau ou les yeux du lapin (œil climatiqué ou rougeur de la conjonctive, disparaissant en 3 jours). Une instillation oculaire répétée pendant 6 mois ne provoque aucune modification.
Ce n'est pas un sensibilisant cutané pour la souris et le cobaye.

Toxicité subchronique, chronique
Le diméthylsulfoxide a une faible toxicité en exposition répétée ; il induit essentiellement une baisse de la prise de poids et des lésions oculaires.
Des expositions répétées au diméthylsulfoxide de différentes espèces animales par diverses voies ne produisirent qu'une faible toxicité systémique. En dehors d'une baisse de la prise de poids et d'effets hématochimiques discordants selon les études, qui pourraient être secondaires à l'augmentation de la diurèse, l'effet le plus courant, à forte concentration, est une modification du potentiel réfractaire de la papille. Cette modification est observée, après exposition orale, à des doses de 3 000 mg/kg/j pendant 18 mois chez le rat et de 1 000 mg/kg/j pendant 2 ans chez le chien ; après exposition cutanée, le même effet est observé à 1 000 mg/kg/j pendant 30 jours chez le lapin, 118 jours chez le chien et 18 semaines chez le porc. Le singe, exposé à des doses orales allant jusqu'à 9 000 mg/kg/j pendant 18 mois, sembait réfractaire aux effets oculaires du diméthylsulfoxide. La NOAEL par voie orale et cutanée est estimée à 1 000 mg/kg/j, en excluant les effets oculaires. La NOAEC par inhalation, pour une exposition du rat de 90 jours, peut être établie à 1 000 mg/m³ pour l'irritation du tractus respiratoire et à 2 800 mg/m³ pour la toxicité systémique.

Effets génotoxiques
Les tests, réalisés in vitro et in vivo, ont montré, en général, des résultats négatifs. Quelques résultats positifs sont obtenus à forte concentration.
Le DMSO est largement utilisé comme solvant dans les tests de génotoxicité in vitro.

Effets cancérogènes

Il n'y a pas d'étude standardisée du potentiel cancérogène du diméthylsulfoxide chez l'animal. Des études d'initiation/promotion, par voie orale chez le rat, n'ont pas montré de potentialisation de l'effet cancérogène du diméthylbenzanthracène.

L'administration par voie cutanée, chez la souris, d'un cancérigène solubilisé dans le diméthylsulf oxide, utilisé comme solvant, donne des résultats contradictoires:
- un doublage du nombre de tumeurs cutanées provoquées par le benz(a)pyrène en comparaison avec l'acétone utilisée comme véhicule;
- pas d'augmentation des tumeurs dues au diméthylbenz(a)anthracène sans étape de promotion ; une étape de promotion avec du phorbol myristate dans le diméthylsulf oxide réduit la fréquence des tumeurs cutanées;
- une diminution du temps de latence d'apparition des tumeurs cutanées déclenchées par le méthylcholanthrène (0,5 %), par comparaison avec le benzène utilisé comme solvant.

Chez le rat, au contraire, il provoque une augmentation du temps de latence et une baisse du nombre de papillomes cutanés occasionnés par le diméthylbenz(a)anthracène.

Effets sur la reproduction

Le diméthylsulf oxide, administré par voie orale, n'est pas toxique pour la fertilité ou le développement des animaux à des doses non toxiques pour les mères.

<table>
<thead>
<tr>
<th>Test</th>
<th>Activation métabolique</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ames : Salmonella typhimurium TA97, 98, 100, 1535, 1537, 1538</td>
<td>+ 50 de rat et de hamster</td>
<td>Négatif</td>
</tr>
<tr>
<td>Induction de prophage : Escherichia coli WP2, (λ)</td>
<td>+ 50</td>
<td>Positif (≥ 0,62 %)</td>
</tr>
<tr>
<td>SOS chromosomique : Escherichia coli</td>
<td>– 50</td>
<td>Négatif</td>
</tr>
<tr>
<td>Aberrations chromosomiques : cellules ovariennes de hamster chinook</td>
<td>+ 50</td>
<td>Négatif</td>
</tr>
<tr>
<td>Échanges entre chromatides sœurs : cellules ovariennes de hamster chinook</td>
<td>+ 50</td>
<td>Négatif</td>
</tr>
<tr>
<td>Gain de chromosome pendant la méiose ou la mèiose : Saccharomyces cerevisiae</td>
<td>Négatif</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Dose</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombinaison mitotique : Drosophila melanogaster</td>
<td>12,8-129 mM</td>
<td>Négatif</td>
</tr>
<tr>
<td>Mutation létale récessive liée au sexe et perte du chromosome sexuel : Drosophila melanogaster</td>
<td>0,2-10 μg/animal, inj. intra-abdominale</td>
<td>Négatif</td>
</tr>
<tr>
<td>Micronoyaux : moelle osseuse de rat</td>
<td>0-200-1000-5000 mg/kg, inaperiténale (i.p.), 5 inj.</td>
<td>Négatif</td>
</tr>
<tr>
<td>moelle osseuse de souris</td>
<td>5 mg/kg, i.p. ou 2000 mg/kg, i.p.</td>
<td>Négatif</td>
</tr>
<tr>
<td>Cassure simple brin de l'ADN : souris (foie, reins, poumon, rate, testicules, cerveau)</td>
<td>1950-5800 mg/kg, i.p.</td>
<td>Faiblement positif dans les reins (forte dose)</td>
</tr>
<tr>
<td>Aberrations chromosomiques : moelle osseuse de rat</td>
<td>1-10-50-100 %, 5 inj. i.p.</td>
<td>Positif (cassures chromatidiques)</td>
</tr>
<tr>
<td>Échanges entre chromatides sœurs : moelle osseuse de souris gestante</td>
<td>2,5-10 ml/kg, inj. au 13e jour de gestation</td>
<td>Négatif</td>
</tr>
<tr>
<td>foie fœtal de souris</td>
<td>5000-7500-10000 mg/kg, inj. 2 inj.</td>
<td>Négatif</td>
</tr>
</tbody>
</table>

Tableau II. Effet génotoxique du diméthylsulfoxide

Fertilité

Par voie orale, le diméthylsulf oxide n'a aucune action sur la fertilité chez le rat (0-100-300-1000 mg/kg/j, avant et pendant l'accouplement, pendant la gestation et jusqu'au 23e jour post-partum). Par inhalation (2 800 mg/m³, 90 j), aucun effet n'a été observé sur le cycle oestral, la morphologie et les comptages spermatoïdes ou les organes reproducteurs du rat.

Des études de toxicité chronique chez le rat, le chien ou le singe, par voie orale ou cutanée, n'ont pas mis en évidence de lésion des organes reproducteurs.

Développement

Par voie orale, chez le rat (gavage, 200-1 000-5000 mg/kg/j, 6 h/j, du 6e au 15e jour de gestation), le diméthylsulf oxide induit une légère toxicité maternelle, objectivée par une baisse de la prise de nourriture et de poids, à la plus forte dose et chez le fœtus, à cette même dose, une légère baisse de poids associée à un retard d'ossification des côtes qui sont probablement liés à la toxicité maternelle. Chez le lapin (gavage, 100-300-1000 mg/kg/j du 7e au 28e jour de gestation), la toxicité maternelle n'est pas accompagnée de fœtotoxicité. Aucun effet tératogène n'a été montré par cette voie.

L'administration, par voie intrapéritonéale, de doses massives pendant la gestation entraîne, chez le rat (5000-8000-10000 mg/kg/j, du 6e au 12e jour de gestation) et la souris (5000-8000-10000-12000 mg/kg/j, du 6e au 12e jour de gestation) des malformations fœtales (paroi abdominale, système nerveux central, pattes, mâchoire et queue).
<table>
<thead>
<tr>
<th>Voie</th>
<th>Espèce</th>
<th>NOAEL pour les mâles</th>
<th>NOAEL pour les femelles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>Rat</td>
<td>1000 mg/kg/j</td>
<td>1000 mg/kg/j</td>
</tr>
<tr>
<td></td>
<td>Lapin</td>
<td>300 mg/kg/j</td>
<td>1000 mg/kg/j</td>
</tr>
<tr>
<td>Intraperitoneale</td>
<td>Rat, Souris</td>
<td>5000 mg/kg/j</td>
<td>5000 mg/kg/j</td>
</tr>
</tbody>
</table>

Tableau III: Doses sans effet adverse observé pour la reproduction.

TOXICITÉ SUR L'HOMME

Le diméthylsulfoxide a fait l'objet de nombreuses études chez l'homme en raison de son emploi comme solvant de médicaments ou comme médicament. Des effets aigus ou chroniques (neurologiques, digestifs et hématologiques) ont été observés à forte dose lors de ces utilisations, mais pas lors d'expositions professionnelles.

Toxicité aiguë [8 à 10]

En application cutanée, une irritation locale avec sécheresse, érythème est toujours observée, avec occasionnellement une action urticante et vasodilatatrice résultant de la libération d'histamine par dégranulation mastocytaire. Un cas d'intoxication aiguë a été rencontré chez une femme ayant appliqué sur sa peau, en deux fois, à 1 heure et demie d'intervalle, une dose totale estimée à 1,8 g/kg et qui a développé en 24 heures une asthénie, une cyanose ainsi qu'une dyspnée. Les examens complémentaires ont révélé une sulfémie/obitémie élevée, l'ensemble des signes a été réversible en 3 jours.

Une étude expérimentale humaine sur les effets aigus cutanés induits par l'instillation de diméthylsulfoxide a montré qu’aux concentrations supérieures à 50 % il induit une vasodilatation locale et des sensations de brûlures cutanées. Ce phénomène n'est pas retrouvé pour des concentrations de 10 % et 30 %.

Toxicité subaiguë, chronique [8 à 10]

En dehors des effets locaux, des signes généraux ont été décrits soit après administration cutanée répétée de médicaments, soit à la suite d'une exposition cutanée chez des volontaires (1 g/kg pendant 14 ou 90 jours). Il s'agit principalement de troubles neurologiques (céphalées, céphalées, sensation de douleur cutanée) et digestifs (nausées, gorge sèche, vomissements, diarrhée, constipation, perte d'appétit et odeur alliée de l'haleine). Au niveau hématologique, une eosinophilie est fréquemment constatée.

De façon plus exceptionnelle, notamment après traitement par injection, une encéphalopathie et une désorientation tempore-spatiale sont rapportées, ainsi qu'une altération de la conduite nerveuse au niveau des petites fibres périphériques, une diminution de la réponse centrale à des stimuli classiques (douleur) et une augmentation du seuil de douleur.

Des signes grippeux avec dyspnée et toux et une sensibilité aux infections sont notés au cours de traitements prolongés. Par contre, aucune atteinte rénale ou hépatique n'a été décrite.

L'application cutanée répétée de diméthylsulfoxide induit de façon assez fréquente des effets locaux : prurit, démangeaison, azème, érythème, exfoliation ou hyperpigmentation localisée au site d'application.

Les atteintes oculaires (cataracte, myopie...), décrites chez l'animal et qui ont conduit en 1965 la FDA (Food Drug Administration) à interdire aux États-Unis l'utilisation du diméthylsulfoxide en thérapeutique, n'ont jamais été constatées chez l'homme même après injections intraveineuses répétées.

Effets génotoxiques, cancérogènes, effets sur la reproduction Il n'existe aucune donnée publiée.

RÉGLEMENTATION

HYGIÈNE ET SÉCURITÉ DU TRAVAIL

1. **Mesures de prévention des risques chimiques**
 - Circulaire DRT n° 12 du 24 mai 2006 (non parue au JO).

2. **Aération et assainissement des locaux**
 - Circulaire du ministère du Travail du 9 mai 1985 (non parue au JO).

3. **Prévention des incendies et des explosions**

4. **Maladies de caractère professionnel**
 - Articles L. 461-6 et D. 461-1 et annexe du Code de la sécurité sociale : déclaration médicale de ces affections.

5. **Maladies professionnelles**
 - Article L. 461-4 du Code de la sécurité sociale : déclaration obligatoire d'emploi à la Caisse primaire d'assurance maladie et à l'inspection du travail ; tableau n° 84.

6. **Classification et étiquetage**
 a) du diméthylsulfoxide pur :
 - Arrêté du 20 avril 1994 modifié (JO du 8 mai 1994) ou directive 67/548/CEE.
 b) des mélanges (préparations) contenant du diméthylsulfoxide :
PROTECTION DE LA POPULATION
- Article L. 5132.2 du Code de la santé publique.

PROTECTION DE L'ENVIRONNEMENT
Installations classées pour la protection de l'environnement, Paris, imprimerie des Journaux officiels, brochure n° 1001 :
- n°1431 : liquides inflammables, fabrication industrielle ;
- n°1432 : liquides inflammables, stockage en réservoirs manufacturés ;
- n°1433 : liquides inflammables, installations de mélange ou d'emploi ;
- n°1434 : liquides inflammables, installations de remplissage ou de distribution.

TRANSPORT
Se reporter éventuellement aux réglementations suivantes.

1. Transport terrestre national et international (route, chemin de fer, voie de navigation intérieure)
 - ADR, RID, ADNR : le diméthylsulfoxide n'est pas nommément désigné dans ces textes.

2. Transport par air
 - IATA

3. Transport par mer
 - IMDG

RECOMMANDATIONS

I. AU POINT DE VUE TECHNIQUE

Stockage
- Stocker le diméthylsulfoxide dans des locaux bien ventillés, à l'abri de toute source d'ignition ou de chaleur (flammes, étincelles, rayons solaires...) et à l'écart des oxydants puissants et autres produits incompatibles (cf. propriétés chimiques). Le sol de ces locaux sera incombustible, imperméable et formera couverte de rétention afin qu'en cas d'écoulement accidentel le liquide ne puisse se répandre au-dehors.
- Mettre le matériel électrique en conformité avec la réglementation en vigueur.
- Interdire de fumer.
- Conserver dans des récipients soigneusement fermés et correctement étiquetés. Reproduire l'étiquetage en cas de fractionnement des emballages.

Manipulation
Les prescriptions relatives aux locaux de stockage sont applicables aux ateliers où est manipulé le diméthylsulfoxide. En outre :
- Instruire le personnel des risques présentés par ce produit, des précautions à observer et des mesures à prendre en cas d'accident.
- Ne pas fumer, boire ou manger sur les lieux de travail.
- Eviter l'inhalation de vapeurs ou d'aérosols. Effectuer en appareils clos toute opération industrielle qui s'y prête. Prévoir une aspiration des vapeurs et aérosols à leur source d'émission, ainsi qu'une ventilation générale des locaux. Prévoir également des appareils de protection respiratoire, leur choix dépend des conditions de travail. Si un appareil filtrant peut être utilisé, il doit être muni d'un filtre de type A. Pour les interventions d'urgence, le port d'un appareil respiratoire autonome isolant est nécessaire.
- Éviter le contact du produit avec la peau et les yeux. Mettre à la disposition du personnel des vêtements de protection, des gants (par exemple en caoutchouc butyle, en polychloropréne ; les matières telles que caoutchouc naturel, polyéthylène de vinyle, nitrile, Viton® sont déconseillées [18]) ainsi que des lunettes de sécurité. Ces effets seront maintenus en bon état et nettoyés après usage.
- Ne pas procéder à des travaux sur et dans les cuves et réservoirs contenant ou ayant contenu du diméthylsulfoxide sans prendre les précautions d'usage [19].
- Éviter les rejets de solvant dans l'environnement.
- En cas de fuite ou de déversement accidentel, récupérer le produit en l'expédition avec un matériau absorbant non combustible, puis le déverser à grande eau la surface ayant été souillée. Si le déversement est important, évacuer le personnel en ne fassant intervenir que des opérateurs entraînés, munis d'un équipement de protection approprié.
- Conserver les déchets dans des récipients spécialement prévus à cet effet. Éliminer les déchets dans les conditions autorisées par la réglementation (incinération contrôlée, par exemple).

II. AU POINT DE VUE MÉDICAL
- L'aptitude d'un sujet à la manipulation de DMSO sera déterminée en prenant en compte les différents produits manipulés dont la cristalisation dans l'organisme pourrait être favorisée par le diméthylsulfoxide. De même, en cas d'accident, il faudra tenir compte des éventuels produits dissous dans ce solvant.
- A l'embauchage et lors des visites ultérieures, rechercher plus particulièrement une atteinte cutanée et oculaire. Aucun examen complémentaire n'est indispensable.
- En cas de projection cutanée, laver immédiatement à grande eau. Retirer les vêtements souillés. Si des signes locaux ou généraux apparaissent, consulter un médecin.
- En cas de projection oculaire, laver immédiatement à l'eau pendant 15 minutes, si la concentration est supérieure à 50 % consulter un spécialiste.
- En cas d'inhalation de fortes concentrations, retirer le sujet de la zone contaminée. Avertir un médecin en cas de troubles.
- En cas d'ingestion, avertir un médecin en cas de troubles. Une hospitalisation pourra être décidée pour une surveillance et un traitement symptomatique.
Fiches internationales de sécurité chimique

DIMETHYLSULFOXYDE

ICSC: 0459

N° CAS : 67-68-5
N° RTECS : PV6210000
N° ICSC : 0459

<table>
<thead>
<tr>
<th>TYPES DE RISQUES/EXPOSITIONS</th>
<th>RISQUES/SYMPTOMES AIGUS</th>
<th>PREVENTION</th>
<th>PREMIER SECOURS/AGENTS D'EXTINCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCENDIE</td>
<td>Combustible.</td>
<td>PAS de flammes nues.</td>
<td>Poudre, eau pulvérisée, mousse, dioxyde de carbone, (voir Notes).</td>
</tr>
<tr>
<td>EXPLOSION</td>
<td>Au-dessus de 89°C, des mélanges air/vapeur explosifs peuvent se former.</td>
<td>Au-dessus de 89°C, système en vaste clos, ventilation et équipement électrique protégés contre les explosions.</td>
<td>En cas d'incendie: maintenir les flûts, etc., à basse température en les arrosant d'eau.</td>
</tr>
<tr>
<td>CONTACT PHYSIQUE</td>
<td></td>
<td>EVITER LA FORMATION DE BROUILLARDS! OBSERVER UNE HYGIENE STRICTE!</td>
<td></td>
</tr>
<tr>
<td>• YEUX</td>
<td>Rougeur. Troubles de la vue.</td>
<td>Lunettes à caques.</td>
<td></td>
</tr>
</tbody>
</table>

DEVERSEMENTS & FUITES

STOCKAGE

pour éviter l'absorption cutanée.
(Protection individuelle spéciale: appareil de protection respiratoire à filtre A/P2 pour vapeurs organiques et poussières nocives).

VOIR IMPORTANTES INFORMATIONS AU DOS

ICSC: 0459

Préparé dans le cadre de la coopération entre le Programme International sur la Sécurité Chimique et la Commission Européenne (C) 1993

Fiches internationales de sécurité chimique

DIMETHYLSULFOXYDE

<table>
<thead>
<tr>
<th>ASPECT PHYSIQUE; APPARENCE:</th>
<th>LIQUIDE INCOLORE, HYGROSCOPIQUE.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DANGERS PHYSIQUES:</th>
<th>La vapeur est plus lourde que l'air et peut se propager au niveau du sol; inflammation à distance possible.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DANGERS CHIMIQUES:</th>
<th>La substance se décompose en chauffant fortement au-dessus de 150°C ou en brûlant, produisant des fumées toxiques. Réagit violemment avec les oxydants forts comme les perchlorates.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LIMITES D'EXPOSITION PROFESSIONNELLE (LEP):</th>
<th>Pas de TLV établie.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>VOIES D'EXPOSITION:</th>
<th>La substance peut être absorbée par l'organisme par inhalation de ses aérosols, à travers la peau et par ingestion. Également sous forme de vapeur!</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RISQUE D'INHALATION:</th>
<th>Aucune indication ne peut être donnée sur la vitesse à laquelle une concentration dangereuse dans l'air est atteinte lors de l'évaporation de cette substance à 20°C.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EFFETS DES EXPOSITIONS DE COURTE DURÉE:</th>
<th>La substance est irritante pour les yeux, la peau et les voies respiratoires. L'exposition à des concentrations élevées de la substance peut provoquer une diminution de conscience.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EFFETS DES EXPOSITIONS PROLONGÉES OU REPÉTÉES:</th>
<th>Un contact répété ou prolongé avec la peau peut causer une dermatite. Un contact répété ou prolongé peut causer une sensibilisation cutanée. Le substance peut avoir des effets sur le foie, entraînant une insuffisance fonctionnelle.</th>
</tr>
</thead>
</table>

| PROPRIÉTÉS PHYSIQUES | Point d'ébullition : 189°C
Point de fusion : 18.5°C
Densité relative (eau = 1) : 1.1014
Solubilité dans l'eau : miscible
Tension de vapeur à 20°C : 59.4 Pa |
|---------------------|---|

| Densité de vapeur relative (air = 1) : 2.7
Point d'éclair : 89°C c.f.
Température d'auto-inflammation : 215°C
Limites d'explosivité en volume % dans l'air : 2.6-42.0
Coefficient de périlage octanol/eau tel que log Poc : -1.35 (calculé) |
|-----------------------------|--|

<table>
<thead>
<tr>
<th>DONNÉES ENVIRONNEMENTALES</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>NOTES</th>
<th>Une attention spéciale doit être portée aux matières toxiques présentes dans le DMSO en raison de l'augmentation de l'absorption par la peau.</th>
</tr>
</thead>
</table>

Code NFPA: II; F; R 0

AUTRES INFORMATIONS
ICSC: 0459

DIMETHYLSULFOXIDE

© PISSC, CE, 1993

<table>
<thead>
<tr>
<th>NOTICE LEGALE IMPORTANTE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>La CE de même que le PISSC ou toute personne agissant au nom de la CE ou du PISSC ne sauraient être tenues pour responsables de l'utilisation qui pourrait être faite de ces informations. Cette fiche exprime l'avis du comité de révision du PISSC et peut ne pas toujours refléter les recommandations de la législation nationale en la matière. L'utilisateur est donc invité à vérifier la conformité des fiches avec les prescriptions en usage dans son pays.</td>
</tr>
</tbody>
</table>

ANNEXE F

Toluène : fiches INRS et ICSC

(16 pages)
FICHE TOXICOLOGIQUE

Toluène

Fiche établie par les services techniques et médicaux de l'INRS
(N. Bonnard, M.-T. Brondeau, D. Jargout, D. Lafon, O. Schneider)

CARACTÉRISTIQUES

Utilisations [1 à 3]

- Intermédiaire de synthèse pour la fabrication de nombreux produits : benzène et xylènes, phénol, nitrotoluène, disuccinamate de toluène (TDI), chlorure de benzyle, benzaldéhyde, acide p-toluenesulfonique, vinyltoluène, etc.
- Solvant pour peintures, vernis, encres d'imprimerie, colles, cires, etc.; solvant d'extraction dans l'industrie cosmétique, l'industrie pharmaceutique.

Par ailleurs, le toluène est utilisé, non isolé, en mélange avec le benzène et les xylènes, comme additif de carburants pour améliorer l'indice d'octane. Il est présent dans certains produits pétroliers.

Propriétés physiques [1, 2, 3, 5]

Le toluène est un liquide incolore, mobile, d'odeur aromatique.

Il est pratiquement insoluble dans l'eau (0,535 g/l à 25 °C), miscible à de nombreux solvants organiques (acétate, oxyde de diéthyle, chloroforme, éthanol...), soluble dans l'acide acétique glacial.

C'est un excellent solvant pour un grand nombre de substances naturelles ou de synthèse (huiles, graisses, résines...).

Ses principales caractéristiques physiques sont les suivantes:

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse molaire</td>
<td>92,14</td>
</tr>
<tr>
<td>Point de fusion</td>
<td>–95 °C</td>
</tr>
<tr>
<td>Point d'ébullition</td>
<td>110,6 °C</td>
</tr>
<tr>
<td>Densité (D25)</td>
<td>0,867</td>
</tr>
<tr>
<td>Densité de vapeur (air = 1)</td>
<td>1,14</td>
</tr>
<tr>
<td>Pressions de vapeur</td>
<td>3 kPa à 20 °C, 3,8 kPa à 25 °C</td>
</tr>
<tr>
<td>Point d'éclair (en coupelle fermée)</td>
<td>4 °C</td>
</tr>
<tr>
<td>Température d'auto-inflammation (données variables dans la littérature : la valeur la plus basse est de 48°C)</td>
<td>535 °C</td>
</tr>
<tr>
<td>Coefficient de partage (octanol/eau) : Log Pow</td>
<td>2,65</td>
</tr>
<tr>
<td>Limites d'explosivité (air % en volume)</td>
<td></td>
</tr>
<tr>
<td>limite inférieure</td>
<td>2,2%</td>
</tr>
<tr>
<td>limite supérieure</td>
<td>7,1%</td>
</tr>
</tbody>
</table>

À 20 °C et 101.3 kPa, 1 ppm = 3,83 mg/m³.
Propriétés chimiques [1, 2, 3]

Le toluène est un produit stable dans les conditions normales d'utilisation.

Il réagit avec de nombreux composés organiques. Les réactions peuvent être violentes avec des produits tels que l'acide nitrique concentré, le dichlorure de soufre, le trifluorure de bromure, des mélanges acide nitrique/acide sulfonique. Le toluène peut former des mélanges explosifs avec le tétrachloréthane.

Il peut réagir vivement avec les oxydants forts (risque d'incendie et d'explosion).

Il ne corrode pas les métaux usuels. Par contre, certaines matières plastiques subissent des dégradations au contact du toluène : caoutchouc naturel, caoutchouc nitrile, polychloroprénone, polyéthylène, PVC notamment, mais pas les polyméras fluoriés.

Récipients de stockage

Le stockage du toluène s'effectue généralement dans des récipients métalliques.

Le verre est également utilisé pour de petites quantités ; les bombes seront protégées par une enveloppe plus résistante, convenablement ajustée.

Les emballages en matière plastique (à l'exception des polymères fluorés) sont déconseillés.

Valeurs limites d'exposition professionnelle

Des valeurs limites d'exposition professionnelle contrai-

*grantes dans l'air des locaux de travail ont été établies en France pour le toluène (art. R. 231-58 du Code du tra-

vail):

- 50 ppm soit 192 mg/m3 (8 h)
- 100 ppm soit 384 mg/m3 (court terme)

Autres VLEP:

<table>
<thead>
<tr>
<th>PAYS</th>
<th>VLEP Moyenne pondérée sur 8 heures</th>
<th>VLEP Court terme (15 minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linon européen</td>
<td>ppm</td>
<td>mg/m3</td>
</tr>
<tr>
<td>États-Unis (ACGI)</td>
<td>50</td>
<td>192</td>
</tr>
<tr>
<td>Allemagne (valeur MAX)</td>
<td>50</td>
<td>192</td>
</tr>
</tbody>
</table>

Méthodes de détection et de détermination dans l'air

- Prélèvement au travers d'un tube rempli de charbon actif ou d'un autre adsorbant (Anasorb® 747). Dosage par chromatographie en phase gazeuse avec détection par ionisation de flamme après adsorption au sulfate de carbone seul [24, 28] ou en mélange avec du N,N-diméthylformamide [26].

- Prélèvement au travers d'un tube à adsorption thermique rempli d'adsorbant solide Chromosorb ou Tenax TA. Dosage par chromatographie en phase gazeuse avec détection par ionisation de flamme après adsorption thermique [29].

- Utilisation d'appareils à réponse instantanée équipés des tubes réactifs colorimétriques Draeger (Toluene 6/5, 50/a, Castec (Toluene 122 et 122L) ou MSA (101-5) pouvant couvrir différentes fractions de la gamme (1-1 000 ppm).

Incendie – Explosion [1, 2]

Le toluène est un liquide très inflammable (point d'éclair en cuveille fermée = 4 °C). Les vapeurs sont plus denses que l'air. Elles peuvent former des mélanges explosifs avec l'air.

En cas d'incendie, les agents d'extinction préconisés sont le dioxyde de carbone, les poudres chimiques et les mousses spéciales.

L'eau n'est pas recommandée ; on pourra toutefois l'utiliser sous forme pulvérisée pour étendre un feu important.

Refroidir à l'aide d'eau pulvérisée les fûts exposés ou ayant été exposés au feu.

Les intervenants, qualifiés, seront équipés d'appareils de protection respiratoire isolants autonomes et de combinaisons de protection spéciales.

Pathologie – Toxicologie [1]

Toxicokinétique – Métabolisme [1, 6]

Le toluène suit un métabolisme comparable chez l'homme et l'animal : il est bien absorbé par les tractus gastrointesti-

nal et respiratoire et, à un degré moindre, par voie cuta-

nne ; il se distribue dans les tissus riches en lipides, en particu-

lier le cerveau ; il est éliminé tel quel dans l'air expiré et, après transformation, dans l'urine, majoritairement sous forme d'acide hippurique.

Absorption

Chez l'homme et l'animal, l'absorption respiratoire est rapide, le toluène apparaît dans le sang après 10 à 15 minutes d'exposition, avec une forte corrélation, pendan-

t et après l'exposition, entre la concentration alvéolaire et la concentration sanguine. L'absorption (environ 50 % de la concentration) est fortement influencée par le taux de ventilation pulmonaire. Chez le rat, les pics sanguan et cérébral sont atteints après 53 et 58 minutes respectivement.

Le toluène est absorbé complètement par le tractus gastrointestinale de l'homme et du rat avec, chez ce dernier, une vitesse inférieure à l'absorption pulmonaire : le pic sanguin est atteint après 2 heures.

Il est absorbé lentement à travers la peau humaine (14 à 23 mg/m2/h) avec des variations individuelles impor-
tantes. Chez l’animal, le taux de pénétration cutanée est faible pour le toluène liquide et pratiquement inexistant pour la forme vapeur (4,5 µg/cm²/h pour la souris nue exposée à 1 000 ppm). Sur la peau du rat, in vitro, la pénétration est de 0,78 µg/cm²/min.

Distribution
Dans le sang, le toluène est réparti entre les globules rouges, où il est fixé à l’hémoglobin, et le sérum avec une partition 1:1 chez l’homme et 1:2 chez le rat.

Le toluène se distribue dans les tissus riches en lipides et fortement vasculaires comme le cerveau, en particulier la matière blanche, la moelle osseuse, la moelle épinière, le foie, le tissu adipeux et les reins. La concentration dans le cerveau semble plus importante que dans le sang ; le tissu adipeux joue le rôle de réservoir. Le toluène passe aisément la barrière placentaire du rat, sa concentration dans le foetus est environ 75 % de celle du sang maternel. Il est sécrété dans le lait maternel chez l’homme et l’animal.

Métabolisme
Le toluène (80 % de la dose absorbée) est oxydé dans le foie par les mono-oxygénases à cytochrome P450 (CYP2E1, CYP2B6, CYP2C8, CYP3A2, et CYP1A1), en alcool benzylique, benzaldéhyde puis acide benzoïque qui est conjugué avec la glycine, pour former l’acide hippurique (83-94 % des métabolites urinaires), ou avec l’acide glucuronique, pour former le benzyldigluconuride (3 à 9 % des métabolites urinaires). Une faible portion (environ 1 %) est oxydée en or-tho-, méta- et para-cresol qui sont conjugués, avec des sulfates ou l’acide glucuronique (voir figure 1). Les acides S-benzylmercapturate et S-p-tolylmercapturate sont des métabolites urinaires mineurs, identifiés chez l’homme.

Le toluène, à partir de 1 000 ppm chez le rat, est induisant des enzymes hépatiques à cytochrome P450 de son propre métabolisme.

Élimination
Chez l’homme, l’élimination sanguine du toluène suit une courbe triphasique avec des demi-vies d’environ 2 min, 30 min et 3,5 h. L’exposition à de fortes concentrations provoque l’apparition d’une 4e phase, de demi-vie 20 à 90 h, qui correspond à l’élimination du toluène stocké dans les tissus adipeux. Chez le rat, la courbe d’élimination sanguine est biphasique avec des demi-vies de 6 et 50 min. L’élimination du toluène stocké dans les tissus adipeux est beaucoup plus rapide que chez l’homme.

Chez l’homme comme chez l’animal, le toluène est éliminé dans l’air expiré sous forme inchangée (10-20 %) et dans l’urine (80 %) sous forme métabolisée (acide hippurique 60-70 %, benzoxyglycuronide (10-20 %), acides mercapturiques ou cresols conjugués). Une très faible quantité (0,06 %) du toluène absorbé par inhalation est éliminée sous forme inchangée dans l’urine.

Chez le rat, exposé par inhalation, une petite quantité (< 2 %) de la dose absorbée est éliminée par la bile dans les intestins où elle est réabsorbée ; de ce fait, les fèces ne contiennent que des quantités négligeables de toluène ou de ses métabolites.

L’alcool éthylique inhibe la majorité des voies métaboliques du toluène provoquant une diminution de l’excrétion d’acide hippurique et une augmentation de l’élimination de toluène inchangé dans l’air exhalé. Une coexposition toluène/xylène provoque, par compétition métabolique, une augmentation des concentrations sanguines et cérébrales de toluène.

Surveillance biologique de l’exposition [20]

D’autres dosages sont également décrits : toluène dans les urines en fin de poste ou dans l’air expiré, acide S-benzylmercapturate dans les urines. Leur caractéristiques sont indiquées dans la base de données Biotox [20].

TOXICITÉ EXPÉRIMENTALE

Toxicité aiguë [3, 5 à 7]
Le toluène a une faible toxicité aiguë ; sa cible première est le système nerveux central. Il est irritant pour la peau, les yeux et le système respiratoire.

La CL50 chez le rat est de 28,1 mg/l/4 h (7 500 ppm/4 h) ou 4 618 mg/l/6 h et chez la souris 19,9 à 27,9 mg/l/4 h (5 308 / 4 400 ppm/4 h) ou 5 320 mg/l/7 h ; chez le rat, la DL50 orale est de 3 300 à 7 400 mg/kg et la DL50 cutanée, le lapin, est de 12 400 mg/kg.

Le rat et la souris, les symptômes initiaux (hyperactivité, irritation des membranes muqueuses, avec écoulement nasal et larmoyant, et des voies respiratoires supérieures, avec augmentation de la fréquence respiratoire) sont suivis de nausée, altération de la fonction cognitive, perte d’équilibre et modifications neurochimiques ; les animaux meurent par arrêt respiratoire suite à une dépression profonde du système nerveux central. À des concentrations supérieures à 2 000 ppm, une forte corrélation a été montrée entre l’intensité de cette dépression et le taux de toluène dans le cerveau.

On note aussi des modifications hémotologiques (baissé du nombre de leucocytes et augmentation de l’hématocrite, du taux de glucose et de la résistance des érythrocytes à la lyse chez le rat exposé à 2 500 ppm) et hépatiques (augmentation de poids du foie, augmentation des enzymes hépatiques impliqués dans le métabolisme du toluène chez le rat, la souris et le lapin exposés à 795 ppm).

Le toluène est irritant pour le peau du lapin, de la souris et du cobaye. La sévérité de l’irritation cutanée induite chez le lapin augmente avec le temps jusqu’à 72 h (érythème modéré et odeur légère) sans reversibilité à 7 jours [8a].

Il est légèrement irritant pour l’œil du lapin, rougit de la conjonctive et chemosens apparaissent dans les 72 h et persistent pendant 24 h ; le rinçage après 4 et 30 secondes ne modifie pas l’intensité de l’irritation [8b].

Le toluène est irritant pour le tractus respiratoire à forte concentration ; chez la souris, la RD50 est de 12 650 à 19 875 mg/m³ (3 373 à 5 300 ppm) [10, 11].

Il n’est pas sensibilisant pour le cobaye (test de maximisation).

Subchronique et chronique [3, 5 à 7]
En exposition prolongée ou répétée, le toluène provoque, chez le rat et le souris, une augmentation de poids de nombreux organes, une modification du taux de neurotrans-
metteurs, une neurotoxicité au niveau de l'hippocampe et du cervelet et une perte auditive.

Chez le rat, une exposition par inhalation de 15 semaines provoque, à partir de 1 250 ppm, une augmentation du poids des reins et du foie et, à partir de 2 500 ppm, une augmentation du poids corporel, cérébral, cardiaque, pulmonaire et testiculaire, ainsi qu'une dyspnée et une étatique. Dans le foie, le toluène (1 600 ppm, 8 h/j, 6 mois) induit une hypertrophie des zones centrolobulaires avec prolifération, en fonction de la dose, du réticulum endoplasmique dans les hépatocytes. Après une exposition pendant 2 ans, il se produit, à partir de 1 500 ppm, une inflammation de la muqueuse nasale avec érosion de l'épithélium olfactif, métaplasie et dégénérescence de l'épithélium respiratoire. La NOAEL (concentration sans effet toxique observé) est 625 ppm pour une exposition de 6,5 h/j, 5 j/sam pendant 15 semaines à 300 ppm pendant 2 ans.

Par voie orale, le toluène induit, chez le rat et la souris, à des concentrations supérieures à 2 500 mg/kg/j, piloérection, larriements et salivation excessifs, prostration, hypoactivité, ataxie, augmentation du poids relatif et absolu du foie, des reins et du cœur. La NOAEL par voie orale, pour le rat et la souris, est 625 mg/kg/j pendant 13 semaines.

Dans le cerveau du rat, il provoque des modifications neurologiques (nécrose neuronale dans l'hippocampe et le cervelet à des concentrations inhalatoires supérieures ou égales à 1 500 ppm, ou orales supérieures ou égales à 1 250 mg/kg/j) et neurochimiques (modifications des taux de noradrénaline, dopamine et 5-hydroxytryptamine dans diverses régions cérébrales à des concentrations supérieures ou égales à 500 ppm).

Le toluène occasionne, chez le rat, par voie inhalatoire, orale ou sous-cutanée, une perte auditive irréversible mise en évidence par une diminution de la réponse au bruit, des modifications électrophysiologiques et des lésions morphologiques des cellules ciliées externes de la cochlée. Les effets morphologiques et fonctionnels sont effectifs après une exposition de 5 h à 1 400 ppm et s'intensifient avec le temps [12a].

Mode d'action

Les effets neurologiques, comme la dépression du système nerveux central et la narcose, découlent, au moins
en partie, d’interactions réversibles entre le toluène (lui-même et non ses métabolites) et les composants membranaires (lipides et protéines) des cellules nerveuses cérébrales; le prératiment des rats par le phénobarbital augmente le métabolisme du toluène et raccourcit la durée de la narcose. Cette interaction, si elle est répétée, pourrait modifier l’activité de certains enzymes impliqués dans la synthèse et/ou la dégradation des neurotransmetteurs; le taux de ces derniers à certains endroits du cerveau est responsable des effets neurotoxiques produits. La perte auditive est elle aussi, liée à l’action du toluène lui-même: un prératiment par le phénylterbutaline prévient cet effet alors qu’une co-ingestion avec l’éthanol, qui inhibe le métabolisme du toluène, l’augmente \[12b]\.

Effets génotoxicques [3, 7, 13]

Les tests de génotoxicité effectués avec le toluène donnent des résultats variables in vitro et négatifs in vivo.

In vitro, les résultats sont négatifs pour le test d’ Ames sur S. typhimurium, pour les tests de réparation de l’ADN dans les bactéries, de conversion génique chez S. cerevisiae, ou d’effets génotoxicques chez la drosophile. Dans les cellules en culture, il induit des cassettes simples binu de l’ADN (hépatocytes de rat) mais pas de lésion ou de réparation de l’ADN (fibroblastes humains), il augmente le taux de mutation (cellules lymphome de souris) mais pas le taux de transformation morphologique (embryon de hamster Syrien), en absence d’activateur métabolique, il ne provoque pas d’échanges entre chromatides souris ou d’hétérochromosomiques (cellules ovarienes de hamster chinois ou lymphocytes humains).

In vivo, le toluène n’induit pas de modification significative dans les tests pour lesquels l’absence de contamination par le benzène a été mesurée (dommage cytogénétique de la moelle osseuse des rongeurs ou lésion de l’ADN dans les cellules sanguines, médullaires ou hépatiques de la souris). De plus, il n’est pas mutagène pour le sperme de souris (mesure d’anomalie induite dans la tête spermatique et test de létalité dominante).

Administré simultanément au benzène, chez le rat et la souris par voie orale, intrapéritonéale ou sous-cutanée, il réduit le nombre d’échanges entre chromatides souris et la fréquence des micronoyaux induits par ce dernier.

Effets cancérigènes [3, 6, 13 à 15]

Le toluène n’est cancérigène ni chez le rat par inhalation, ni chez la souris par inhalation et par voie cutanée.

Le toluène n’est pas cancérigène chez le rat et la souris exposés par inhalation jusqu’à 1 200 ppm, 6.5 h/j, 5 j/semaine, pendant 2 ans. Il provoque des lésions non néoplasiques de la cavité nasale ainsi qu’une néphropathie chez le rat et une hyperplasie de l’épithélium bronchique et des adénomes de l’hyposphide chez la souris. Par voie orale, chez le rat (gavage, 500 mg/kg/j, 4-5 j/semaine, 2 ans), il induit une augmentation de néoplasmes lymphoépithéliales. Les résultats par voie cutanée chez la souris sont en général négatifs.

Le toluène est ou non promoteur chez la souris après initiation par le 7,12 diméthylbenzanthracène ; il inhibe la carcinogénèse cutanée chez la souris, après initiation par le benzo[a]pyrène ou le 7,12-diméthylbenzanthracène et promotion par le phorbol-12-myristate-13-acétate.

Effets sur la reproduction [3, 6, 14]

Le toluène n’affecte pas la fertilité du rat ou de la souris; il est toxique pour le développement à des concentrations non toxiques pour les mâles mais il n’est pas tératogène in vivo ou dans les tests pratiqués in vitro. L’UE l’a classé toxique pour la reproduction, catégorie 3, R 63.

Le toluène donne des résultats négatifs dans trois tests de tératogenèse in vitro (attachement cellulaire des cellules tumurales d’ovaire de souris, inhibition de la croissance cellulaire des cellules embryonnaires de mésenchyme palat, inhibition de la synthèse de protéoglucanes dans les cellules murines de bourgeois embryonnaire de mens).

Il n’affecte pas la fertilité de la souris dans un test de letalité dominante, ni celle du rat dans une étude sur 2 générations (jusqu’à 2 000 ppm, 6 h/j, 7 j/semaine, 80 jours avant accouplement, 15 jours d’accouplement, du 1er au 20e jour de gestation et du 6e au 21e jour de lactation). Il n’a pas d’effet sur la morphologie spermatique ou la cytoïgie vaginale du rat. (1 250 ppm, 6.5 h/j, 5 j/semaine, 15 semaines) ou de ses petits exposés in utero (1 200 ppm, 6 h/j, du 7e jour de gestation au 18e jour après la naissance). Chez le rat mâle (2 000 ppm), le poids relatif et absolu de l’épididyme est diminué sans modification histologique et le comptage spermatique est réduit de 20 % sans affecter la mobilité. À plus forte concentration (6 000 ppm) le comptage, la mobilité et la qualité spermatique dans l’épididyme sont réduits sans modification de poids des testicules ou de la spermatogenèse testiculaire. Il n’y a pas de modification du taux des hormones après un mois d’exposition à cette concentration [17]. La NOEL pour la fertilité est de 600 ppm.

Le toluène traverse la barrière placentaire et a été mesuré dans divers tissus foetaux, avec une distribution qui est fonction de l’âge gestationnel. Administré par inhalation (100 à 2 000 ppm, 6 à 24 h/j), il produit des effets semblables chez le rat et la souris : toxicité pour le développement en absence de toxicité maternelle, baisse du poids foetal et du poids à la naissance, retard de développement postnatal et neurotoxicité mise en évidence par des effets sur le comportement (augmentation de l’activité spontanée et affaiblissement des fonctions cognitives), mais pas de malformation. Le toluène n’est pas toxique lors de l’exposition par le lait maternel. La NOEL pour le développement est de 600 ppm (2 250 mg/ml) pour le rat et 400 ppm (1 500 mg/ml) pour la souris [18].

Toxicité sur l’homme [13, 19, 20]

Toxicité aiguë

La toxicité aiguë du toluène est commune à celle des hydrocarbures pétroliers liquides distillant en dessous de 300°C.

L’ingestion de toluène entraîne:
- des troubles digestifs: douleurs abdominales, nausées puis vomissements suivis de diarrhées;
- une dépression du système nerveux central: syndrome éhivés ou troubles de conscience;
- une pneumopathie d’ inhalation dont les premiers signes sont radiologiques: dans les 8 heures suivant l’ingestion, apparaissent des opacités flouconnerres avec bruchogramme aérien, le plus souvent localisées aux lobes moyen et inférieur droits; les signes cliniques
La projection oculaire de toluène liquide est responsable d’irritation conjonctivale voire d’atteinte corneenne, réversibles en 48 heures.

Toxicité chronique

La voie respiratoire est la voie usuelle d’intoxication professionnelle. De façon générale, la toxicité à terme est modérée. La morbidité chez les personnes exposées pendant 10 à 20 ans à des concentrations de l’ordre de 20 à 200 ppm n’est pas corrélée à l’exposition. Le toluène entraîne en général pas d’effet spécifique qui le distingue des autres solvants.

Le syndrome psycho-organique est l’effet toxique chronique majeur du toluène; les stades les plus avancés sont irréversibles. Il associe des troubles de la mémoire, de la concentration, de la personnalité, une insomnie, une diminution des performances intellectuelles sans troubles objectifiés ou altération de l’électroencéphalogramme. Il a été décrit lors de l’exposition au toluène associé à d’autres solvants; il l’a été également chez des typographes et des imprimeurs essentiellement exposés au toluène (300 à 450 ppm) pendant de nombreuses années; la fréquence serait alors de 20 à 40 %. Cependant, ces troubles ont été aussi rapportés pour des expositions plus faibles (100 à 200 ppm). Leur incidence augmente avec le niveau d’exposition, mais il n’existe pas d’évaluation statistique permettant d’établir une relation dose-réponse; de même, la concentration sans effet n’a pas été déterminée.

Des auteurs ont rapporté une perte de l’audition favorisée par exposition conjointe au brut.

Il n’existe pas d’étude épidémiologique établissant une neuropathie périphérique du toluène employé seul. Les polyneuropathies décrites semblent être en rapport avec l’utilisation concomitante de n-hexane.

Les dépressions médiatrices et leucémies rapportées lors d’expositions au toluène avant 1970 étaient dues en réalité à la présence de benzène à titre d’impureté. Depuis, de nombreuses études ont écarté que le toluène n’était pas responsable de ces effets. Seules anomalies leucologiques observées ont été des modifications morphologiques leucocytaires de signification incertaine et des variations des concentrations d’enzymes leucocytaires et lymphocytaires pour des expositions professionnelles supérieures à 50 ppm.

La fréquence accrue d’hépatomégalies, constatée dans une étude chez des travailleurs exposés au toluène, n’a pas été confirmée par les travaux ultérieurs. Par ailleurs, certains auteurs rapportent une augmentation de fréquence des élévations des transaminases et des γ-GT parmi des groupes de sujets travaillant dans l’industrie du caoutchouc et dans l’imprimerie; cependant, la responsabilité unique du toluène est discutable en raison de l’exposition concomitante à divers produits chimiques. Par contre, d’autres études récentes portant sur la survenue de groupes de salariés exposés au toluène seul (parfois comparés à des sujets non exposés) n’ont pas montré d’élévation anormale des transaminases et des γ-GT, même lorsqu’il existait des troubles cliniques attribuables à l’exposition au toluène. Une autre étude prenant en compte les autres facteurs de risque hépatique ne montre pas d’action hépatotoxique du toluène, il n’augmente pas l’hépatotoxicité de l’éthanol.

Une atteinte tubulaire peut être constatée avec une albumose.
Le toluène est responsable de dermatoses d'irritation par action dégraissant et desséchant sur la peau en contact. Il n'entraîne pas de sensibilisation immuno-allergique.

Effets mutagènes
Les tests de mutagénicité réalisés sur des travailleurs exposés sont généralement négatifs. Plusieurs études ne montrent pas de différence significative de la fréquence des échanges de chromatides sœurs ou des aberrations chromatidiques dans les lymphocytes circulants entre les travailleurs exposés et des sujets non exposés. Seules deux études révèlent une augmentation de la fréquence des échanges de chromatides sœurs et des cassures chromatidiques chez des sujets exposés au toluène depuis plusieurs années à des concentrations de l'ordre de 200 à 300 ppm. Il semblerait que les effets synergiques du tabagisme n'ait pas été pris en considération dans l'interprétation des résultats.

Effets cancérogènes
Les preuves de cancérogénicité chez l'homme sont insuffisantes. Le toluène a été classé dans le groupe 3 par le CIRC [13].

Effets sur la reproduction
Le toluène a été classé comme produit pouvant avoir un risque possible sur la fonction de reproduction. Des anomalies de la fréquence harmonique sont constatées, mais des biais méthodologiques existent et toutes les études ne concluent pas de façon identique. Il n'y a pas d'études adéquates sur une baisse significative du taux de spermatozoïdes.

Dans une étude, le toluène entraînerait par contre un risque de fausse couche tardive pour des niveaux d'exposition inférieurs à 100 ppm en cas d'exposition précoce au cours de la grossesse. Une co-exposition à d'autres solvants n'est cependant pas exclue.

En cas d'exposition chronique maternelle, il peut être constaté un retard de croissance intra-utérine. Un syndrome ressemblant à celui décrit dans le cas de l'accouplement faital avec présence de malformations (oreilles, cœur, face, reins et membres) plus ou moins marquées, un retard de croissance et des troubles neuro-comportementaux (déficit de l'attention, hyperactivité, acquisition retardée de la parole) est également observé, chez des enfants de mères toxicomanes. Des anomalies rénales spontanément résolutives sont également notées dans le même contexte.

RÉGLEMENTATION

HYGIÈNE ET SÉCURITÉ DU TRAVAIL

1. **Règles générales de prévention des risques chimiques**
 - Articles R. 231-54 à R. 231-54-17 du Code du travail.
 - Circulaire DRT n° 12 du 24 mai 2006 (non parue au JO).

2. **Aération et assainissement des locaux**
 - Circulaire du ministère du Travail du 9 mai 1985 (non paru au JO).

3. **Prévention des incendies et des explosions**

4. **Valeurs limites d'exposition professionnelle**

5. **Maladies de caractère professionnel**
 - Articles L. 461-6 et D. 461-1 et annexe du Code de la sécurité sociale : déclaration médicale de ces affections.

6. **Maladies professionnelles**
 - Article L. 461-4 du Code de la sécurité sociale : déclaration obligatoire d'emploi à la Caisse primaire d'assurance maladie et à l'inspection du travail ; tableaux n° 4bis et 84.

7. **Surveillance médicale renforcée**

8. **Classification et étiquetage**
 a) du toluène pur :
 Facilement inflammable, R 11
 Toxic pour la reproduction cat. 3, R 63
 Nocif, R 48/20 — R 65
 Irritant, R 38
 R 67

 Note : Dans la 30e ATP de la directive 67/548/CEE, votée le 16 février 2007, en cours de publication au JOJCE, le conseil de prudence S 46 a été supprimé. Cette modification est prise en compte sur l'étiquette présentée dans ce document.

b) des préparations contenant du toluène ;

9. Entreprises extérieures

PROTECTION DE LA POPULATION

- Article L. 1323-2, articles R. 5137-43 à R. 5137-73, articles R. 1342-1 à R. 1342-12 du Code de la santé publique :
 - étiquetage (cf. 8).
- Limitation d’emploi : décret n° 2007-33 du 8 janvier 2007 : interdiction de mise sur le marché, à destination de la vente au public, des adhésifs et des peintures par pulvérisation renfermant 0,1 % ou plus de toluène (% en masse).

PROTECTION DE L’ENVIRONNEMENT

Installations classées pour la protection de l’environnement, Paris, imprimé des Journaux officiels, brochure n° 1001 :
- n° 1430, liquides inflammables (définition).
- n° 1431, liquides inflammables (fabrication industrielle).
- n° 1432, liquides inflammables (stockage en réservoirs manufacturés).
- n° 1433, liquides inflammables (installations de mélange ou d’emploi).
- n° 1434, liquides inflammables (installations de remplissage ou de distribution).

TRANSPORT

Se reporter éventuellement aux règlements suivants.

1. Transport terrestre national et international (route, chemin de fer, voie de navigation intérieure)
 - ADR, RID, ADNRI : Toluène
 n° ONU : 1294
 Classe : 3
 Groupe d’emballage : II

2. Transport par air
 - IATA

3. Transport par mer
 - IMDG

RECOMMANDATIONS

I. AU POINT DE VUE TECHNIQUE

Stockage
- Stocker le toluène dans des locaux spéciaux, frais et bien ventilés, à l’abri des rayonnements solaires et de toute source de chaleur ou d’ignition (flammes, étincelles...) et à l’écart des produits oxydants.
- Le sol des locaux sera incombustible, imperméable et ferra une cuve de rétention, afin qu’en cas de déversement accidentel, le liquide ne puisse se répandre au-dehors.
- Interdire de fumer.
- Prendre toutes dispositions pour éviter l'accumulation d'électricité statique.
- Mettre le matériel notamment le matériel électrique, y compris l’éclairage, en conformité avec la réglementation en vigueur.
- Fermer soigneusement les récipients et les étiqueter correctement. Reproduire l’étiquetage en cas de fractionnement des emballages.

Manipulation
- Les prescriptions relatives aux zones de stockage sont applicables aux ateliers où est utilisé le toluène. En outre :
 - Instruire le personnel des dangers présentés par le produit, des précautions à observer et des mesures à prendre en cas d’accident.
 - Entreposer dans les ateliers des quantités de produit ne dépassant pas celles nécessaires au travail d’une journée.
 - Éviter l’inhalation de vapeurs. Effectuer en apparence clos toute opération industrielle qui s’y prête. Prévoir une aspiration des vapeurs à leur source d’émission ainsi qu’une ventilation générale des locaux. Prévoir également des appareils de protection respiratoire pour certains travaux de courte durée ; leur choix dépend des conditions de travail.
 - Si un appareil filtrant peut être utilisé, il doit être muni d’un filtre de type A. Pour des interventions d’urgence, le port d’un appareil respiratoire autonome isolant est nécessaire.
 - Contrôler régulièrement la teneur de l’atmosphère en toluène.
 - Éviter le contact du produit avec la peau et les yeux. Mettre à la disposition du personnel des équipements de protection individuelle : vêtements de travail, gants imperméables [par exemple en polyacryl vinylique (PVVA), en Vicon®]; certaines matières telles que le carbone charbon, le polychlore de polyphenoxyne sont à éviter [31] et lunettes de sécurité. Ces effets seront maintenus en bon état et nettoyés après chaque usage.
 - Ne jamais procéder à des travaux sur ou dans des cuves et réservoirs contenant ou ayant contenu du toluène sans prendre les précautions d’usage [32].
 - Ne pas rejeter à l’égout ou dans le milieu naturel les eaux polluées par le toluène.
 - En cas de fuite ou de déversement accidentel, récupérer immédiatement le produit après l’avoir recouvert de matériau absorbant inerte (sable, terre). Laver ensuite à grande eau la surface ayant été souillée.
 - Si le déversement est important, supprimer toute source potentielle d’ignition, aérer la zone, évacuer le personnel en ne faisant intervenir que des opérateurs entraînés munis d’un équipement de protection approprié.
 - Conserver les déchets dans des récipients spécialement prévus à cet effet et les éliminer dans les conditions autorisées par la réglementation (incinération contrôlée, par exemple).
II. AU POINT DE VUE MÉDICAL

À l'embauchoir et aux examens périodiques, l'examen clinique comportera entre autres, un examen cutanéomuqueux et un recensement de signes évocant un syndrome psycho-organique débutant. Pour cela des examens adaptés peuvent être pratiqués (tests psycho-techniques, potentiels évoqués). On avertira les femmes désiant protéger du risque éventuel. Les femmes enceintes doivent être protégées du risque d'exposition au toluène [30].

Surveillance biologique de l'exposition [20]
Le dosage de l'acétate urinaire en fin de posté est le reflet de l'exposition du jour même. Plus spécifique que le dosage de l'acide hippurique, il présente une bonne sensibilité aux environs de 5 ppm et permet de confirmer l'exposition en cas de doute. La valeur-guide de l'AGH (BEI) est de 0,5 mg/l en fin de posté.

Le dosage du toluène sanguin, prélevement réalisé immédiatement en fin de posté, est spécifique de l'exposition au toluène. La valeur-guide française (VGF) est de 1 mg/l en fin de posté (même valeur pour le BAT allemand) ; l'AGH propose un BEI de 0,05 mg/l avant le dernier posté de la semaine.

Le dosage de l'acide hippurique urinaire (urines recueillies les 4 dernières heures du poste de travail) peut être utile pour apprécier l'exposition du jour même et de la veille. Cet indicateur n'est pas suffisamment sensible pour des expositions intérieures à la VME. La VGF est de 2,5 g/l, créatinine ; elle n'a pas été modifiée depuis 1997 alors que la VME était de 100 ppm (50 ppm en 2007) ; le BEI de l'AGH de 1,6 g/l, créatinine a été établi lorsque la TLC-TWA était de 50 ppm (20 ppm). Cet indicateur n'est pas fiable à l'échelle de l'individu (faible spécificité, variations individuelles du métabolisme).

Conduite à tenir en cas d'exposition aiguë

- Lors d'accidents aigus, demander dans tous les cas l'avis d'un médecin ou du centre antipoison régional ou de services de secours médicalisés d'urgence.
- En cas de contact cutané, retirer les vêtements souillés et laver la peau à grande eau pendant quinze minutes. Les vêtements ne seront réutilisés qu'après désinfection. Si une irritation apparaît ou si la contamination est étendue ou prolongée, une consultation médicale s'imposera.
- En cas de projection oculaire, laver immédiatement et abondamment à l'eau, les paupières bien écartées, pendant 10 à 15 minutes. Une consultation ophtalmologique sera indispensable s'il apparaît une douleur, une rougeur oculaire ou une gêne visuelle.
- En cas d'inhalation massive, retirer le sujet de la zone polluée après avoir pris toutes les précautions nécessaires.
- En cas d'ingestion, ne pas provoquer de vomissements et ne pas faire ingérer de lait ou de matières grasses ; on pourra faire absorber du charbon actif si le sujet est parfaitement conscient.
- Dans les deux derniers cas, si la victime est inconsciente, la placer en position latérale de sécurité ; en cas d'arrêt respiratoire, commencer les manœuvres de respiration assistée ; même si l'état initial est satisfaisant, transférer, si nécessaire par ambulance médicalisée, en milieu hospitalier, ou pourra être effectuée une radiographie du thorax. Une surveillance de l'état de conscience, des fonctions cardiovasculaires, respiratoires et hépatiques, ainsi qu'un traitement symptomatique en milieu de soins intensifs, peuvent s'avérer nécessaires.

BIBLIOGRAPHIE

 b: Evaluation of the ocular irritation potential of 56 compounds. Food and Chemical Toxicology, 1982; 20: 573-582.
BIBLIOGRAPHIE

32. Cuves et réservoirs. Recommandation CNAMT 276. INRS.
Fiches internationales de sécurité chimique

TOLUENE

Méthylbenzène
C₆H₅CH₃/C₇H₈
Masse moléculaire : 92.1

Nº CAS	108-88-3
Nº RTECS	XS5250000
Nº ICSC	0078
Nº ONU	1294
Nº CE	601-021-00-3

TYPES DE RISQUES/EXPOSITIONS

<table>
<thead>
<tr>
<th>INCENDIE</th>
<th>EXPLOSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Très inflammable.</td>
<td>Les mélanges air/vapeur sont explosifs.</td>
</tr>
</tbody>
</table>

RISQUES/SYMPTOMES AIGUS

<table>
<thead>
<tr>
<th>INCENDIE</th>
<th>EXPLOSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAS de flammes nues, PAS d’incendies et interdiction de fumer.</td>
<td>Système en vase clos, ventilation, équipement électrique et éclairage protégés contre les explosions. Eviter l’accumulation de charges électrostatiques (par mise à la terre, par exemple). NE PAS employer d’air comprimé pour remplir, vider ou manipuler.</td>
</tr>
</tbody>
</table>

PREVENTION

<table>
<thead>
<tr>
<th>INCENDIE</th>
<th>EXPLOSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poudre, AFFF, mousse, dioxyde de carbone.</td>
<td>En cas d’incendie : maintenir les fûts, etc., à basse température en les arrosant d’eau.</td>
</tr>
</tbody>
</table>

PREMIER SECOURS/AGENTS D’EXTINCTION

CONTACT PHYSIQUE

<table>
<thead>
<tr>
<th>INHALATION</th>
<th>PEAU</th>
<th>YEUX</th>
<th>INGESTION</th>
</tr>
</thead>
</table>

OBSERVER UNE HYGIÈNE STRICTE! ÉVITER L’EXPOSITION DES ÉMMEDES (ENCEINTES)!

<table>
<thead>
<tr>
<th>INHALATION</th>
<th>PEAU</th>
<th>YEUX</th>
<th>INGESTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation, aspiration locale ou protection respiratoire.</td>
<td>Gants de protection.</td>
<td>Lunettes à coques, ou écrans faciaux.</td>
<td>Ne pas manger, ne pas boire ni fumer pendant le travail.</td>
</tr>
</tbody>
</table>

DEVERSEMENTS & FUITES

<table>
<thead>
<tr>
<th>STOCKAGE</th>
<th>CONDITIONNEMENT & ETIQUETAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fiches internationales de sécurité chimique

TOLUENE

<table>
<thead>
<tr>
<th>ASPECT PHYSIQUE: APPARENCE:</th>
<th>SYMBLE: F</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIQUIDE INCOLORE, D'ODEUR CARACTERISTIQUE.</td>
<td>Symbole Xn</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DANGERS PHYSIQUES:</th>
<th>RISQUE D'INHALATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>La vapeur est plus lourde que l'air et peut se propager au niveau du sol; inflammation à distance possible. Des charges électrostatiques peuvent se former à la suite de mouvement, d'agitation, etc.</td>
<td>Une contamination dangereuse de l'air est rapidement atteinte lors de l'évaporation de cette substance à 20°C.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DANGERS CHIMIQUES:</th>
<th>EFFETS DES EXPOSITIONS DE COURTE DUREE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réagit violemment avec les oxydants forts en provoquant des risques d'incendie et d'explosion.</td>
<td>La substance est irritante pour les yeux et les voies respiratoires. L'exposition peut provoquer une dépression du système nerveux central. L'exposition à des concentrations élevées peut entraîner des troubles du rythme cardiaque, une perte de conscience et la mort.</td>
</tr>
</tbody>
</table>

LIMITES D'EXPOSITION PROFESSIONNELLE (LEP):

| TLV: 50 ppm; 188 mg/m³ (TWA) (peau) | (ACGIH 1997) |

PROPRIETES PHYSIQUES

<table>
<thead>
<tr>
<th>Point d'ébullition : 111°C</th>
<th>Densité relative du mélange air/vapeur à 20°C (air = 1) : 1.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point de fusion : -95°C</td>
<td>Point d'éclair : 4°C c.f.</td>
</tr>
<tr>
<td>Densité relative (eau = 1) : 0.87</td>
<td>Température d'auto-inflammation : 480°C</td>
</tr>
<tr>
<td>Solubilité dans l'eau : nulle</td>
<td>Limites d'explosivité en volume % dans l'air : 1.1-7.1</td>
</tr>
<tr>
<td>Tension de vapeur à 20°C : 2.9 kPa</td>
<td>Coefficient de partage octanol/eau tel que log Poc : 2.69</td>
</tr>
<tr>
<td>Densité de vapeur relative (air = 1) : 3.2</td>
<td></td>
</tr>
</tbody>
</table>

DONNEES ENVIRONNEMENTALES

NOTES

Suivant le niveau de l'exposition, une surveillance médicale périodique est recommandée.

Carte de données d'urgence pour le transport: TREMPCARD (R)-31

Code NFPA: H2; F3; R0
AUTRES INFORMATIONS

<table>
<thead>
<tr>
<th>ICSC: 0078</th>
<th>TOLUENE</th>
</tr>
</thead>
<tbody>
<tr>
<td>© PISCC, CEC, 1993</td>
<td></td>
</tr>
</tbody>
</table>

NOTICE LEGALE IMPORTANTIE:

La CE de même que le PISCC ou toute personne agissant au nom de la CE ou du PISCC ne sauraient être tenues pour responsables de l'utilisation qui pourrait être faite de ces informations. Cette fiche exprime l'avis du comité de révision du PISCC et peut ne pas toujours refléter les recommandations de la législation nationale en la matière. L'utilisateur est donc invité à vérifier la conformité des fiches avec les prescriptions en usage dans son pays.

ANNEXE G

Chlorobenzène : fiches INRS et ICSC

(14 pages)
FICHE TOXICOLOGIQUE

Chlorobenzène

Fiche établie par les services techniques et médicaux de l'INRS

CARACTÉRISTIQUES

Utilisations
- Intermédiaire de synthèse organique, notamment pour la fabrication de colorants et de pesticides.
- Solvant et dégraissant.

Propriétés physiques [1 à 8]

Le chlorobenzène se présente sous la forme d'un liquide incolore, volatil, d'odeur agréable rappelant celle des amandes et détectable dès 0,2 ppm.

Il est pratiquement insoluble dans l'eau (0,05 g dans 100 g d'eau à 20 °C) et forme un azéotrope qui bout à 90 °C et contient 28,4 % d'eau. Il est miscible à de nombreux solvants organiques, notamment l'éthanol et l'oxyde de diéthyle.

Risques

- **R 10** - Inflammable.
- **R 20** - Nocif par inhalation.
- **R 51/53** - Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique.
- **S 24/25** - Éviter le contact avec la peau et les yeux.
- **S 61** - Éviter le rejet dans l'environnement. Consulter les instructions spéciales/la fiche de données de sécurité.

Étiquetage CE

203-628-5

ATTENTION

- **H 226** - Liquide et vapeurs inflammables.
- **H 332** - Nocif par inhalation.
- **H 411** - Toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme.

203-628-5

Selon le règlement CE n° 1272/2008 intégrant les critères du SCHI.

Numéro CAS

108-90-7

Numéro CE (EINECS)

203-628-5

Numéro Index

602-033-00-1

Synonyme

Monochlorobenzène

(*) Mise à jour partielle de l'édition 2008.
Ses principales caractéristiques physiques sont les suivantes.

<table>
<thead>
<tr>
<th>Masse molaire</th>
<th>112.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point de fusion</td>
<td>−45.2 °C</td>
</tr>
<tr>
<td>Point d'ébullition</td>
<td>132 °C</td>
</tr>
<tr>
<td>Densité (120 °C)</td>
<td>1.07</td>
</tr>
<tr>
<td>Densité de vapeur (air = 1)</td>
<td>3.9</td>
</tr>
<tr>
<td>Indice d'évaporation [acétate de n-butyle = 1]</td>
<td>1</td>
</tr>
<tr>
<td>Pression de vapeur</td>
<td>1.17 kPa à 20 °C</td>
</tr>
<tr>
<td></td>
<td>5.6 kPa à 50 °C</td>
</tr>
<tr>
<td></td>
<td>39 kPa à 100 °C</td>
</tr>
<tr>
<td>Point d'éclair (en coupelle fermée)</td>
<td>28 °C</td>
</tr>
<tr>
<td>Température d'auto-inflammation</td>
<td>638 °C</td>
</tr>
<tr>
<td>Limite d'explosivité dans l'air (% en volume)</td>
<td></td>
</tr>
<tr>
<td>limite inférieure</td>
<td>1.3 %</td>
</tr>
<tr>
<td>limite supérieure</td>
<td>9.6 %</td>
</tr>
<tr>
<td>Coefficient de partage octanol/eau</td>
<td>Log Pow 2.18-2.84</td>
</tr>
</tbody>
</table>

A 25 °C et 101.3 kPa, 1 ppm = 4,62 mg/m³.

PROPRIÉTÉS CHIMIQUES [1 à 6]

Dans les conditions normales d'emploi, le chlorobenzène est un composé relativement stable. Il ne se décompose qu'à température assez élevée avec formation de produits toxiques (chlorure d'hydrogène, dichlorure de carbone, manganèse de carbone).

Il réagit facilement avec l'acide sulfureux concentré chaud en donnant de l'acide p-chlorobenzène sulfonique ; avec l'acide nitrique, il se forme des chlordinitrobenzènes.

Le chlorobenzène n'attaque pas les métaux usuels. Toutefois, en présence d'humidité et sous l'action de la chaleur, la formation de chlorure d'hydrogène peut entraîner une corrosion des surfaces métalliques.

Le chlorobenzène peut réagir vivement avec les oxydants, les métaux alcalins ou alcalino-terreux et les métaux vulnéraux.

RÉCIPENDS DE STOCKAGE

Le stockage s'effectue habituellement dans des fûts en acier ou des citernes en acier inoxydable.

Le verre est utilisable pour de petites quantités ; dans ce cas, les récipients doivent être protégés par une enveloppe plus résistante convenablement ajustée.

L'aluminium et ses alliages ne sont pas recommandés. Par ailleurs, le chlorobenzène dissout certains caoutchoucs ou matières plastiques.

VALEURS LIMITES D'EXPOSITION PROFESSIONNELLE

pale voie métabolique chez l'animal) à la formation de l'acide 4-chlorophénylmercapturique : par oxydation (voie prédominante chez l'homme), au 4-chlorocatechol, aux chlorohénonolés et à leurs dérivés sulfo et glucuroconjugués.

Le métabolisme du chlorobenzène est dépendant du système microsomal hépatique et pour certains auteurs plus particulièrement du cytochrome P450. Les Inducteurs enzymatiques tels le phénobarbital augmentent la toxicité du produit, tandis que les inhibiteurs entraînent des effets inverses. Le chlorobenzène n'est pas lui-même un induc
teur enzymatique.

Une faible proportion du chlorobenzène est éliminée sous forme inchangée dans l'air expiré, dans les urines et les fèces. Il ne s'accumule pas dans l'organisme. Tous les métabolites sont éliminés par voie urinaire.

Chez le lapin, après administration orale de chlorobenzène (500 mg/kg, 2 fois/j, 4 j.), environ 27 % de la dose sont exhalés sous forme inchangée, 25 % sont excrétés dans les urines sous forme glucuroconjuguée, 27 % sous forme sulfoconjuguée et 20 % sous forme d'acide mercapturique.

Chez l'homme, le 4-chlorocatechol et le 4-chlorophénol, libre et conjugué, sont les principaux métabolites urinaires et représentent environ 90 % des produits excrétés dans les urines. Chez des volontaires sains exposés pendant 7 à 4 à des concentrations allant de 10 à 65 ppm, 42,7 % du chlorobenzène absorbé sont éliminés dans les urines sous forme de 4-chlorocatechol, 13,2 % sous forme de 4-chlorophénol et 24 % sous forme de chlorophénoles.

Chez l'homme, le 4-chlorocatechol et le 4-chlorophénol apparaissent dans les urines rapidement après le début de l'exposition, avec un pic d'élimination atteint à la fin de l'exposition (vers la 8e heure). L'élimination urinaire est biphase : les demi-vies du 4-chlorocatechol sont de 2,2 h et de 17,3 h pour chaque phase respectivement, celles du 4-chlorophénol sont de 3 h et de 12,2 h. L'écré
tion du 4-chlorocatechol est environ 3 fois plus importante que celle du 4-chlorophénol.

Le dosage du 4-chlorocatechol total et du 4-chlorophénol total dans les urines de fin de poste de travail est un bon indice biologique de l'exposition récente au chlorobenzène. Ce dosage est donc recommandé pour la sur
vieillance biologique des sujets exposés. Ces 2 métabolites n'existant pas chez des sujets non exposés : par contre, ils peuvent être présents dans les urines de sujets exposés au dichlorobenzène, au 4-chlorophénol ou aux érithres.

Une bonne corrélation existe entre l'intensité de l'exposi
tion au chlorobenzène et la quantité de 4-chlorocatechol total et de 4-chlorophénol total excrétée dans les urines. À des concentrations inférieures à 75 ppm (350 mg/m³), la relation est linéaire. Pour une exposition à 50 ppm (230 mg/m³) pendant 2 h, en l'absence de tout contact cutané, l'élimination urinaire sur des urines recueillies en fin de poste de travail est de 9 mg/g de créatinine pour le 4-chlorophénol et de 33 mg/g de créatinine pour le 4-chlorocatechol.

Les dosages du chlorobenzène dans le sang veineux et dans l'air expiré ont également été proposés pour la sur
vieillance biologique des sujets exposés. Leur réalisation pratique est cependant délicate. Le taux de chlorobenzène sanguin est bien corrélé à l'intensité de l'exposition.

Surveillance biologique de l'exposition

Le dosage dans les urines en fin de poste et fin de semaine de travail du 4-chlorophénol total et du 4-chlorocatechol total sont le reflet de l'exposition récente au chlorobenzène. Des valeurs-guides existent pour ces paramètres (voir les Recommandations 11).

Mécanisme d'action toxique

Le mécanisme d'action du chlorobenzène est très probablement lié, d'après les études chez le rat et la souris, à la formation d'un époxyde intermédiaire réactif responsable de liaisons irréversibles aux macromolécules des cellules hépatiques, rénales et pulmonaires. La détoxification passerait par l'action du glutathione, toute déplétion cellulaire en glutathione entraînant une augmentation de la formation des liaisons aux macromolécules ; à l'inverse, l'adjonction d'un inhibiteur du système microsomal diminue le nombre de liaisons aux macromolécules.

Une étude chez la souris par administration intraveineuse de chlorobenzène retrouve la formation de liaisons entre les macromolécules des cellules épithéliales bronchiques et les métabolites du chlorobenzène.

Toxicité expérimentale

Toxicité aiguë

La DL50 par voie orale est de 2 910 mg/kg chez le rat, de 2 830 mg/kg chez le lapin et de 1 440 mg/kg chez la souris.

La DL50 par inhalation est de 210 ppm (380 mg/m³) chez le rat et de 590 ppm (2 750 mg/m³) chez le lapin pour une exposition de 6 h.

La DL50 par voie cutanée est de 7 000 mg/kg chez le rat.

Le chlorobenzène est un dépresseur du système nerveux central. À dose toxique, il est responsable d'attentes hépatiques et rénales. Il n'exerce qu'une faible toxicité systématique par voie cutanée. C'est un irritant modéré pour la peau et les muqueuses oculaires.

L'injection sous-cutanée de 4 000 à 5 000 mg/kg chez le rat entraîne une hyperréactivité, une dépression du sys
tème nerveux central puis la mort des animaux ; il est aussi constaté une nécrose hépatique et rénale.

Plusieurs études chez le chat retrouvent des signes d'irritation oculaire et des voies aériennes supérieures, associés à des troubles neurologiques à type de narcose dès 1 200 ppm (5 600 mg/m³), à une agitation, une instabilité, des tremblements, des convulsions et des myoclonies dès 2 400 ppm (11 380 mg/m³) pendant 1 à 7 h, et à la mort des animaux vers 3 700 ppm (17 240 mg/m³) pendant 7 h.

Des signes d'irritation des muqueuses (larmoiement, hypersalivation), des signes neurologiques à type d'agita
tion, de prostration, d'ataxie, de troubles sensitivo
teurs des membres inférieurs ainsi qu'une dyspnée ont été observés chez des souris, rats et coqons d'Inde après administration orale de chlorobenzène. L'autopsie des ani
maux a montré un œdème cérébral, une nécrose hépa
tique centrilobulaire et une nécrose des tubes contournés proximaux rénaux et des muqueuses bronchiques et gas
tiques.

L'injection par voie intrapéritonéale de 7,6 à 29,4 mmol/Kg chez le rat mâle entraîne une nécrose hépatocytaires et
tubulaire rénale, une dépletion du glutathione et du cytochrome P450 microsomal ainsi qu’une élévation des transaminases et de la bromosulfoptalaine.

Toxicité subaiguë, toxicité chronique [3, 10 à 12, 15 à 17]

Chez le chien, par voie orale (27.25 à 277.25 mg/kg/j, 5 j/semaine, 13 sem), aucun effet n’est observé à la plus faible dose ; la plus forte dose induit une perte de poids corporel, des anomalies hématologiques variées à type d’augmentation des formes jeunes leucocytes, des modifications du bilan biologique (élévation des phosphatases alcalines, de la bilirubine, des transaminases et du cholestérol, baisse de la glycémie), des modifications hépatiques rénales, du tissu hématoïdétique et de la muqueuse gastrique et dans 50 % des cas, la mort des animaux.

Chez le rat, par voie orale (14,4 à 370 mg/kg/j, 5 j/semaine, 192 j), l’augmentation du poids du foie et des reins est constatée dès 144 mg/kg/j, ainsi que des anomalies hépatiques à type de cirrhose et de nécrose focale dès 188 mg/kg/j. Une exposition par voie orale, plus longue (9 mois) à des doses inférieures (0,001 à 0,1 mg/kg/j), provoque à partir de 0,01 mg/kg/j une dépression du système neurovégétatif, des anomalies histologiques (trombocytose, hyperprolactinémie, inhibition de l’érythropoïèse et de l’activité mitotique de la moelle osseuse), ainsi que des anomalies du bilan hépatique (élévation des phosphatases alcalines et des transaminases).

Par inhalation (200 à 1 200 ppm = 930 à 5 600 mg/m³, 7 h/j, 5 j/semaine, 44 j) chez le rat, le lapin et le cochon d’Inde apparaissent dès 475 ppm (2 210 mg/m³), des lésions hépatiques limitées. À 1 000 ppm (4 660 mg/m³), apparaissent chez les 3 espèces des altérations pulmonaires, rénales et hépatiques ; et vers 1 200 ppm (5 600 mg/m³) un corona. La dose sans effet est de 200 ppm (930 mg/m³) pour tous les animaux.

Des anomalies hématologiques à type d’hypertrophie cyto- toxique, proportionnelles à la dose administrée, sont retrouvées dans une étude par voie pulmonaire chez des rats et des lapins (75 à 250 ppm = 350 à 1 165 mg/m³, 7 h/j, 5 j/semaine, 24 sem) ; elles s’associent dès 75 ppm à des lésions hépatiques, rénales et surrenaliennes modérées.

Des modifications des lignées sanguines lymphoides et myéloïdes, dont l’importance est proportionnelle à la dose, accomplies d’anomalies hépatiques et rénales à type de nécrose, sont observées chez des rats par voie orale (250 mg/kg/j, 5 j/semaine, 91 j). Aucune autre modification sanguine n’est retrouvée en dehors d’une porphyrinurie modérée aux doses supérieures ou égales à 500 mg/kg/j.

Des signes neurologiques à type d’encéphalopathie associés à une atteinte histologique hépatique et rénale sont constatés chez le rat pour des expositions continues supérieures à 1 mg/m³ pendant 70 à 82 jours. À ces doses, une augmentation des cholinesterases sanguines et une diminution des alpha-globulines sont constatées.

Effets génotoxiques [10, 18 à 20]

In vitro, le chlorobenzène n’est pas mutagène dans le test d’Ames pour les souches TA 1538, TA 1537, TA 1535, TA 100 et TA 98 de Salmonella typhimurium, avec ou sans activation métabolique ; il induit un effet mutagène sur cellules ovariennes de hamster et lymphocytes de souris ; il n’influence pas d’augmentation significative du nombre d’échanges de chromatides sœurs sur cellules humaines.

In vivo, un test du micronoyau chez la souris par voie intrapéritonéale 225 mg/j est positif ; l’injection intrapéritonéale de chlorobenzène à des souris et des rats entraîne la formation d’adultes à l’ADN, principalement dans les cellules hépatiques.

Effets cancérigènes [10, 15]

Une étude par voie orale chez le rat et la souris (30 à 60 mg/kg/j) pour les souris mâles, 60 à 120 mg/kg/j pour les souris femelles et les rats des 2 sexes, 5 j/semaine, 103 sem), a montré une augmentation significative de la fréquence des nodules néoplasiques hépatiques chez les rats mâles à la plus forte dose ; aucune augmentation de la fréquence des tumeurs n’est retrouvée chez les rates et les souris des 2 sexes.

Effets sur la reproduction [17, 19, 21]

L’exposition de rats gestantes (75, 210 et 590 ppm = 350, 980 et 2 755 mg/m³, 6 h/j, du 6e au 15e jour de gestation) ne provoque aucun effet tératogène ni embryotocique. À 590 ppm, des anomalies du développement musculosquelettique sont constatées ; mais cette concentration entraîne chez les mâles une perte de poids corporel ainsi qu’une augmentation du poids du foie. Aucune augmentation du nombre des avortements spontanés n’est décelée.

Dans la même étude, l’exposition de lapines (mêmes concentrations, 6 h/j, du 6e au 15e jour de gestation) ne provoque aucun effet tératogène ni augmentation du nombre des avortements spontanés. Chez le factot, quelques malformations viscérales (œufs, cœur) sont retrouvées, sans relation avec la dose. Une augmentation du poids du foie et une perte de poids globale sont constatées dès 210 ppm (980 mg/m³) chez les mâles.

Chez le rat, l’inhalation répétée (50 à 450 ppm, 6 h/j, 7 j/semaine, 10 sem), avant le fécondation, pendant la grossesse et l’allaitement, ne provoque aucune anomalie de la reproduction même à la dose la plus forte ; une incidence élevée d’anomalies testiculaires dégénératives, sans répercussion sur le taux de fécondation, est constatée à 450 ppm (2 100 mg/m³). Par contre des effets systémiques avec anomalies histologiques rénales et hépatiques sont observés dès 150 ppm (700 mg/m³).

Toxicité sur l’homme

Toxicité aiguë [3, 10, 12, 20, 27]

Le chlorobenzène est un narcotique puissant, un toxique hépatique et un irritant de la peau et des muqueuses oculaires et respiratoires.

L’inhalation de vapeurs provoque une irritation oculaire et des voies respiratoires lors d’exposition à des concentrations de l’ordre de 200 ppm (850 mg/m³). À forte dose, on peut observer une atteinte neurologique associant somnolence, manque de coordination, dépression du système nerveux central aux troubles de conscience.

Un cas d’hémoptysie a été rapporté par un auteur lors d’une inhalation massive de chlorobenzène.

Des perturbations électroencéphalographiques ont été induites chez des volontaires sains après une exposition à des concentrations allant de 0,1 à 0,3 mg/m³ pendant 13 min.
L'ingestion de chlorobenzène peut entraîner une pâleur ou une cyanose, une méthémoglobinémie, voire un collassus ; ces effets peuvent être reversibles. Deux cas d'atteinte hépatique avec cytolysie, réversibles en 2 semaines après traitement par N-acétylcystéine et alprostadil, ont été rapportés.

Toxicité chronique [3, 12, 16, 25, 28, 29]
Les effets de l'exposition chronique s'exercent principalement sur le système nerveux central.

La voie respiratoire est la voie usuelle d'intoxication en milieu professionnel. L'halation prolongée de vapeurs peut être à l'origine de signes neuropsychiatriques (tels des céphalées, une somnolence, des vertiges, des paresthésies, des myoclonies des extrémités et parfois des troubles de la sensibilité tactile), de signes d'irritation des voies aérodigestives supérieures, de lésions hépatiques, rénales et pulmonaires.

Plusieurs études chez des travailleurs exposés au chlorobenzène retrouvent une fréquence accrue de troubles neurologiques à type de céphalées, mialgies, somnolence, irritabilité, ainsi que des troubles dysesthésiques, une perte de poids et d'appétit. Ces troubles apparaissent le plus souvent peu de temps après le début de l'exposition et pour des concentrations atmosphériques faibles. Dans une de ces études, les anomalies telles les paresthésies, hypoesthésies ou contractures des extrémités n'ont été observées que chez les sujets exposés uniquement au chlorobenzène.

Une étude chez des travailleurs exposés au chlorobenzène et à d'autres dérivés chlorés du benzène, à des concentrations de l'ordre de 15 ppm, ne retrouve aucun effet sur la santé, ni aucune modification des fonctions hépatiques et de la formule sanguine.

Des contacts répétés ou prolongés du liquide avec la peau peuvent entraîner des dermatoses et des brûlures cutanées. Des modifications hématologiques ont rarement été rapportées. Un cas d'anémie avec aplasie médullaire est apparu chez une femme de 70 ans, ayant utilisé pour la confection de chapeaux, une colle contenant 70 % de chlorobenzène (sans benzène). La responsabilité du chlorobenzène reste cependant difficile à évaluer. Une leucopénie modérée et une augmentation de l'activité des peroxydases leucocytes ont été constatées dans une étude chez des travailleurs exposés au chlorobenzène depuis au moins 3 ans. Elles s'associaient à un allongement des vitesses de conduction nerveuse. La signification de ces anomalies hématologiques est cependant inconnue.

Effets sur la reproduction [30]
Une étude russe fait état d'une augmentation significative de la fréquence des troubles menstruels et hormonaux chez des femmes exposées au chlorobenzène dans une usine de vernis. Une fréquence accrue des anomalies du développement des nouveau-nés ainsi qu'une augmentation de la mortalité perinatale sont aussi mentionnées. Cependant, la responsabilité du chlorobenzène ne peut être affirmée étant donné l'exposition concomitante à d'autres produits chimiques.

RÉGULATION

HYGIÈNE ET SÉCURITÉ DU TRAVAIL

1. Mesures de prévention des risques chimiques (agents chimiques dangereux)
- Circulaire DRT no 12 du 24 mai 2006 (non parue au JO).

2. Aération et assainissement des locaux
- Circulaire du ministère du Travail du 9 mai 1985 (non parue au JO).

3. Prévention des incendies et des explosions

4. Valeurs limites d'exposition professionnelle

5. Maladies de caractère professionnel
- Articles L. 461-6 et D. 461-1 et annexe du Code de la sécurité sociale : déclaration médico-légale de ces affections.

6. Maladies professionnelles
- Article L.461-4 du Code de la sécurité sociale : déclaration obligatoire d'emploi à la Caisse primaire d'assurance maladie et à l'inspection du travail ; tableau n° 9.

7. Surveillance médicale renforcée

8. Classification et étiquetage
 a) du chlorobenzène pur:
 - selon la directive 67/548/CEE ou l'arrêté du 4 août 2005 (JO du 11 août 2005) modifiant l'arrêté du 20 avril 1994...
RECOMMANDATIONS

I. AU POINT DE VUE TECHNIQUE

Stockage
- Stocker le produit à l'air libre ou dans des locaux frais, munis d'une ventilation efficace, à l'abri de toute source d'ignition ou de chaleur et à l'écart des produits incompatibles (oxydants). Le sol des locaux sera incombustible, imperméable et formera cuvette de rétention afin qu'en cas de déversement accidentel, le liquide ne puisse se répandre au dehors.
- Interdire de fumer.
- Mettre le matériel électrique, éclairage compris, en conformité avec la réglementation en vigueur.
- Prêter toutes dispositions pour éviter l'accumulation d'électricité statique.
- Fermer et étiqueter soigneusement les récipients. Reproduire l'étiquetage en cas de fractionnement des emballages.

MANIPULATION
Les prescriptions relatives aux locaux de stockage sont applicables aux ateliers où est manipulé le produit. En outre:
- Instruire le personnel des risques présentés par le produit, des précautions à observer et des mesures à prendre en cas d'accident.
- Entreposer dans les ateliers des quantités de produit relativement faibles et de toute manière ne dépassant pas celles nécessaires au travail d'une journée.
- Éviter l'inhalation de vapeurs. Effectuer en appareil clos toute opération industrielle qui s'y prête. Prévoir une aspiration des vapeurs à leur source d'émission ainsi qu'une ventilation générale des locaux. Prêter également des appareils de protection respiratoire pour certaines opérations exceptionnelles de courte durée; leur choix dépend des conditions de travail; si un appareil filtrant peut être utilisé, il doit être muni d'un filtre de type A. Pour des interventions d'urgence, le port d'un appareil respiratoire autonome solaire est nécessaire.
- Contrôler régulièrement la teneur de l'atmosphère en chlorobenzène.
- Éviter le contact avec la peau ou les yeux. Mettre à la disposition du personnel des vêtements de protection, des gants (par exemple en élastomère fluoré, en polyalcool vinyle); les matières telles que caoutchouc naturel ou synthétique, polyéthylène, polychlorure de vinyle sont déconseillées [35]) et des lunettes de sécurité. Ces effets seront maintenus en bon état et nettoyés après chaque usage.
- Interdire l'emploi d'air ou d'oxygène comprimé pour la circulation du produit ou le séchage des installations.
- Ne jamais procéder à des travaux sur ou dans des cuves et réservoirs contenant ou ayant contenu du chlorobenzène sans prendre les précautions d'usage [36].
- Éviter les rejets atmosphériques et aéreux de chlorobenzène.
II. AU POINT DE VUE MÉDICAL

- À l'embauchoir, éviter d'exposer au chlorobenzénè les personnes atteintes d'affections hépatiques ou rénales chroniques. Il appartiendra au médecin du travail de juger de l'opportunité d'examens complémentaires pour étudier ces fonctions.

- Au cours des visites périodiques, rechercher particulièrement des signes d'irritation cutanée, oculaire et/ou respiratoire. Sauf si le médecin du travail le juge nécessaire, il n'apparaît pas impératif, dans le cas d'exposition modérée et dans l'état actuel des connaissances, de pratiquer des examens complémentaires visant à explorer les fonctions hépatique, rénale et la numération formule sanguine.

Surveillance biologique de l'exposition [9]

Les dosages du 4-chlorophénol total et du 4-chlorocatechol total dans les urines en fin de poste et fin de semaine de travail sont le reflet de l'exposition récente au chlorobenzénè. Ils ne sont toutefois pas spécifiques du chlorobenzénè, ces métabolites pouvant être retrouvés chez les sujets exposés au dichlorobenzénè, au 4-chlorophénol ou aux crésols.

Pour le 4-chlorophénol total, la valeur-guide française est de 25 mg/l de créatinine en fin de poste et le BEI de l'ACGIH (4-chlorophénol total dans les urines après hydrolyse) est de 20 mg/l de créatinine en fin de poste et fin de semaine.

Pour le 4-chlorocatechol total dans les urines en fin de poste et fin de semaine, le BEI de l'ACGIH est de 100 mg/l de créatinine (après hydrolyse).

- Lors d'accidents aigus, dans tous les cas demander l'avis d'un médecin ou du centre antipoison régional ou des services de secours d'urgence médicalisés.

- En cas de contact cutané, laver la peau à grande eau, immédiatement et pendant quinze minutes au moins; retirer en même temps les vêtements même faiblement souillés. Si une irritation apparaît ou si la contamination est étendue ou prolongée, une consultation médicale s'imposera.

- En cas de projection oculaire, laver immédiatement et abondamment à l'eau pendant quinze minutes au moins, paupières bien écartées. Consulter un ophtalmologiste s'il apparaît une douleur, rougeur oculaire ou gêne visuelle.

- En cas d'ingestion, ne pas faire boire et ne pas tenter de provoquer des vomissements. Rincer la bouche à fond avec de l'eau. Quelle que soit la symptomatologie, faire hospitaliser la victime dans les plus brefs délais.

- En cas d'aspiration, retirer le sujet de la zone polluée après avoir pris toutes les précautions nécessaires pour les intervenants. Commencer une décontamination cutanée et oculaire et administrer de l'oxygène, si besoin.

- Si la victime est inconsciente, la placer en position latérale de sécurité; en cas d'arrêt respiratoire, commencer les manœuvres de respiration assistées. Transférer en milieu hospitalier par une ambulance médicalisée.

28. Gabor S, Raucher K — Studies relating to the determination of the maximum permissible concentrations of benzene and monochlorobenzene in the air. Epidemiology, Microbiology and Immunology 1960, 1 : 223-224.

Fiches Internationales de Sécurité Chimique

CHLOROBENZENE

Monochlorobenzène

C₆H₅Cl

Masse moléculaire: 112.6

<table>
<thead>
<tr>
<th>TYPES DE RISQUES/EXPOSITIONS</th>
<th>RISQUES/SYMPTOMES AIGUS</th>
<th>PREVENTION</th>
<th>PREMIER SECOURS/AGENTS D'EXTINCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCENDIE</td>
<td>Inflammable. Emission de fumées (ou de gaz) irritantes ou toxiques lors d'incendie.</td>
<td>PAS de flammes nues, PAS d'entailles et interdiction de fumer.</td>
<td>Poudre, eau pulvérisée, mousse, dioxyde de carbone.</td>
</tr>
<tr>
<td>EXPLOSION</td>
<td>Au-dessus de 27°C, des mélanges air/vapeur explosifs peuvent se former.</td>
<td>Au-dessus de 27°C, système en vace clos, ventilation et équipement électrique protégé contre les explosions.</td>
<td>En cas d'incendie: maintenir les flûts, etc., à basse température en les arrosant d'eau.</td>
</tr>
</tbody>
</table>

CONTACT PHYSIQUE

- **INHALATION**
 Ventilation, aspiration locale ou protection respiratoire.
 Air frais, repos. Consulter un médecin.

- **PEAU**
 Rougeur. Peau sèche.
 Gants de protection.
 Consulter un médecin.

- **YEUX**
 Rougeur. Douleur.
 Lunettes de protection ferrées ou protection oculaire associée à une protection respiratoire.
 Rincer d'abord abondamment à l'eau pendant plusieurs minutes (retirer si possible les lentilles de contact), puis consulter un médecin.

- **INGESTION**
 Douleurs abdominales. (Voir Inhalation).
 Ne pas manger, ne pas boire ni fumer pendant le travail.
 Rincer la bouche. NE PAS faire vomir. Consulter un médecin.

DEVERSEMENTS & FUITEs

Ventilation. Écarter toute source d'ignition. Recueillir le liquide dégagé autant que possible dans des récipients hermétiques. Absorber le liquide restant avec du sable ou avec un absorbant inerte et emporter en lieu sûr. NE PAS laisser ce produit contaminer l'environnement. (Protection individuelle: appareil de protection respiratoire pour gaz et vapeurs organiques).

STOCKAGE

A l'épreuve du feu. Séparer des oxydants forts.

CONDITIONNEMENT & ETIQUETAGE

- Symbole Xn
- Symbole N
- R: 10-20-51/53
- S: 2-24/25-61
- Classe de danger ONU: 3
- Classe d'emballage ONU: III

VOIR IMPORTANTES INFORMATIONS AU DOS
Fiches Internationales de Sécurité Chimique

CHLOROBENZENE

ASPECT PHYSIQUE; APPARENCE: Liquide incolore, d'odeur caractéristique.

DANGERS PHYSIQUES:

DANGERS CHIMIQUES: La substance se décompose en chauffant fortement au contact de surfaces chaudes ou de flammes, produisant des fumées toxiques et corrosives. Réagit violemment avec les oxydants forts en provoquant des risques d'incendie et d'explosion. Attaque le caoutchouc et certains plastiques.

LIMITES D'EXPOSITION PROFESSIONNELLE (LEP):
- TLV: 10 ppm TWA; A3; BEI publié; (ACGIH 2003);
- MAK: 10 ppm, 47 mg/m³;
- Classe de limitation des taux les plus élevés: II(2);
- Classe de substances pouvant présenter un risque pendant la grossesse: C;
- (DFG 2003).

VOIES D'EXPOSITION: La substance peut être absorbée par l'organisme par inhalation de ses vapeurs, à travers la peau et par ingestion.

RISQUE D'INHALATION: Une contamination dangereuse de l'air est rapidement atteinte lors de l'évaporation de cette substance à 20°C.

EFFETS DES EXPOSITIONS DE COURTE DURÉE:
- La substance est irritante pour les yeux et la peau. L'ingestion du liquide peut entraîner une aspiration au niveau des poumons avec un risque de pneumopathie. La substance peut avoir des effets sur le système nerveux central, entrainant une diminution de conscience.

EFFETS DES EXPOSITIONS PROLONGÉES OU REPÉTÉES:
- Le liquide dégraisse la peau. La substance peut avoir des effets sur le foie et les reins.

PROPRIÉTÉS PHYSIQUES
- Point d'ébullition : 132°C
- Point de fusion : -45°C
- Densité relative (eau = 1) : 1.11
- Solubilité dans l'eau à 20°C : 0.05 g/100 ml
- Tension de vapeur à 20°C : 1.17 kPa
- Densité de vapeur relative (air = 1) : 3.88
- Densité relative du mélange air/vapeur à 20°C (air = 1) : 1.03
- Point d'éclair : 27°C (c.f.)
- Température d'auto-inflammation : 590°C
- Limite d'explosivité en volume % dans l'air : 1.3-11
- Coefficient de partage octanol/eau tel que log Poc : 2.18-2.84

DONNEES ENVIRONNEMENTALES
- La substance est nocive pour les organismes aquatiques. Il est fortement recommandé de ne pas laisser ce produit contaminer l'environnement.

NOTES
- NE PAS utiliser à proximité d'un feu, d'une surface chaude ou pendant les opérations de soulage.
- Carte de données d'urgence pour le transport: TREMCARD (R)-30S1134.
AUTRES INFORMATIONS

<table>
<thead>
<tr>
<th>Valeurs limites d'exposition professionnelle d'application en Belgique.</th>
</tr>
</thead>
</table>

ICSC: 0642

CHLOROBENZENE

(C) PISSC, CCE, 1999

NOTICE LEGALE IMPORTANT: La CCE de même que le PISSC, les traducteurs ou toute personne agissant au nom de la CCE ou du PISSC ne sont pas responsables de l'utilisation qui pourrait être faite de cette information. Cette fiche exprime l'avis du comité de révision du PISSC et peut ne pas toujours refléter les recommandations de la législation nationale en la matière. L'utilisateur est donc invité à vérifier la conformité des fiches avec les prescriptions en usage dans son pays.
ANNEXE H

Ethyl-2-hexanol : fiche ICSC

(4 pages)
Fiches internationales de sécurité chimique

2-ETHYLHEXANOL

ICSC: 0890

<table>
<thead>
<tr>
<th>TYPES DE RISQUES/EXPOSITIONS</th>
<th>RISQUES/SYMPTOMES AIGUS</th>
<th>PREVENTION</th>
<th>PREMIER SECOURS/AGENTS D'EXTINCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCENDIE</td>
<td>Combustible.</td>
<td>PAS de flammes nues. PAS de contact avec les matériaux oxydants.</td>
<td>AFFF, mousse résistant aux alcools, poudre, dioxyde de carbone.</td>
</tr>
<tr>
<td>EXPLOSION</td>
<td>Au-dessus de 81°C, des mélanges air/vapeur explosifs peuvent se former.</td>
<td>Au-dessus de 81°C, système en vase clos, ventilation.</td>
<td>En cas d'incendie: maintenir les flûts, etc., à basse température en les arrosant d'eau.</td>
</tr>
<tr>
<td>CONTACT PHYSIQUE</td>
<td>EVITER LA FORMATION DE BROUILLARDS!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• YEUX</td>
<td>Rougeur. Douleur.</td>
<td>Lunettes à coques.</td>
<td>Rincer d'abord abondamment à l'eau pendant plusieurs minutes (retirer si possible les lentilles de contact), puis consulter un médecin.</td>
</tr>
<tr>
<td>• INGESTION</td>
<td>(Suite, voir Inhalation).</td>
<td>Ne pas manger, ne pas boire ni fumer pendant le travail.</td>
<td>Rincer la bouche. Consulter un médecin.</td>
</tr>
</tbody>
</table>

DEVERSEMENTS & FUITES
Recueillir autant que possible dans des récipients hermétiques le liquide répandu. Absorber le liquide restant avec du sable ou avec un absorbant inerte et emporter en lieu sûr.

STOCKAGE
Séparer des oxydants forts, des acides forts.

CONDITIONNEMENT & ETIQUETAGE

Voir importantes informations au dos

ICSC: 0890

Préparé dans le cadre de la coopération entre le Programme International sur la Sécurité Chimique et la Commission Européenne (C) 1993.

Fiches internationales de sécurité chimique
2-ETHYLHEXANOL

DONNEES IMPORTANTES

<table>
<thead>
<tr>
<th>Aspect physique</th>
<th>Apparence: Liq. incolore, d'odeur caractéristique.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGERS PHYSIQUES:</td>
<td></td>
</tr>
<tr>
<td>DANGERS CHIMIQUES:</td>
<td>Réagit vigoureusement avec les matériaux oxydants.</td>
</tr>
</tbody>
</table>

VOIES D'EXPOSITION:

- La substance peut être absorbée par l'organisme par inhalation de ses vapeurs et à travers la peau.

RISQUE D'INHALATION:

- Aucune indication ne peut être donnée sur la vitesse à laquelle une concentration dangereuse dans l'air est atteinte lors de l'évaporation de cette substance à 20°C.

EFFETS DES EXPOSITIONS DE COURTE DUREE:

- La substance est irritante pour les yeux et la peau.

EFFETS DES EXPOSITIONS PROLONGEE OU REPETEES:

PROPRIETES PHYSIQUES

- Point d'ébullition: 184-185°C
- Point de fusion: -76°C
- Densité relative (eau = 1): 0.83
- Solubilité dans l'eau: nulle
- Tension de vapeur à 20°C: 48 Pa
- Densité de vapeur relative (air = 1): 4.5
- Densité relative du mélange air/vapeur à 20°C (air = 1): 1.09
- Point d'éclair: 81°C c.f.
- Température d'auto-inflammation: 231°C
- Limites d'explosivité en volume % dans l'air: 0.9-9.7

DONNEES ENVIRONNEMENTALES

NOTES

- Carte de données d'urgence pour le transport: TREM CARD (R)-96.
- Code NFPA: H 2; F 2; R 0.

AUTRES INFORMATIONS

- ICSC: 0890

NOTICE LEGALE IMPORTANTE:

La CE de même que le PISSC ou toute personne agissant au nom de la CE ou du PISSC ne sauraient être tenus pour responsables de l'utilisation qui pourrait être faite de ces informations. Cette fiche exprime l'avis du comité de révision du PISSC et peut ne pas toujours refléter les recommandations de la législation nationale en la matière. L'utilisateur est donc invité à vérifier la conformité des fiches avec les prescriptions en usage dans son pays.

ANNEXE I

Acide propionique : fiche ICSC

(6 pages)
Fiches internationales de sécurité chimique

ACIDE PROPIONIQUE

ICSC: 0806

- **N° CAS:** 79-09-4
- **N° RTECS:** UE5950000
- **N° ICSC:** 0806
- **N° ONU:** 1848
- **N° CE:** 607-089-00-0

TYPES DE RISQUES/EXPOSITIONS

<table>
<thead>
<tr>
<th>RISQUES/ SYMPTOMES AIGUS</th>
<th>PREVENTION</th>
<th>PREMIER SECOURS/ AGENTS D'EXTINCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCENDIE</td>
<td>Inflammable.</td>
<td>PAS de flammes nues, PAS d'étincelles et interdiction de fumer.</td>
</tr>
<tr>
<td>EXPLOSION</td>
<td>Au-dessus de 54°C, des mélanges air/vapeur explosifs peuvent se former.</td>
<td>Au-dessus de 54°C, système en vase clos, ventilation et équipement électrique protégés contre les explosions.</td>
</tr>
</tbody>
</table>

CONTACT PHYSIQUE

- **INHALATION** | Toux. Respiration difficile. Mal de gorge. | OBSERVER UNE HYGIENE STRICTE! |

DEVERSEMENTS & FUITE

Recueillir le liquide répandu dans des récipients couverts. Absorber le liquide restant avec du sable ou avec un absorbant inerte et emporter en lieu sûr.

STOCKAGE

Séparer des oxydants forts, des bases fortes, des aliments et des produits alimentaires.

CONDITIONNEMENT & ETIQUETAGE

Ne pas transporter avec des aliments ni des produits alimentaires.

Symbolite: C
R: 34
Fiches internationales de sécurité chimique

ACIDE PROPIONIQUE

ICSC: 0806

<table>
<thead>
<tr>
<th>DONNEES PHYSIQUES</th>
<th>ASPECT PHYSIQUE; APPARENCE:</th>
<th>LIQUIDE INCOLORE, HUILEUX, D'ODEUR ACRE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGERS PHYSIQUES:</td>
<td>VOIES D'EXPOSITION:</td>
<td>La substance peut être absorbée par l'organisme par inhalation de ses vapeurs et par ingestion.</td>
</tr>
<tr>
<td>DANGERS CHIMIQUES:</td>
<td>RISQUE D'INHALATION:</td>
<td>Une contamination dangereuse de l'air est rapidement atteinte lors de l'évaporation de cette substance à 20°C.</td>
</tr>
<tr>
<td>LIMITES D'EXPOSITION PROFESSIONNELLE (LEP):</td>
<td>EFFETS DES EXPOSITIONS DE COURTE DUREE:</td>
<td>La substance est corrosive pour les yeux, la peau, et les voies respiratoires.</td>
</tr>
<tr>
<td>TLV: 10 ppm; 30 mg/m³ (ACGIH 1995-1996).</td>
<td>EFFETS DES EXPOSITIONS PROLONGEES OU REPETEES:</td>
<td></td>
</tr>
</tbody>
</table>

PROPRIETES PHYSIQUES

- Point d'ébullition: 141°C
- Point de fusion: -21.5°C
- Densité relative (eau = 1): 0.995
- Solubilité dans l'eau: très bonne

DONNEES ENVIRONNEMENTALES

- Tension de vapeur à 20°C: 386 Pa
- Densité de vapeur relative (air = 1): 2.56
- Point d'éclair: 54.4°C
- Limites d'explosivité en volume % dans l'air: 2.9-14.8

NOTES

Carte de données d'urgence pour le transport: TREMCARD (R)-642.
Code NFPA: H 2, F 2; R 0.

AUTRES INFORMATIONS

ICSC: 0806

© PISSC, CEC, 1993

ACIDE PROPIONIQUE

NOTICE LEGALE IMPORTANTE:

La CE de même que le PISSC ou toute personne agissant au nom de la CE ou du PISSC ne sauraient être tenues pour responsables de l'utilisation qui pourrait être faite de ces informations. Cette fiche exprime l'avis du comité de révision du PISSC et peut ne pas toujours refléter les recommandations de la législation nationale en la matière. L'utilisateur est donc invité à vérifier la conformité des fiches avec les prescriptions en usage dans son pays.

Traduction autorisée de l'International Chemical Safety Card (ICSC), publié par l'UNEP/ILO/WHO dans le cadre de la coopération entre le PISSC et la CE. Programme International sur la Sécurité des