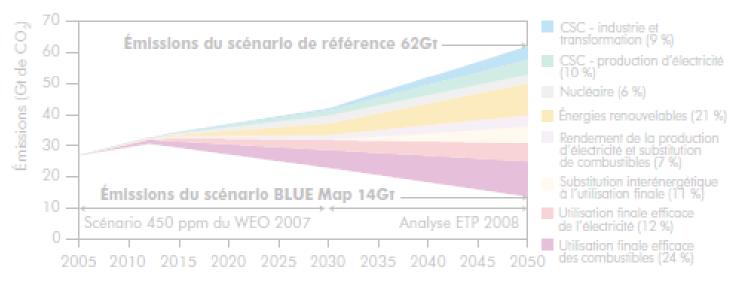


Les risques liés au stockage géologique du CO₂ en aquifère salin profond

Régis Farret, chef de projet

Le contexte:


- 1. La filière captage-transport- injection- stockage
- 2. Les travaux de recherche de l'INERIS

L'analyse des risques :

- 1. Les scénarios
- 2. Le terme source
- 3. Les transferts
- 4. Les impacts sanitaires

Les stratégies de réduction des émissions de CO₂ Objectif -50% en 2050

Scénarios de référence et scénario « blue map », Source IEA , 2008

Quantités à stocker :

9 Gt/an en 2050,

soit 1000 à 3000 sites de 3 à 9 Mt/an,

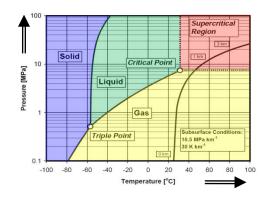
Cumul sur 40 ans : 200 Gt

Capacités de stockage : 2000 Gt ? - GIEC, 2006 (en France : 26 Gt dans le bassin parisien, soit assez + de 30 ans ? -projets METSTOR, SOCECO2)

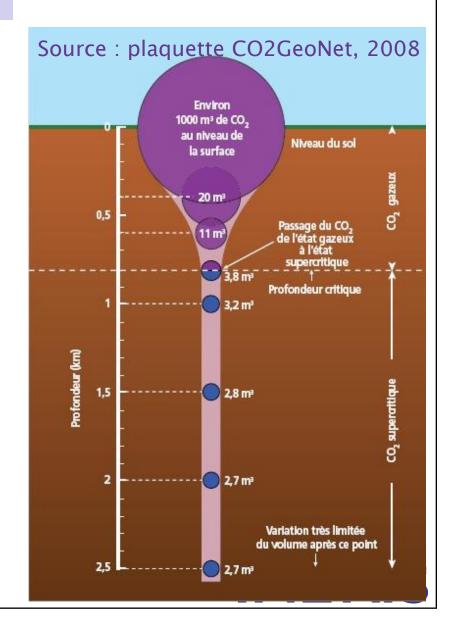
Quantités à stocker pour une centrale de 500 MW: 3 Mt/an, ou 100 kg/s Cumul sur 40 ans : 120 Mt, soit environ

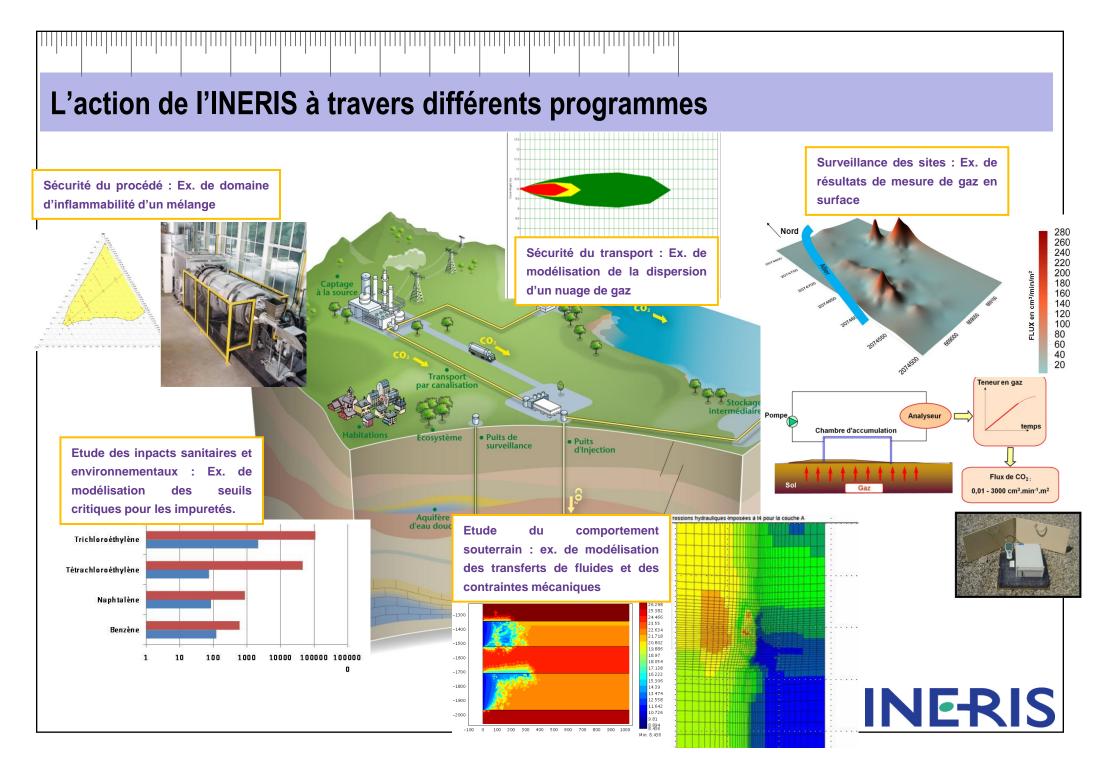
150 Mm³,

soit 100m x 3 km x 5 km (porosité 10%)


Le système : Une « chaîne » de 4 maillons **CAPTAGE:** TRANSPORT: **INJECTION: STOCKAGE:** -Production oxygène / **Canalisation ou Tête d'injection** - Pied de puits solvants **Puits d'injection:** pateau Roche-hôte Combustion tubage, ciment Pompage - Substratum **Récupération CO2** Zone proche-puits¹ **Stockage** -Couverture directe Compression ntermédiaire Utilités - Recouvrements - Autres puits - Failles éventuelles et 3 phases temporelles Exploi-Mémoire Long Terme (700 à 800 ans) tation (150-250 ans) (50 ans) Transfert de Arrêt de la surveillance Fermeture responsabilité à l'Etat INERIS

Propriétés du CO₂


- Propriétés de base :
 - ✓ Gaz toxique : effets létaux vers 10%


(IDLH = 40000 ppm = 4%)

✓ Conc° atmosphérique : 390 ppm (0.039 %)

- CO₂ supercritique :
 - ✓ au-delà du « point critique » : T=31°C, P=74 bar
 - √ faible viscosité d'un gaz
 - ✓ densité d'un liquide, c'est-à-dire volume très réduit

EVARISTE, programme de recherche de l'INERIS : Comment évaluer les aléas et les risques de l'injection de CO₂ en aquifère profond, à court et à long terme ?

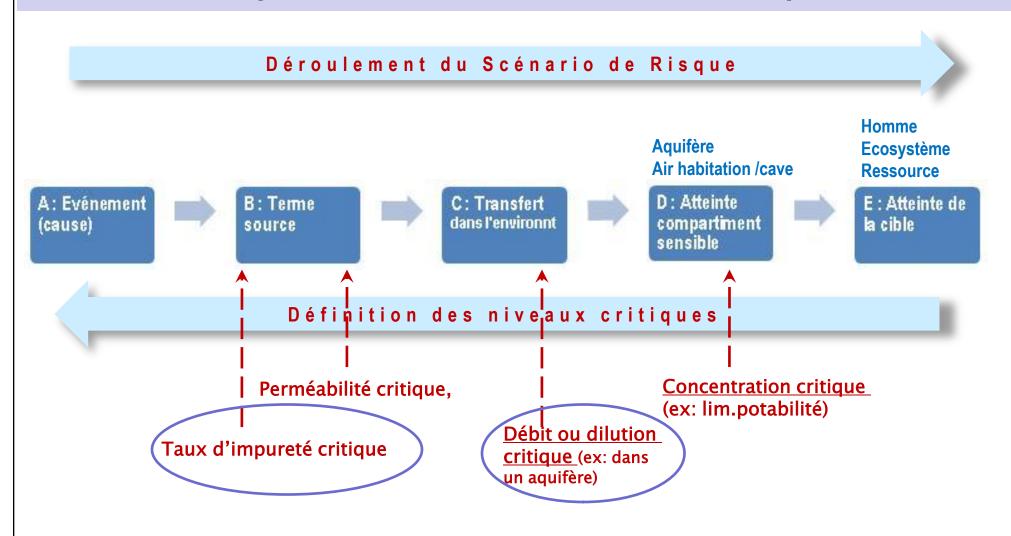
- 1) Mécanismes d'interaction fluide injecté / encaissant :
 - perturbations attendues (notamment en aquifère) : hydrauliques, géochimiques

Etudes connexes:

- Ademe Eureka (Gombert, 2010)
- UE Integ-Risk (Wilday & Farret, 2010)

- 2) Analyse des risques à l'échelle du site de stockage :
- Scénarios en évolution normale
- Scénarios de fuite en situation altérée : faille non détectée...
 - 3) Maîtrise des risques :
 - méthodes de surveillance adaptées ?
 - prévention conception : méthodes de creusement et comblement des forages ?
- → Un regard critique,
- → Un accompagnement à la sécurité, en amont

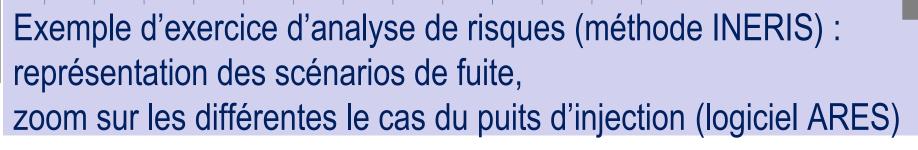
Le contexte:


- 1. La filière captage-transport- injection- stockage cadre
- 2. Les travaux de recherche de l'INERIS

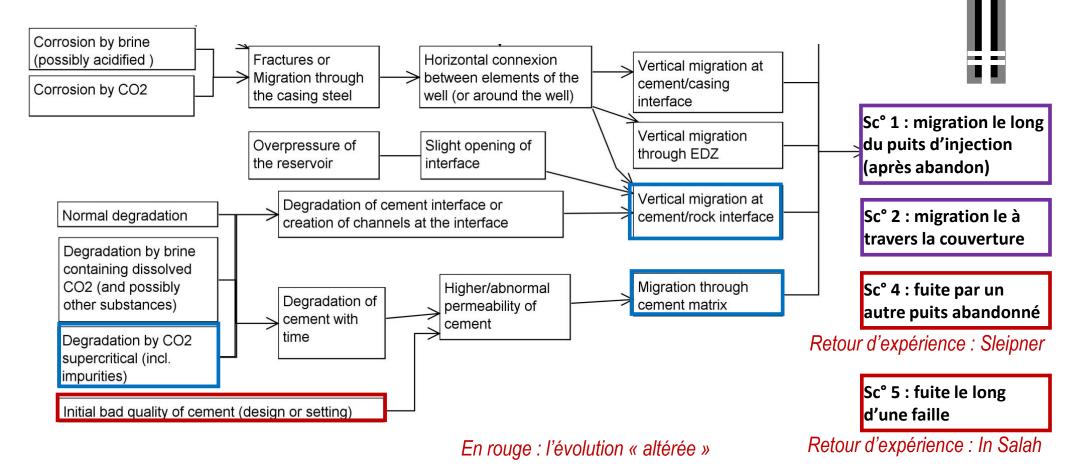
L'analyse des risques :

- 1. Les scénarios
- 2. Le terme source
- 3. Les transferts
- 4. Les impacts sanitaires

Scénario de risque & établissement de niveaux critiques


Evolution « normale » ou « altérée »

- Expérience inspirée d'autres types de stockage souterrains
- Les scénarios <u>d'évolution « normale »</u>


- → Y compris l'évolution à long terme (ex: dégradation des ciments)
- → Appréciés par la modélisation détaillée
- Les scénarios <u>d'évolution « altérée »</u>
 - → Une perméabilité plus grande, une dégradation plus rapide.
 - → Un événement imprévu : séisme, incident en surface.
 - → Un défaut : faille non détectée, cimentation défectueuse.
 - → Au-delà de la modélisation : étude des incertitudes, cas types

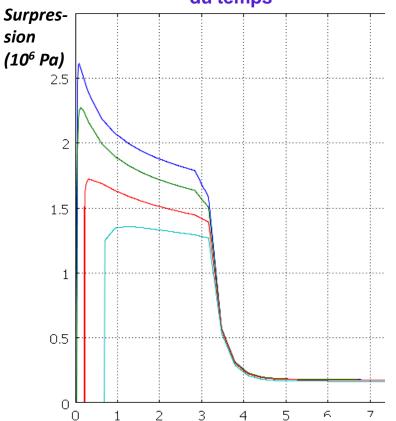
Source: Wilday and Farret, Integ-Risk report, ErraA2-CCS (2010)

Ref. sous-jacentes: Celia et al (2004), Viswanathan et al. (2008), Benson & Cook (2005)

Le contexte :

- 1. La filière captage-transport- injection- stockage cadre
- 2. Les travaux de recherche de l'INERIS

L'analyse des risques :


- 1. Les scénarios
- 2. Le terme source
- 3. Les transferts
- 4. Les impacts sanitaires

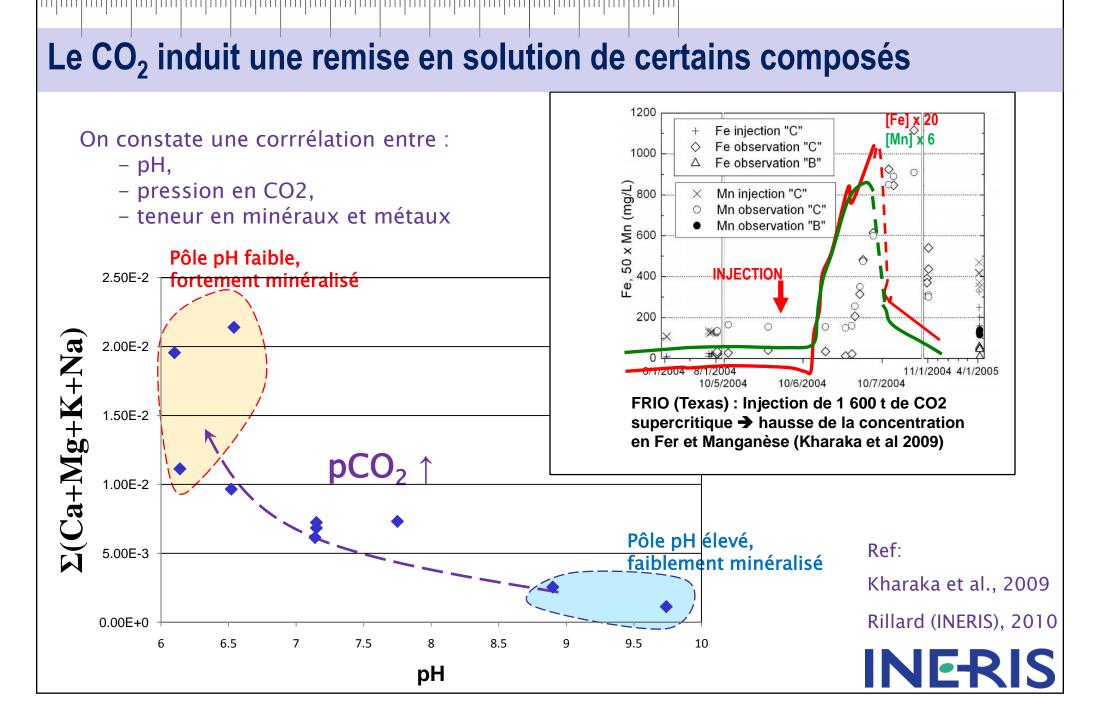
Terme source : les débits et surpressions (modélisation INERIS)

- Injection à 1500m de profondeur (réservoir du Dogger)
- Au milieu du réservoir
- Débit de 1 Mtonne de CO₂/an, soit 30 kg/s
- Durée d'injection : 50 ans
- Surpression estimée : de l'ordre de 1 MPa (10 bar) au toit du réservoir
- Dans ce qui suit :
 - Nous nous intéressons à la période d'injection et après, soit 100 ans environ
 - Nous supposons une surpression constante de 1 MPa

Temps (10^8 secondes) 1 an = 3. 10^7 secondes

Les 3 principaux types de « substances annexes »

Gaz injecté


CO₂ + Impuretés [peu mesurées] Interaction avec la matrice Gaz natifs (3) (CH4, H2S...) CO_2 + Composés + Impuretés (1) dissous (2) (NOx, <u>H2S</u>, HAP, (Fe, Mg, <u>Pb</u>, U, benzene, Ni, Pb...) terres rares....) [peu étudiés]

dans le sous-sol (phase gazeuse ou liquide)

Composés présents

- - (1) Impuretés co-injectées : leurs potentiels transferts et effets sanitaires seront étudiés ci-après
 - (2) Composés dissous à partir de la roche : processus explicité ci-après

Valeurs mesurées pour les composés mis en solution

Extrait de l'étude Eureka (INERIS-Ademe : Gombert, 2010),

Catégorie	Elément	Facteur de variation	Valeur initiale dans la saumure ou dans des analogues naturels pauvres en CO ₂	Isaumure apres	Références
Physicochimie	рН	- 2,5 à -2,2	5,75 à 7,95	3,55 à 5,41	Zuddas 2009
Eléments mineurs	Fe	x 22	# 50 mg/l	# 1100 mg/l	Carpenter 1974, Kharaka et Hanor
	Mn	x 8	2,75 mg/l	22 mg/l	2007, Kharaka et al. 2009
Eléments Trace Métalliques	Plomb	x 1000 x 1000	# 0,02 µg/l # 0,01 µg/l	# 20 µg/l # 10 µg/	Kharaka 1987
	Aluminium	x 100 à 1000		Teneurs + 2 à 3 ordres de grandeur	Giordano 2000 Wang et Jaffe 2004
Radioéléments	Uranium	x 100 à 1000	# 0,001 à 1 µg/l	# 0,0001 à 1 mg/l	Zuddas 2009

Pourquoi le CO₂ induit-il une remise en solution des métaux ?

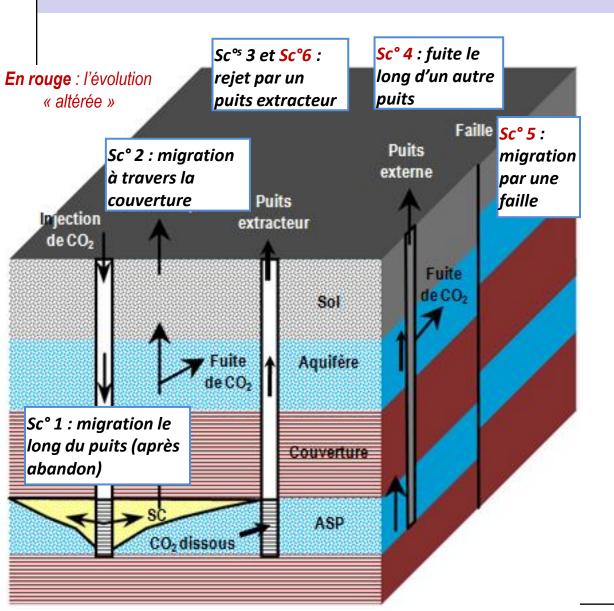
L'injection de CO2 provoque un déséquilibre acido-basique

 Dissolution des métaux (ETM) qui sont alors mis en solution

- La formation de complexes métalliques est facilitée
- La stabilité en solution et le transport des métaux (ETM) sont ainsi facilités, et gouvernés par les processus d'oxydo-réduction

INERIS

Le contexte:


- 1. La filière captage-transport- injection- stockage cadre
- 2. Les travaux de recherche de l'INERIS

L'analyse des risques :

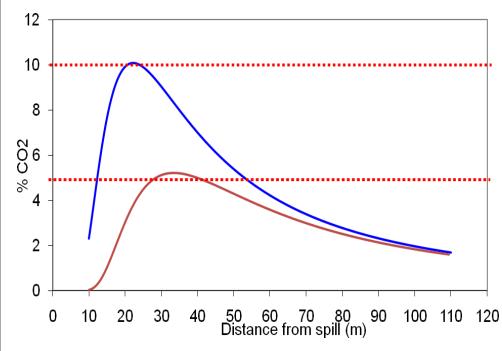
- 1. Les scénarios
- 2. Le terme source
- 3. Les transferts
- 4. Les impacts sanitaires

Le modèle conceptuel et les scénarios majeurs de fuites

Cas 1 : migration vers un aquifère sus-jacent				
Hypothòsos	L'aquifère piège tout le CO ₂			
Hypothèses	La dilution est instantanée			
Hauteur de	30 m			
nappe				
Vitesse	0,3 m/an (perméabilité 10 ⁻¹²			
d'écoulement de	m², gradient hydraulique 1‰),			
la nappe	inspiré de nappe de l'Albien			
Surface	10 km² (2 x 5 km, inspiré de			
concernée	Sleipner)			
Cas 2 : émanation en surface				
	Milieu confiné (habitation,			
	cave) - Les aquifères ne			
Hypothèses	piègent pas le CO ₂			
	Approche comparative entre			
	les substances			

Evolution « normale » ou « altérée »: scénarios de fuites (étude INERIS)

Condition	Conditions normales					
Scé- nario	Fluide	Chemin de fuite	Temps d'arrivée	Débit retenu	% de la quantité stockée (si fuite pendant 100 ans)	Autres valeurs de la littérature
1	CO ₂	Puits abandonné et colmaté, Rayon = 0,15 m - Perméabilité du ciment = 10 ⁻¹¹ m ²	jour	10 ⁻⁵ kg/s (300 kg/an)	négligeable	10 ⁻⁶ à10 ⁻⁵ kg/s (Giraud, 2009) 1,4. 10 ⁻⁵ kg/s (LeNeveu 2007) 10 ⁻⁴ kg/s (Bouc 2010) 10 à 100 kg/an (REX In Salah)
2	CO ₂	Couverture Surpression 1 MPa Perméabilité =10 ⁻¹⁷ m ² Epaisseur = 100 m	millénaire	0,12 kg/s (0,4 kg/an/m²) Débit 1000 fois moindre si perméabilité=10 ⁻¹⁸	0,8%	
Condit	Conditions altérées					
4	CO ₂	Puits externe ouvert Rayon = 0,10 m	-	1 kg/s	6%	0,350 kg/s (REX Gouveia 2006)
5	CO ₂	Faille ouverte sans remplissage, Ouverture = 0,1 mm - Longueur = 1 km	-	0,2 kg/s (0,1 kg/s/km sur 2 km)	1,3%	0,02 kg/s/km (Bouc 2010, faille plus large, perméabilité plus faible)


Source: Thoraval 2010, Farret et al 2010, Wilday and Farret 2010

En rouge : l'évolution « altérée »

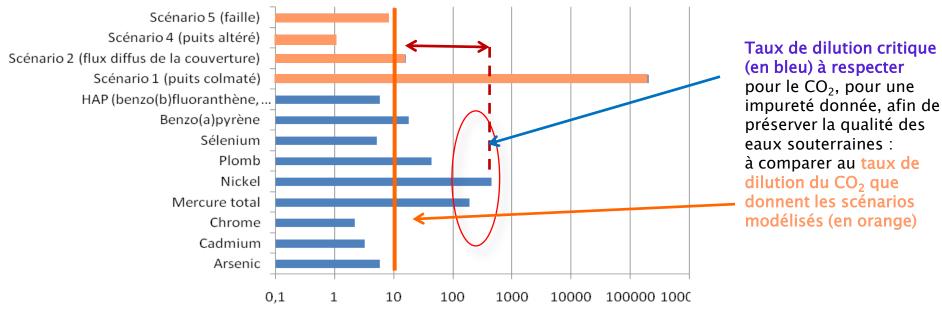
Les rejets en surface : le rejet accidentel sur une canalisation

Conditions accidentelles				Distance d'effet létal	Détails	
T.SE1	CO ₂	Effacement de joint/ point de corrosion, pression 10 MPa	-	env. 10 kg/s	10 à 20 m. conditions mét	- Variations selon conditions météo, température du CO ₂
T.SE3	CO ₂	Rupture de canalisation diamètre 150mm, pression 10 MPa	-	env. 100 kg/s	30 à 100 m	- Rejet supposé horizontal

Terme source 10 kg/s, rejet horizontal

Le contexte:

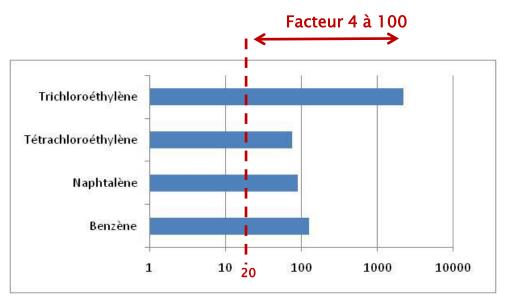
- 1. La filière captage-transport- injection- stockage cadre
- 2. Les travaux de recherche de l'INERIS


L'analyse des risques :

- 1. Les scénarios
- 2. Le terme source
- 3. Les transferts
- 4. Les impacts sanitaires

Cas 1: Estimation des impacts liés aux impuretés : migration vers un aquifère

- On suppose un taux d'impuretés injectées avec le CO₂; (Nota : manque de données précises)
- calcul d'un « taux de dilution critique pour le CO₂ » dans la nappe , pour une impureté donnée
- plus ce taux critique est élevé pour une substance donnée, plus son impact sanitaire potentiel est fort


→ Impact potentiel des impuretés

Par exemple : pour le scénario 5 de migration par une faille : Ni et Hg, puis Pb, B(a)P) Dit autrement, à l'étape de captage il faudra atteindre un abattement d'un facteur 100 pour ces substances (soit un taux d'épuration de 99%)

→ Besoin d'affiner ces résultats: 1) par une meilleure caractérisation des impuretés et 2) par la connaissance du milieu et des paramètres de modélisation

Cas 2 : Emissions de gaz en surface - Cas d'un milieu confiné de type cave

- Calcul de taux de dilution critique en milieu confiné (air d'une cave),
 à appliquer au CO₂ pour chaque impureté
- Puis comparaison avec le <u>taux de dilution critique du CO₂ en tant que toxique lui-même = 20</u> (car concentration critique de 5%, premiers symptômes d'intoxication)

Taux établis sur la base des valeurs guides dans l'air de l'OMS ou de l'AFSSET (bleu),

→ Impact potentiel des impuretés > à celui du CO₂ lui-même (jusqu'à un facteur 100)

Le contexte:

- 1. La filière captage-transport- injection- stockage cadre
- 2. Les travaux de recherche de l'INERIS

L'analyse des risques :

- 1. Les scénarios
- 2. Le terme source
- 3. Les transferts
- 4. Les impacts sanitaires

Quelques enseignements

- Intégrer le facteur temps :
 - Des scénarios peu probables à court terme sont plus prévisibles à long terme (séisme ? intrusion ??)

- En termes organisationnels, <u>assurer la surveillance à (très) long terme</u>
- En termes scientifiques, réduire les incertitudes
- Prendre en compte l'impact des <u>impuretés</u>,
 et si besoin imposer des limites basées sur le risque
- Définir les scénarios d'évolution « normale » ET les scénarios d'évolution « altérée »
 Ce qui est probable ou certain (ex: dégradation géochimique des ciments et de la roche)
 n'est pas <u>le plus impactant, comparé à la</u> fuite le long d'une faille près d'une zone habitée)
- Assurer un « <u>Retour d'expérience »</u> transparent
 - → regrouper tous les incidents (fuites + incidents de surveillance par ex.)

Stratégie 1 : critères de choix des sites

- Caractéristiques du stockage :
 - capacité (porosité, épaisseur...), injectivité (perméabilité), réactivité chimique
- Caractéristiques de la roche couverture :
 - forme, imperméabilité, épaisseur, résistance mécanique
- Absence de discontinuités :
 - failles naturelles, puits antérieurs
- Stabilité géologique (absence de sismicité importante)
- Caractéristiques des recouvrements et de leur vulnérabilité :
 absence de ressources minérales, vulnérabilité et vitesse d'écoulement des aquifères,
 vulnérabilité et habitations en surface

Il faudra cumuler 1°) une approche « a minima » (avec des guides qui définiront les critères et seuils) et 2°) des études d'impact au cas par cas

Stratégie 2 : fonctions de sécurité

Déclinaison concrète cumulant des **mesures de conception** et des **mesures de prévention des risques** :

- Préconisations de <u>conception</u>: techniques de creusement des puits, localisation, ciments employés
- Conditions <u>d'exploitation</u> du stockage : pression et débit d'injection, vannes automatiques de sécurité
- Spécifications de <u>composition</u> (impuretés) du gaz injecté
- Modalités de <u>comblement</u> des puits (type de ciments ou de matériaux)
- Stratégie de <u>surveillance</u> adaptée aux phases de vie (ex: puits connus, aquifères de contrôle)
- Le cas échéant, <u>mesures correctives</u> (à prévoir dès le dossier d'autorisation)
- → Il y aura des étapes décisionnelles et réglementaires successives:

ex : permis d'exploration, autorisation d'exploiter, fermeture, abandon (transfert à l'Etat).

→ Il faudra cumuler une approche « a minima » (scénarios à considérer, barrières à imposer) et des études au cas par cas (étude d'impact)

