

Surveillance de la qualité de l'air en situation de crise

Rencontre ONG – INERIS 17 mai 2011

- ✓ Le dispositif de surveillance de la qualité de l'air en France
- ✓ Sa mise en œuvre en situation de crise:

L'éruption du Volcan Eyjafjallajökull

Les feux de Russie

Augustin Colette / augustin.colette@ineris.fr
Bertrand Bessagnet / bertrand.bessagnet@ineris.fr
Laura Chiappini / laura.chiappini@ineris.fr

Le dispositif de surveillance de la qualité de l'air

Le Ministère chargé de l'Ecologie définit et met en œuvre la politique nationale de surveillance en application de la Directive Européenne 2008/50/CE

33 Associations Agréées de Surveillance de la Qualité de l'Air (AASQA)

- ✓ Missions: surveiller, prévoir, étudier, informer
- ✓ Membres représentants : état, collectivités locales et territoriales, industriels, associations et personnalités qualifiées
- ✓ Financement : état, collectivités, industriels

750 Stations fixes 2200 analyseurs automatiques

Outils de modélisation régionale de la pollution atmosphérique

Le Laboratoire Central de Surveillance de la Qualité de l'Air (INERIS, EMD, LNE)

Laboratoire national de référence

- ✓ Appui scientifique et technique aux AASQA et au Ministère
- ✓ Guides et recommandations
- ✓ Garant de la qualité des mesures
- ✓ Lien entre la recherche et l'application sur le terrain

Coordinateur national du dispositif de surveillance de la qualité de l'air, en lien avec les AASQA

Les sites de mesures, les équipements et les outils des AASQA reposent sur des **préconisations techniques** communes, en vue de répondre de manière **harmonisée** aux obligations nationales ou européennes, ainsi qu'à des exigences locales

Le dispositif de surveillance de la qualité de l'air

	PM	Valeur limite (µg m ⁻³)	Critères associés	Date limite
	PM10	50	Valeur sur 24 h ne pas dépasser + de 35 fois/an	1 ^{er} janvier 2005
		40	Moyenne sur année civile	1 ^{er} janvier 2005
	PM2.5	25	Moyenne annuelle	1 ^{er} janvier 2015

Le programme CARA

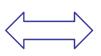
Objectifs

✓ Documenter l'origine des PM₁₀ et PM_{2.5} (pics et situations de fond)

✓ Améliorer les outils de la modélisation

✓ Développer des méthodes de mesure harmonisées aux plans national et européen

Méthode


✓ Mesurer la composition chimique des PM sur plusieurs sites urbains et/ou ruraux au cours d'épisodes d'intérêts à partir de filtres collectés par les AASQA

Espèces mesurées en routine

- Anions et cations : sulfate, nitrate, ammonium...

- EC/OC

NORD-PAS-DE-CA LAIS

PICARDIE

ILE-DE-

FRANCE

HAUTE-

NORMANDIE

CENTRE

LIMOUSIN

MIDI-PYRÉNÉES

CARA

PAYS DE LA LOIRE

BRETAGNE

NORMANDIE

POITOU-

CHARENTES

AQUITAINE

CARA

CARA

CARA

CHAMPAGNE

ARDENNE

BOURGOGNE

CARA

AUVERGNE

LANGUEDOC ROUSELLON CARA

EORRAINE

FRANCHE-

CARA

CARA

CARA

CARA

RHÔNE-ALPES

CARA

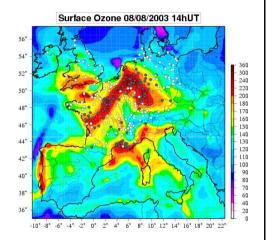
CARA

CARA

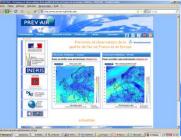
ALBACE

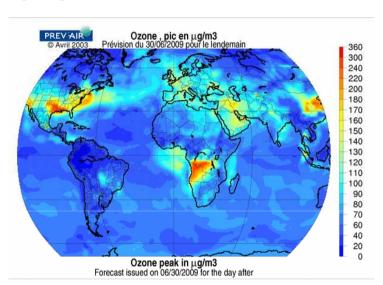
Mesures spécifiques

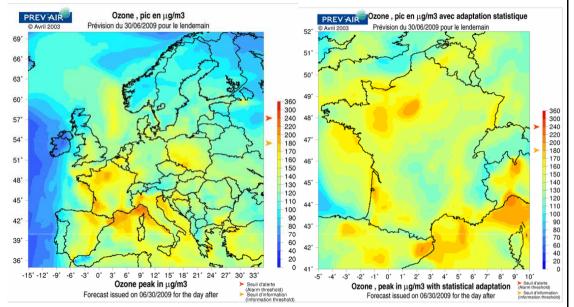
Traceurs de sources



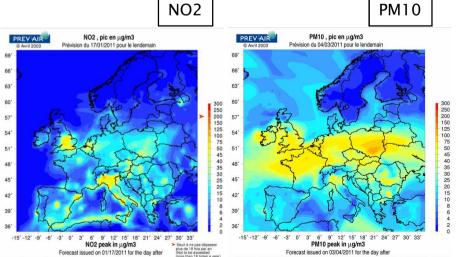
La prévision au service de la surveillance: la plateforme Prév'AIR

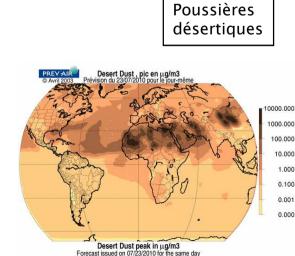

- Le système de prévision de qualité de l'air opérationnel de référence à l'échelle nationale
- Une approche novatrice, fondée sur les principes de modélisation numérique eulérienne :
 - Prév'AIR fournit quotidiennement des cartes de concentration des principaux polluants réglementés (O3, NO2, et particules) jusqu'à trois jours en avance.
 - Ces cartes sont utilisées (conjointement avec les mesures des AASQA) pour informer le public / déclencher des mesures d'urgence
 - Cette information est gratuite, publique et distribuée auprès des principaux acteurs (agences régionales, partenaires privés et universitaires, en France et à l'étranger)





Produits disponibles: www.prevair.org


Domaines géographiques imbriqués

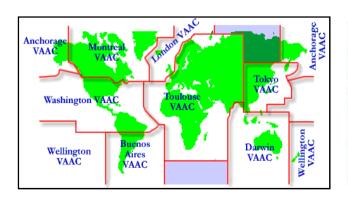


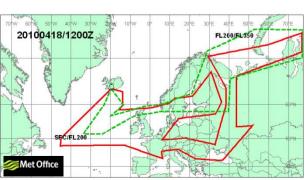
Ozone peak in µg/m3
Forecast issued on 07/07/2010 for two days after

Plan de la présentation

Risques liés à une éruption volcanique

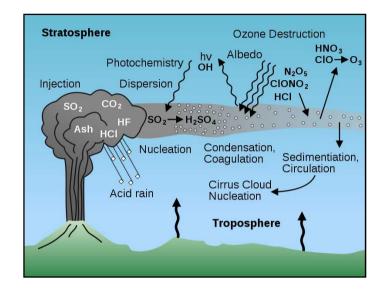
Aviation / Climat / Santé

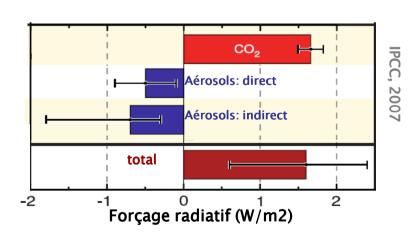

L'éruption de l'Eyjafjallajökull


- Surveillance
 - Détection à distance
 - Prévision du déplacement du panache
 - Analyse chimique
- Quantification de l'impact sur la qualité de l'air

Risques: Aviation

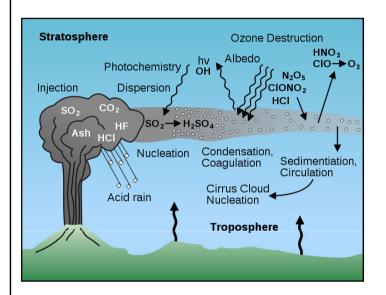
- Cendres volcaniques riches en silicates:
 - Température de fusion : 1100℃
 - Température dans une turbine d'avion: 1400℃
- Incidents passés:
 - 1982: BA9/Indonésie descente de 11000m à 3700m
 - 1989: KLM867/Alaska descente de 11000m à 6300m
- Surveillance de l'espace aérien
 - Volcanic Ash Advisory Centers

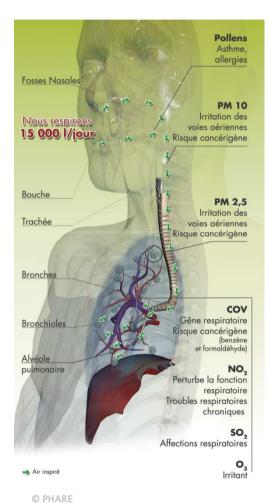


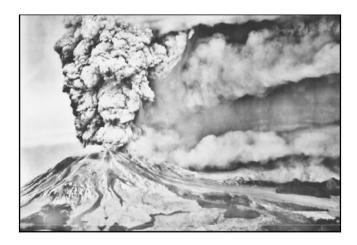


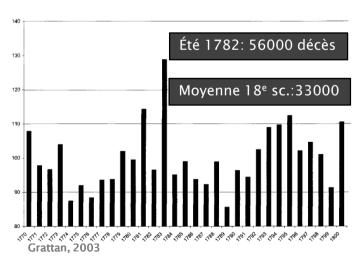
Risques: Climat

Injection dans l'atmosphère:


- dioxyde de carbone
 - effet "réchauffant"
- aérosols
 - cendres & sulfates
 - effet refroidissant
- émissions de CO₂ (total sur 10j)
 - Eyjafjallajökull : 150,000t
 - Aviation: 2,800,000t




Risques: Santé

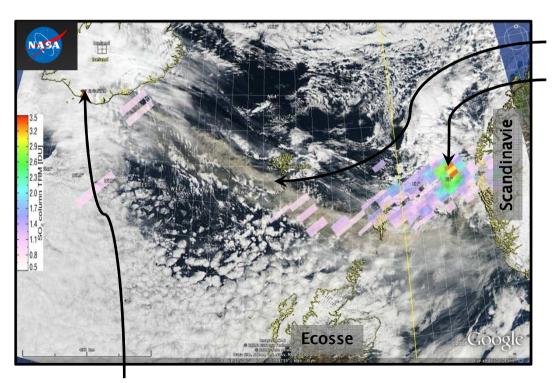


Composé	Impact	
SO ₂ , Aérosols	Appareil respiratoire	
H ₂ S, F	Maux de tête	
H ₂ S, SO ₂	Irritation des yeux	
H ₂ S	Perte d'appétit	

Eruption du Laki 1782

Eruption de l'Eyjafjallajökull le 14 Avril 2010

Anticipation du passage du panache au-dessus de la France


- Suivi des observations à distance
- Développement d'outils numériques dédiés pour la prévision

Observation du panache depuis l'espace

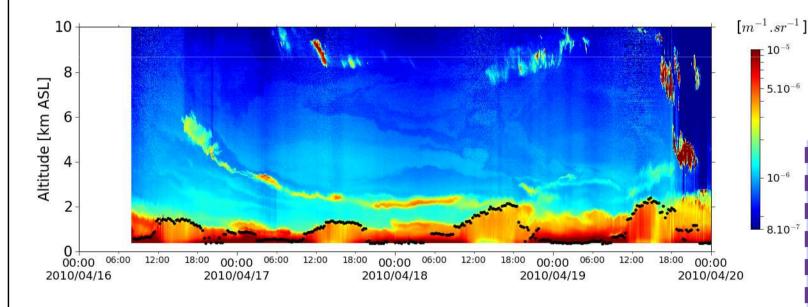
Télédétection spatiale

- Image dans le spectre visible pour les cendres volcaniques (MODIS)
- Image dans le spectre ultra-violet pour le SO2 (OMI)

cendres

SO2

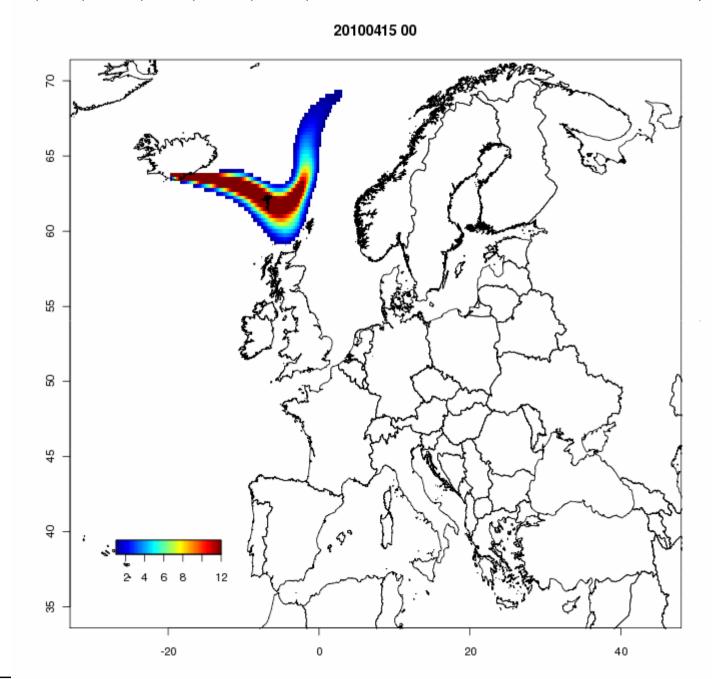
Les satellites permettent de localiser le panache mais ne donnent pas d'information sur son altitude

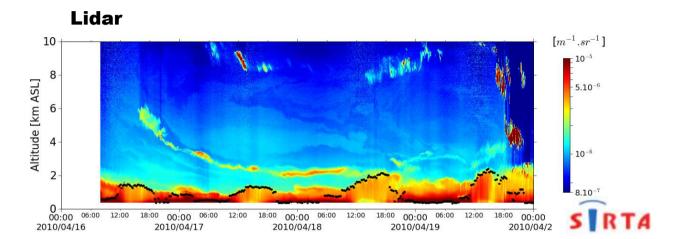

Eyjafjallajökull

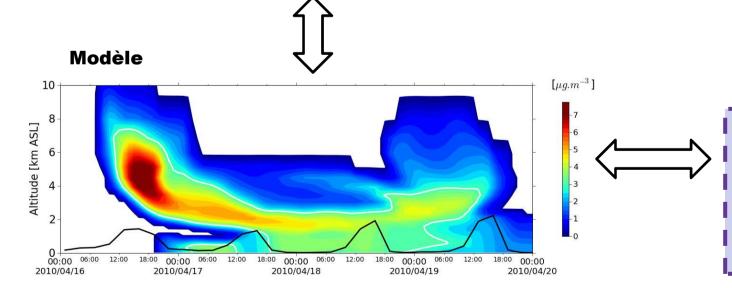
Observation du panache depuis le sol

LIDAR: télédétection optique

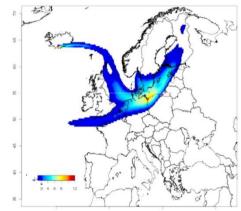
- Émission d'un signal laser vers l'atmosphère
- Mesure de la fraction de lumière rétro-diffusée
- Observation depuis l'observatoire du SIRTA (Ecole Polytechnique, Palaiseau)


Le Lidar détecte le panache en altitude et lors de sa descente vers la surface mais cette mesure est ponctuelle


Prévision


- Concentration de cendres volcaniques intégrée sur la verticale
- Résultats du modèle CHIMERE pour la période du 15 au 21 Avril 2010

Le modèle permet de prévoir le déplacement du panache en 3D



Comparaison Modèle/Mesure

Concentration modélisée à la surface

Ayant été validé par rapport aux mesures, le modèle peut être utilisé pour prévoir la localisation du panache

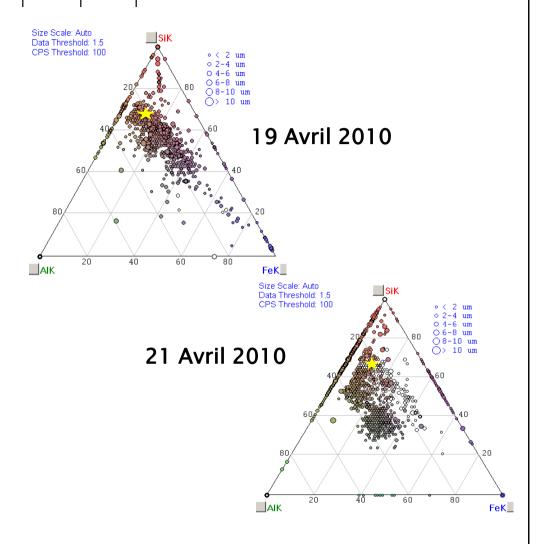
Eruption de l'Eyjafjallajökull le 14 Avril 2010

Evaluation d'un impact à la surface

Suivi de la composition du panache

- Mise en place de prélèvements à l'INERIS (Verneuil-en-Halatte)
- Vérification au microscope électronique de la signature du panache
- Suivi des concentrations de particules en temps réel (AASQA)

Analyse atomique

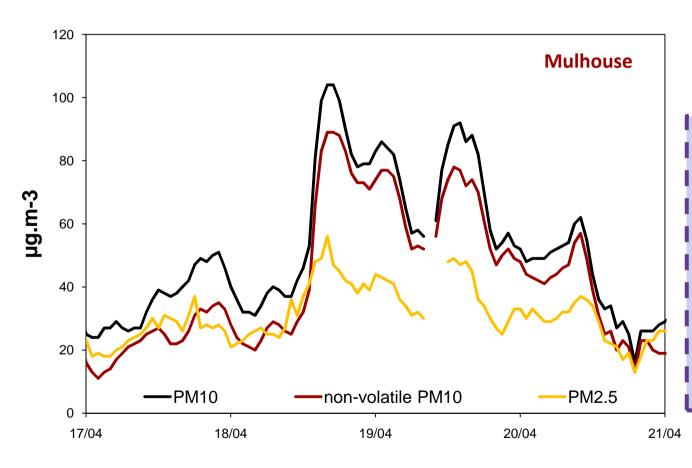

Microscope Electronique à Balayage

- Filtres cellulose prélevés à l'INERIS
- Comparaison avec ratio
 Silicium, Fer, Aluminium mesuré
 à proximité du volcan ()

Le MEB permet de vérifier la signature du panache et de s'assurer qu'il s'agit bien de l'Eyjafjallajökull.

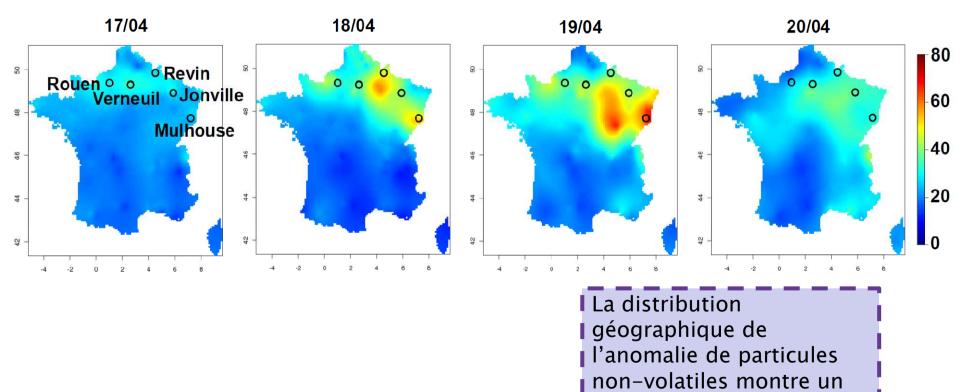
Le 19 Avril la signature est proche de celle du volcan.

Le 21 Avril elle change significativement.



Concentration totale d'aérosols

Suivi des concentrations en temps réel par TEOM-FDMS


Le 18 avril dans le nordest de la France on détecte une augmentation de la concentration en particules grossières (PM10) et non-volatiles

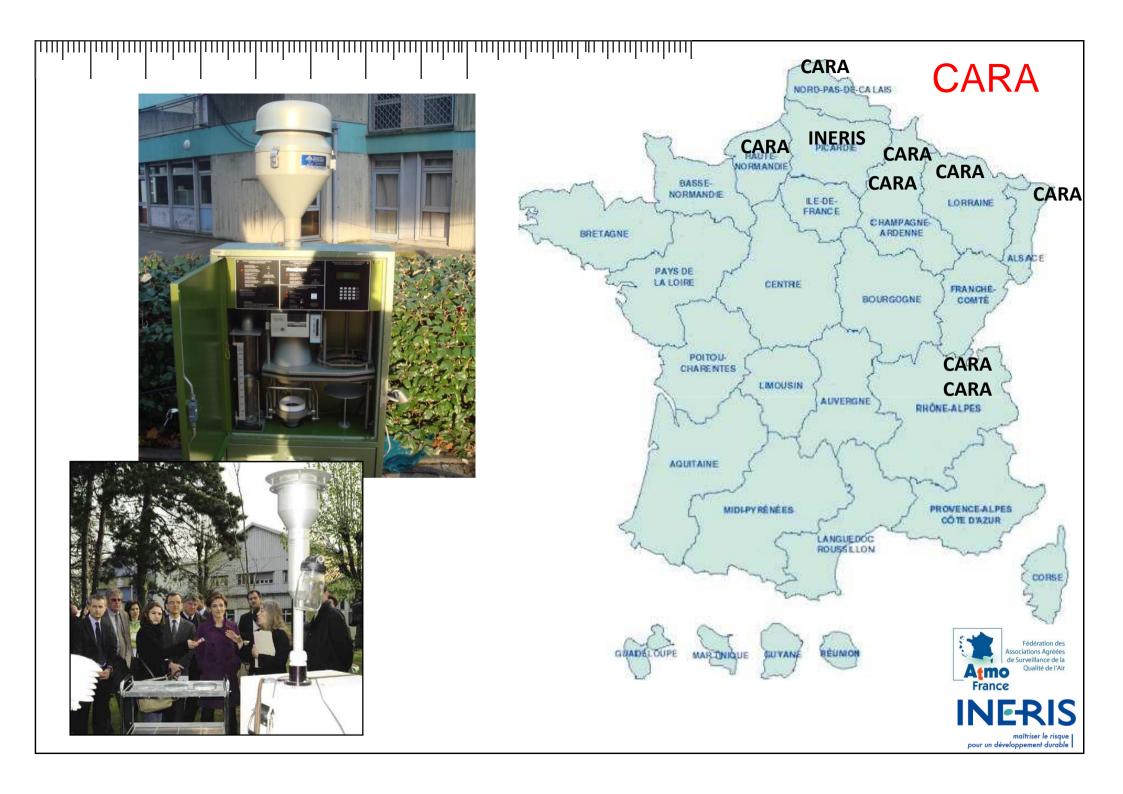
Mais on ne peut pas déduire précisément quelle fraction est attribuable au volcan

Etendue du panache d'aérosols à la surface

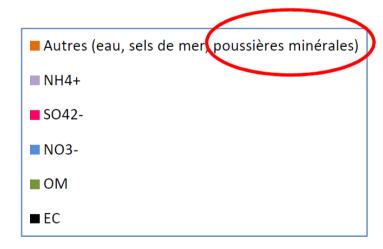
 Cartographies réalisées à partir des données TEOM-FMDS obtenues sur plus de 150 stations de fond (rural et urbain).

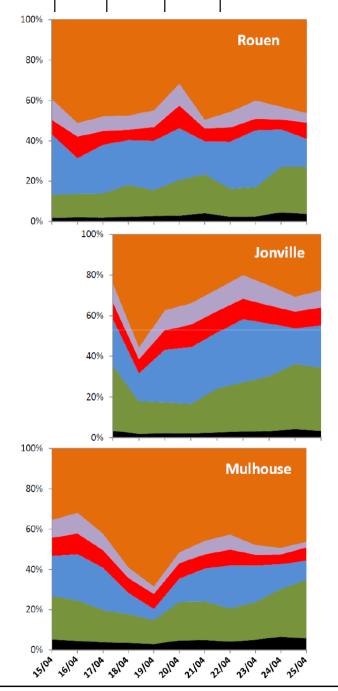
impact maximum les 18 et 19 Avril dans le Nord-

Est de la France


Eruption de l'Eyjafjallajökull le 14 Avril 2010

Quantification d'un impact à la surface


- Rapatriement des filtres prélevés en région (programme CARA)
- Analyse en urgence à l'INERIS



Analyse chimique

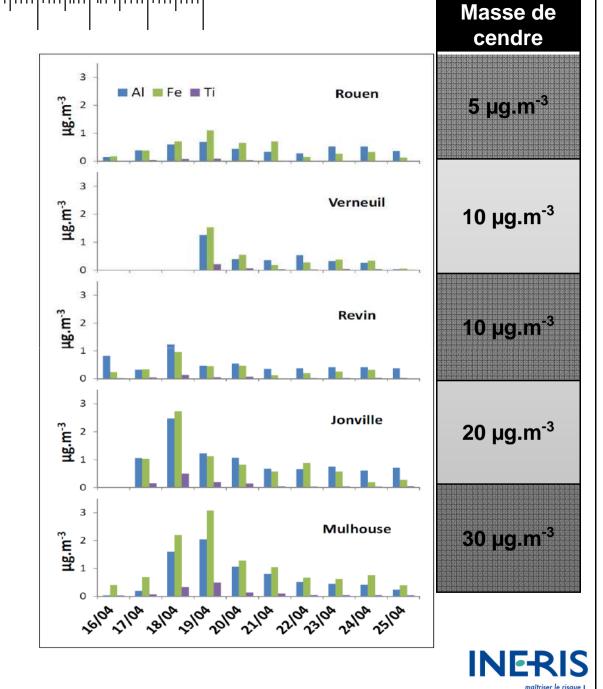
- aérosols carbonés:
 - méthode thermo-optique
- espèces solubles:
 - chromatographie ionique

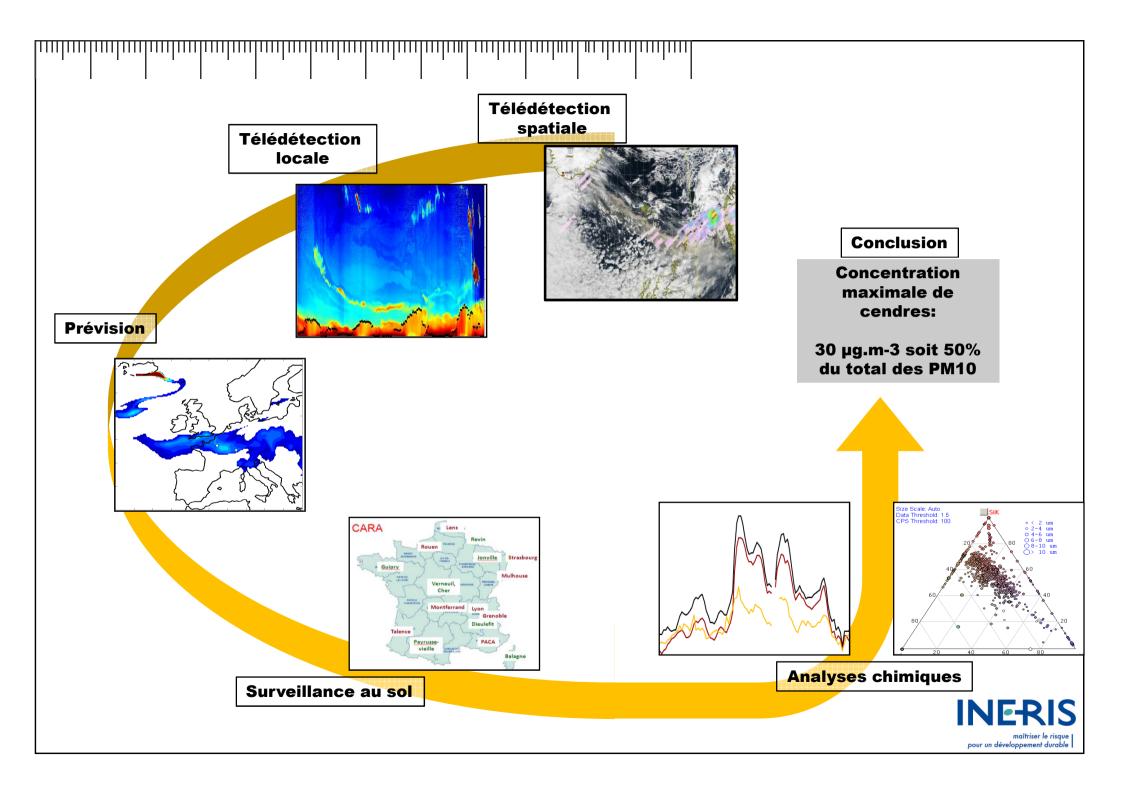
Augmentation de la fraction de particules minérales autour du 18-19 Avril dans le Nord Est de la France.

Mais le volcan ne constitue pas la seule source de particules minérales dans l'atmosphère

Analyse chimique

Composition mesurée en France:


Aluminium, Titane, Fer


Composition mesurée à proximité du volcan:

% Massique					
SiO ₂	57,88				
Al_2O_3	15,59				
FeO	9,60				
TiO ₂	1,58				

Nordic Volcanological Center

En supposant que la composition chimique du panache n'a pas évolué lors de son transport, on peut en déduire la masse totale de cendres.

ANNEXE	
	INE-RIS maîtriser le risque pour un développement durable

Composé	Valeur limite (µg m ⁻³)	Critères associés	Date limite	
Particules (PM10)	50	Valeur sur 24 h ne pas dépasser + de 35 fois/an	1 ^{er} janvier 2005	
	40	Moyenne sur année civile	1 ^{er} janvier 2005	
Particules (PM2.5)	25	Moyenne annuelle	1 ^{er} janvier 2015	
NO_2	200	Valeur horaire ne pas dépasser plus de 18 fois/an	1 ^{er} janvier 2010	
1402	40	Moyenne annuelle	1 ^{er} janvier 2010	
NOx	30	Moyenne annuelle		
Pb	0.5	Moyenne annuelle	1 ^{er} janvier 2005 1 ^{er} janvier 2010 (près industries)	
Benzène	5	Moyenne annuelle	1 ^{er} janvier 2010	
CO	10000	60 %	1 ^{er} janvier 2005	
	120	Moyenne 8h ne pas dépasser plus de 25 jours/an	1 ^{er} janvier 2010	
O_3	180	Moyenne horaire (seuil d'information)		
	240	Moyenne horaire (seuil d'alerte)		

Actions de réduction de la pollution atmosphériques

Le plan particules (Loi Grenelle 1)

Objectif: réduction de la pollution de fond par les particules, de manière quasi-permanente

Mesures dans les secteurs:

- Domestique (chauffage au bois, brulage...)
- Industrie (chaudières, réduction émissions installations classées…)
- Tertiaire (chaudières...)
- Les transports (stationnement, transport en commun, ZAPA)
- Agriculture (améliorer les pratiques d'épandage, de nourriture des animaux, de récolte...)

Actions de réduction de la pollution atmosphériques

*****Zones d'actions prioritaires pour l'air ZAPA (Loi Grenelle 2)

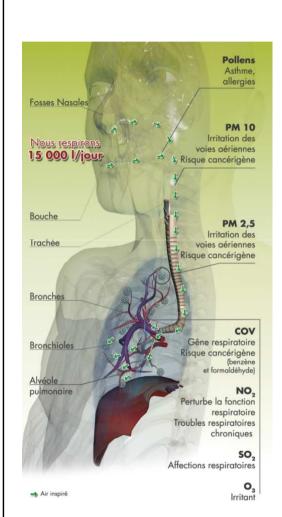
Zones à bas niveau d'émission, situées dans et autour des villes,

Objectif: diminution de la pollution atmosphérique afin d'améliorer la santé des habitants donc d'augmenter leur espérance de vie

Instrument à disposition des collectivités locales pour **réduire** la **pollution atmosphérique liée à la circulation routière** en zone urbaine.

3 ans, à l'initiative des communes ou groupements de communes de plus de 100 000 habitants dans zones « points noirs de pollution »

8 collectivités Paris, Plaine Commune, Clermont Communauté, Nice Côte d'Azur, Grenoble Alpes Métropole, le Grand Lyon, Communauté de Pays d'Aix, Communauté Urbaine de Bordeaux.

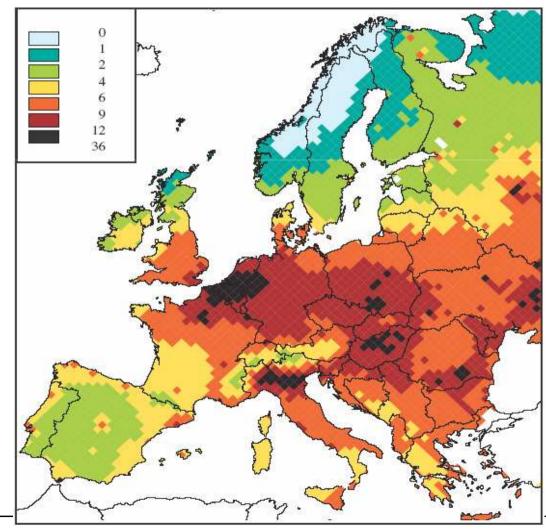

Les enjeux sanitaires

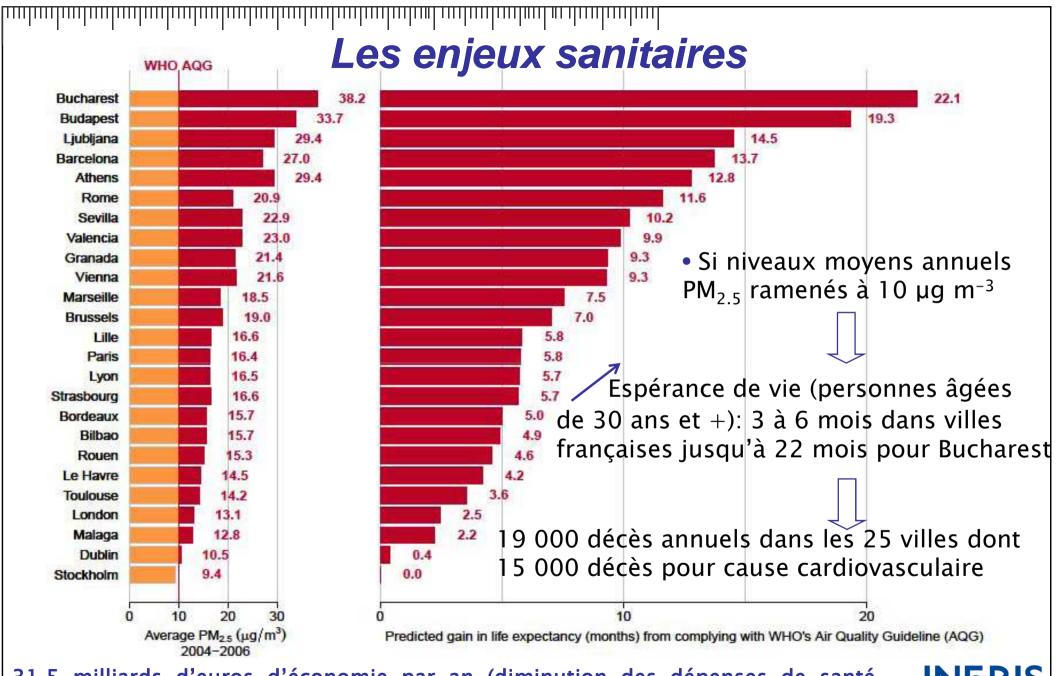
Effets à court-terme

- •:Symptômes respiratoires et hospitalisations pour maladies respiratoires
- Evénements cardiovasculaires aigus : infarctus, maladies cardiovasculaires, survenue de symptômes respiratoires et hospitalisations

Effets à long-terme

- Développement de l'athérosclérose
- Apparition des maladies cardiovasculaires,
- Aggravation des maladies cardiovasculaires
- Impact sur l'espérance de vie (≈ 7 mois d'espérance de vie par 10 µg m⁻³ de PM_{2 5})
- Cancer du poumon
- Développement de la fonction respiratoire chez l'enfant




L'exemple des particules

Pollution de l'air par les PM : Un enjeu majeur de santé publique

Perte d'espérance de vie (en mois) attribuable au PM_{2,5} (Rapport CAFE 2005)

31,5 milliards d'euros d'économie par an (diminution des dépenses de santé, absentéisme, coûts associés à la perte de bienêtre, de qualité et d'espérance de vie

