

TROPHé

TRANSFERTS ET RISQUES DES ORGANIQUES PERSISTANTS POUR L'HOMME ET LES ECOSYSTEMES

Livrables n°1 et 2 : Synthèse des travaux expérimentaux menés sur le transfert des POPs dans les végétaux et les vers de compost

Rapport

En partenariat avec :

REMERCIEMENTS

Comité de pilotage :

Cécile GRAND (ADEME)

Franck MAROT (ADEME)

Marina GUEDARD et Jean Jacques BESSOULE (LEB Aquitaine Transfert- Université de Bordeaux)

Olivier FAURE (Ecole des Mines de Saint-Etienne (EMSE)

Benjamin PAUGET et Annette DEVAUFLEURY (Laboratoire Chrono Environnement - Université de Franche Comté)

Blandine CLOZEL (BRGM Rhône-Alpes)

Muriel ISMERT (EDF R&D)

Jean François NAU (EODD - bureau d'études)

Antoine RICHARD (INRA)

Matthieu GROSSEMY (TOTAL - PERL)

Matthieu DELANNOY (UR-AFPA – Université de Lorraine)

Contrôle Qualité INERIS:

Karen Perronnet, Rédaction Nicolas Manier, Rédaction Nathalie Velly, Vérification Pascal Pandard, Vérification Martine Ramel, Approbation

CITATION DE CE RAPPORT

ADEME, INERIS. 2017. TROPHé: Synthèse des travaux expérimentaux menés sur le transfert des POPs dans les végétaux et les vers de compost - Rapport. 91 pages

Cet ouvrage est disponible en ligne www.ineris.fr

Toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite selon le Code de la propriété intellectuelle (art. L 122-4) et constitue une contrefaçon réprimée par le Code pénal. Seules sont autorisées (art. 122-5) les copies ou reproductions strictement réservées à l'usage privé de copiste et non destinées à une utilisation collective, ainsi que les analyses et courtes citations justifiées par le caractère critique, pédagogique ou d'information de l'œuvre à laquelle elles sont incorporées, sous réserve, toutefois, du respect des dispositions des articles L 122-10 à L 122-12 du même Code, relatives à la reproduction par reprographie.

Ce document est diffusé par l'ADEME

20, avenue du Grésillé BP 90406 | 49004 Angers Cedex 01

Numéro de contrat : 1372C0062 Référence INERIS: DRC-16-138302-01541C

Étude réalisée par l'INERIS pour ce projet cofinancé par l'ADEME et l'INERIS

Projet de recherche coordonné par : Karen Perronnet - INERIS

Appel à projet de recherche : GESIPOL 2013

Coordination technique - ADEME : Marot Franck

Direction Villes et Territoires Durables

Services Friches Urbaines et Sites Pollués - ADEME (Angers)

Sommaire

I	INTRODUCTION	12
1.	Projet de recherche TROPHé	12
1.1	Objectifs de TROPHé	12
1.2	Site atelier	13
1.3	Déroulé du projet en 2014 et 2015	14
2.	Interaction avec les partenaires	14
2.1	Partenaires extérieurs	14
2.2	Actions menées entre 2014 et 2016	15
	STRUCTURES CHIMIQUES ET FACTEUR DE TRANSFERT DES POLLUANTS ORGANIQUE	_
1.	Rappel sur la structure chimique des POPs	18
2.	Expression des résultats pour les substances PCDD/F et PCB-dI	19
3.	Détermination des facteurs de bioconcentration (BCF)	19
	CARACTERISATION DES SOLS EMPLOYES POUR LES EXPERIMENTATIONS EX-SITU ET	
1.	Objectif	21
2.	Choix des mailles	21
2.1	Pré-sélection	21
2.2	Prélèvement des sols contaminés	23
2.3	Influence de la granulométrie sur les concentrations en POP dans les sols	24
2.4	Programme analytique	25
3.	Résultats pour les sols	25
3.1	Caractérisation des sols	26
3.2	Répartition des POPs selon les fractions granulométriques	27
3.3	Niveaux de contamination des sols par d'autres composés	31
	EVALUATION DU TRANSFERT DES POPS DU SOL VERS LES VEGETAUX ET DETERMINA S BCF	
1.	Objectif	32
2.	Matériels et méthodes – expérimentation in situ	33
2.1	Lots de végétaux	33
2.2	Collecte, préparation des végétaux et analyses	33
3.	Matériels et méthodes – expérimentation en conditions contrôlées	34
3.1	Sélection des végétaux	
3.2	Culture des végétaux sur sol	34
3.3	Culture des laitues en hydroponie	36
3.4	Mise en place et suivi des cultures en conditions contrôlées	37
	Enceinte de culture (phytotron)	37

	Fertilisation des bacs de culture	
	Lutte phytosanitaire	
	Récolte des végétaux et préparation	
3.5		
4.	Résultats expérimentaux	41
4.1	Qualité de l'air de l'enceinte de culture	41
4.2	Développement et biomasse des végétaux potagers	42
4.3	Concentrations dans les organes consommés	42
4.4	Végétaux potagers et valeurs réglementaires	49
4.5	Denrées animales et valeurs réglementaires	50
4.6	Facteur de transfert dans les végétaux (BCF)	51
	Valeurs de BCFmoyen	
5.	Valeurs de BCFmoyens estimés Conclusions sur les transferts dans les végétaux	
	BIOACCESSIBILITE ET BIODISPONIBILITE DES POPS DANS LES SOLS	
1.	Notion de biodisponibilité et de bioaccessibilité	
2.	Biodisponibilité dans PCB dans les sols	
3.	Mise en perspective par rapport au présent projet	
	BIOACCUMULATION DES POPS CHEZ LES INVERTEBRES DU SOL	
1.	Objectif	
2.	Matériel et méthode	
2.1	Principe de l'essai	
2.2		
2.3	Préparation des organismes d'essai	76
2.4	Préparation des sols	76
2.5	Conditions d'essai	76
2.6	Collecte, purge et conservation des organismes exposés	77
2.7	Analyses	77
3.	Résultats	78
3.1	Mortalité et suivi de la biomasse	78
3.2	Concentration en POPs dans la chair des vers	78
	PCBi et PCB-dl	
3.3	PCDD et PCDFFacteurs de bioaccumulation	
ა.ა		
	PCBi et PCB-dlPCDD et PCDF	
3.4		
VII	CONCLUSIONS ET PERSPECTIVES DE TRAVAUX	85
1.	Proposition des facteurs de transfert pour les végétaux et les invertébrés	85
2.	Poursuite des travaux	87

3.	Perspectives	. 87
VIII	REFERENCES	. 88
IX	ANNEXES	. 89

Table des Figures

FIGURE 1: LOCALISATION DU SITE DE SAINT CYPRIEN	13
Figure 2 : structure chimique des POPs etudies	18
FIGURE 3: LOCALISATION DES 6 PRE-MAILLES SUR LE SITE DE SAINT-CYPRIEN	22
FIGURE 4: HORIZON SUPERFICIEL NOIRATRE SUR LA MAILLE P3	24
FIGURE 5: FRACTIONS GRANULOMETRIQUES OBTENUES POUR P1 APRES TAMISAGE MECANIQUE SANS BROYAGE PREALABLE	25
Figure 6 : niveaux des POPs dans les sols (unite : ng/kg MS)	27
FIGURE 7: REPARTITION MASSIQUE DES FRACTIONS GRANULOMETRIQUES POUR LES 4 MAILLES	
FIGURE 8 : CONCENTRATIONS EN PCBI, PCB-DL ET PCDD/F SELON LES FRACTIONS GRANULOMETRIQUES (CAS MAILLE P3)	29
FIGURE 9: DISTRIBUTION MASSIQUE DES PCBI, PCB-DL ET PCDD/F SELON LES FRACTIONS GRANULOMETRIQUES	30
FIGURE 10 : NIVEAUX DE CONCENTRATIONS EN METAUX ET POUR LA SOMME DES 16 HAP DANS LES SOLS (UNITE : MG/KG MS)	31
FIGURE 11 : SCHEMA CONCEPTUEL SIMPLIFIE AVEC LES SOURCES ET VECTEURS DE TRANSFERT IMPLIQUES DANS LA CONTAMINATION DES	
VEGETAUX	32
FIGURE 12: VEGETAUX IN-SITU SUR LES 4 MAILLES — SITE DE SAINT CYPRIEN	
FIGURE 13 : ESPECES VEGETALES CULTIVEES EN ENCEINTE CLIMATIQUE / INERIS – CULTURES DE 2014 ET DE 2015	36
FIGURE 14 : DISPOSITIF COMPOSE D'UN BECHER SURMONTE D'UN TAMIS REMPLI DE SABLE	37
FIGURE 15: DISPOSITIF COMPOSE D'UN CRISTALLISOIR ET DE RONDELLES EN MOUSSE FLOTTANTES	37
Figure 16 : dispositif d'echantillonnage de l'air ambiant dans l'enceinte sur Orbo 1500 (juillet 2015)	39
FIGURE 17 : POPS QUANTIFIES ET DETECTES DANS L'ENCEINTE DE CULTURE (PRELEVEMENT DE JUILLET 2015)	41
FIGURE 18 : BIOMASSE PRODUITE EN CONDITIONS CONTROLEES	42
FIGURE 19 : CONCENTRATIONS DES PCB DANS LES FEUILLES DE LAITUE CULTIVEES SUR LES 4 MAILLES ET EN SOLUTION HYDROPONIQUE	46
Figure 20 : Concentrations des PCDD/F dans les feuilles de laitue cultivees sur les 4 mailles et en solution hydroponic	ນUE 47
FIGURE 21: CONCENTRATIONS DES PCB DANS LES GRAMINEES IN-SITU ET EN LABORATOIRE SUR LES 4 MAILLES TESTEES	48
FIGURE 22 : CONCENTRATIONS DES POPS DANS LES CAROTTES ENTIERES ET EPLUCHEES SUR LES 4 MAILLES TESTEES	49
FIGURE 23 : BCFMOYEN PAR CONGENERE EN FONCTION DE LEUR DEGRE DE CHLORATION POUR LES VEGETAUX TESTES SANS CONSIDERAT	ΓΙΟN
DES CONCENTRATIONS INFERIEURES AUX LIMITES DE QUANTIFICATION	54
FIGURE 24 : NOMBRE DE VALEURS ENTRANT DANS LE CALCUL DU BCF MOYEN, PAR SUBSTANCE ET VEGETAL	55
FIGURE 25: EVOLUTION DES VALEURS BCF SELON LE DEGRE DE CHLORATION POUR LES VEGETAUX CULTIVES SUR LA MAILLE P1	59
FIGURE 26: EVOLUTION DES VALEURS BCF SELON LE DEGRE DE CHLORATION POUR LES VEGETAUX CULTIVES SUR LA MAILLE P4	60
Figure 27 : Methode de calcul des BCF estimes (BCFe).	61
FIGURE 28 : BCF ESTIME PROPOSES POUR LES DIOXINES DANS LES GRAMINEES IN-SITU	62
FIGURE 29 : BCF ESTIME PROPOSES POUR LES PCB DANS LES GRAMINEES CULTIVEES EN CONDITIONS CONTROLEES	62
Figure 30 : BCF estime proposes pour les dioxines dans les graminees cultivees en conditions controlees	62
FIGURE 31 : BCF ESTIME PROPOSES POUR LES PCB DANS LES POMMES DE TERRE	63
FIGURE 32 : BCF ESTIME PROPOSES POUR LES PCB DANS LES CAROTTES EPLUCHEES	63
FIGURE 33 : BCF ESTIME PROPOSES POUR LES PCB DANS LES CAROTTES ENTIERES	64
Figure 34 : BCF estime proposes pour les PCB et les PCDD dans les courgettes entieres	65
FIGURE 35 : BCF ESTIME PROPOSES POUR LES PCB DANS LES GOUSSES DE HARICOTS	66
Figure 36 : BCF estime proposes pour les PCDD dans les gousses de haricots	66
Figure 37 : BCF estime proposes pour les PCB dans les laitues	67
Figure 38 : BCFe proposes pour les PCB et les PCDD dans les laitues	67
FIGURE 39 : BCF PROPOSES POUR TOUTES LES SUBSTANCES D'INTERET ET TOUS LES VEGETAUX, Y COMPRIS LES BCF ESTIMES	70
Figure 40 : schema general de l'essai de bioaccumulation chez le ver E. fetida	75
Figure 41: Illustrations de l'ajout des vers a J0 et des recipients d'essai sur les etageres d'exposition	76
Figure 42: Illustration de la recuperation et de la purge des vers	
Figure 43 : (A.) Survie des vers (moyenne des 3 replicats ± ec-type) et (B.) biomasse individuelle (moyenne des 3 replicats	s ± EC-
TYPE) APRES 14 ET 28 JOURS D'EXPOSITION AU SOL DE REFERENCE (ISO) ET AUX 4 MAILLES TESTEES	78
Figure 44 : Concentrations (moyenne des 3 replicats) en PCBI, PCB-dL, PCDD et PCDF dans les vers apres 14 jours et 28	3
JOURS D'EXPOSITION AUX SOLS DES 4 MAILLES.	80
Figure 45 : BCF (moyenne sur la parcelle) calcules chez les vers exposes aux 4 mailles, pour chacun des PCB (PCBi et PC	CB-
DL). LA MOYENNE DES BCF OBTENUE SUR CHACUNE DES PARCELLES EST REPRESENTEE PAR LES POINTS NOIRS	82
FIGURE 46 : BCF (MOYENNE SUR LA PARCELLE) CALCULES CHEZ LES VERS EXPOSES AUX 4 MAILLES, POUR CHACUNE DES DIOXINES. LA	
MOYENNE DES BCF OBTENUE SUR CHACUNE DES PARCELLES EST REPRESENTEE PAR LES POINTS NOIRS.	82
FIGURE 47 : BCF (MOYENNE SUR LA PARCELLE) CALCULES CHEZ LES VERS EXPOSES AUX 4 MAILLES, POUR CHACUNE DES FURANNES. LA	
MOYENNE DES BCF OBTENUE SUR CHACUNE DES PARCELLES EST REPRESENTEE PAR LES POINTS NOIRS.	83

Table des Tableaux

TABLEAU 1: LISTE DES ACTIONS MENEES PAR L'INERIS ET LES PARTENAIRES EXTERIEURS EN 2014 ET 2015	16
Tableau 2: Concentrations dans les sols superficiels pour les 6 mailles pre-selectionnees	23
Tableau 3 : Recapitulatif des caracteristiques pedologique et agronomique du sol	26
Tableau 4: Niveau de concentrations en POPs dans les sols des 4 mailles – serie de culture 2014	26
TABLEAU 5 : NIVEAU DE CONCENTRATIONS EN POPS DANS LES SOLS DES 4 MAILLES – SERIE DE CULTURE 2015	26
Tableau 6 : Concentrations en POPs pour les fractions 0-1 cm et <250 μm	28
Tableau 7: Ratios des concentrations selon les fractions par rapport a la fraction <250 μm'	28
Tableau 8 : Vegetaux cultives en 2014 et 2015 sur les sols contamines	34
Tableau 9 : Densite de semis/plantation et quantite de terre utilisee par bac	35
TABLEAU 10 : QUANTITE EN PCB DANS L'AIR ET DANS LES SOLS	41
TABLEAU 11: CONCENTRATIONS MOYENNES EN POPS DANS LES VEGETAUX POUR LES 3 FAMILLES ANALYTIQUES	43
Tableau 12: Substances non quantifiees dans les vegetaux pour les 3 familles analytiques	45
Tableau 13: Vegetaux non epluches pour lesquels les niveaux d'intervention sont atteints ou depasses (recommanda	ATION
N°2011/516/UE)	49
Tableau 14: Depassement des teneurs maximales dans les graminees (reglement n°277/2012)	50
Tableau 15: BCFmoyens calcules pour les vegetaux testes sans prise en compte des concentrations inferieures aux li	MITES DE
QUANTIFICATION	53
Tableau 16: Valeurs BCF pour les PCB extraites de la litterature	57
Tableau 17: Proposition des BCFmoyens estimes sur la base des limites de quantification	69
Tableau 18: Niveau de pollution dans les sols utilises pour determiner la biodisponibilite	72
Tableau 19: Biodisponibilite determinee chez le porcelet expose aux sols etudies	73
Tableau 20: Bioaccessibilite determinee via le test in vitro FOREHST pour 2 sols	73
TABLEAU 21: CONCENTRATIONS MESUREES DANS LE FOIE ET LE TISSU ADIPEUX DES PORCELETS	74
Tableau 22 : recapitulatif des BCF [vers.MF] calcules et estimes a l'aide des resultats experimentaux obtenus pour c	HACUNE
DES MAILLES	84
Tableau 23: Recapitulation des BCF proposes pour les vegetaux et les invertebres	86

Annexes

- ANNEXE 1: SAISINE DE L'AFSSA N°2009-SA-0087
- ANNEXE 2: DEGRE DE CHLORATION DES POPS
- ANNEXE 3: FACTEURS EQUIVALENTS TOXIQUES (OMS, 2005)
- Annexe 4: Concentrations des polluants dans les sols et caracteristiques agronomiques
- ANNEXE 5: COMPOSITION DE LA SOLUTION HYDROPONIQUE (CULTURE DES LAITUES)
- ANNEXE 6: PLANCHE DE DEVELOPPEMENT DES VEGETAUX POTAGERS ET DES GRAMINEES (2014-2015)
- ANNEXE 7: CONCENTRATIONS DES POPS DANS L'AIR AMBIANT DE L'ENCEINTE CLIMATIQUE (CAMPAGNES 2015 ET 2016)
- Annexe 8 : Concentrations des POPs dans les graminees et valeurs de BCF
- Annexe 9: Concentrations des POPs dans les vegetaux potagers et valeurs de BCF
- Annexe 10 : Planche des concentrations exprimees en matiere fraiche dans les vegetaux selon les mailles testees
- Annexe 11 : Tableau recapitulatif des gammes de valeurs BCF pour les vegetaux
- Annexe 12 : Planche des valeurs BCF pour les vegetaux selon les mailles testees
- ANNEXE 13: CONCENTRATIONS DES POPS DANS LES VERS DE COMPOST
- Annexe 14 : Concentrations des POPs dans le sol OCDE et la bouse de vache
- Annexe 15 : Courbes de concentrations des POPs dans les vers de compost en fonction du temps d'exposition
- ANNEXE 16: VALEURS BCF CALCULES POUR LES VERS DE COMPOST POUR CHACUN DES CONGENERES SELON LES MAILLES TESTEES
- Annexe 17: Valeurs BCF calculees et estimees pour les vers de compost aux deux temps d'exposition
- Annexe 18: Valeurs BCF calculees et estimees, exprimees en taux de matiere grasse, pour les vers de compost
- ANNEXE 19: VALEURS BCF CALCULEES ET ESTIMEES, EXPRIMEES EN TAUX DE MATIERE SECHE, POUR LES VERS DE COMPOST

Abréviations

Agence de l'Environnement et de la Maîtrise de l'Energie				
Agence Française de Sécurité Sanitaire des Aliments (devenue ANSES)				
Facteur de Bioconcentration				
Facteur de Bioconcentration estimé sur la base des limites de quantification LQ/2 si				
concentration dans la matrice biologique ou le sol n'est pas quantifiée				
Atome de chlore				
évaluation des Risques pour les écosystèmes				
Evaluation des Risques Sanitaires				
Hydrocarbures Aromatiques Polycycliques				
Interprétation de l'Etat des Milieux				
Institut National de l'EnviRonnement Industriel et des risqueS				
Conversion de la concentration selon les facteurs toxiques équivalents (TEF)				
Limite de Quantification				
Matière Sèche				
Matière Fraîche				
PolyChloroBiphényl indicateur				
PolyChloroBiphényl dioxin-like				
PolyChlorodibenzoDioxines				
PolyChlorodibenzoFurannes				
Polluant Organique Persistant				
Facteur de Toxicité Equivalent				
Unité de fertilisation (1 U d'azote = 1 kg d'azote/ha)				

Synthèse du projet

Le projet TROPHé, $\underline{\mathbf{T}}$ ransferts et $\underline{\mathbf{R}}$ isques des $\underline{\mathbf{O}}$ reganiques $\underline{\mathbf{P}}$ ersistants chez l' $\underline{\mathbf{H}}$ omme et les $\underline{\mathbf{e}}$ cosystèmes, repose sur trois principaux objectifs :

- améliorer les connaissances sur les transferts, la bioaccumulation et la biodisponibilité des polychlorobiphényles (PCB) et des polychlorodibenzo-dioxines/-furannes (PCDD/F) au sein de la chaine alimentaire et des réseaux trophiques, dans le but d'avoir une meilleure prise en compte de ces mécanismes dans les évaluations des risques sanitaires (ERS) et les évaluations de risques pour les écosystèmes (éRé) dans le cadre de la gestion des sites et sols pollués;
- évaluer les expositions et les risques à l'aide des outils de modélisation MODUL'ERS dans le cadre des ERS et Terrasys dans le cadre des éRé ;
- identifier des étapes et des outils communs entre les études ERS et éRé afin d'améliorer les analyses environnementales qui nécessitent aujourd'hui d'être développées et structurées.

Dans un premier temps, des expérimentations en laboratoire ont permis de déterminer des facteurs de bioconcentration (BCF) pour les végétaux potagers couramment cultivés en France, ainsi que pour les invertébrés (réseau trophique). Les terres utilisées proviennent d'anciennes parcelles agricoles situées autour d'un ancien site industriel, ayant subi une pollution par dispersion de polluants organiques persistants (POPs) dans l'environnement suite à un incendie.

La culture de végétaux potagers et l'exposition de vers de compost à des terres plus ou moins contaminées aux PCB et aux PCDD/F permettent de mettre en évidence un transfert de ces substances dans le réseau trophique, et dans une moindre mesure, dans la chaine alimentaire au travers de la consommation de légumes cultivés. Les facteurs de bioconcentration (BCF) sont globalement plus élevés pour les PCB que pour les PCDD/F à la fois pour les végétaux et les invertébrés, avec des valeurs BCFmoyen obtenues sur les 4 mailles comprises dans la gamme 10⁻² et 2 pour les vers de compost, et dans la gamme 10⁻⁴ -1 pour les végétaux potagers (pomme de terre, carotte, salade, haricot, courgette). Quelques valeurs de BCFmoyen sont comprises entre 1 et 15 pour les PCB les moins chlorés (moins de 5 atomes de chlore) au niveau des laitues cultivées, ainsi que pour la majorité des PCB au niveau des courgettes.

Les valeurs BCF peuvent varier, pour les végétaux, jusqu'à deux ordres de grandeur selon le niveau de contamination des sols, alors que cette variation est inférieure à un ordre de grandeur pour les vers de compost. Pour les végétaux et les vers de compost, les PCB coplanaires non-ortho substitués (PCB 77, PCB 81, PCB 126 et PCB 169) présentent des valeurs BCF inférieures aux PCB de même degré de chloration.

Dans un second temps, une ERS a été menée sur la base des BCF obtenus expérimentalement pour modéliser les transferts des dioxines/furannes et des PCB dans la chaine alimentaire et étudier la sensibilité de certains paramètres tels que la concentration des POPs spécifique à la fraction adhérente aux mains susceptible d'être ingérée par contact main-bouche *versus* la concentration sur l'échantillon de terre non tamisé, la prise en compte de facteurs de bioconcentration estimés tenant compte des valeurs inférieures aux limites de quantification, et la considération de la biodisponibilité relative des POPs dans le sol. En parallèle, une éRé a été conduite sur la base des facteurs de bioconcentration obtenus sur les vers de compost exposés aux terres impactées, et de réseaux trophiques plus ou moins complexes.

Résultats en lien avec l'ERS :

Concernant le niveau d'exposition lors de l'ingestion non intentionnelle de sol, l'étude de sensibilité des paramètres montre l'influence notable de la quantité ingérée retenue et de la concentration des polluants organiques sur la fraction adhérente aux mains (fraction granulométrique inférieure à 250 μ m), et dans une moindre mesure, celle de la biodisponibilité relative en raison des pourcentages élevés obtenus pour les PCB indicateurs (> 80%).

Quant à la consommation de végétaux, l'exposition diffère selon les classes d'âge, en raison du bol alimentaire spécifique à chaque classe d'âge et d'une contribution de chaque congénère variable en fonction du végétal considéré, avec une proportion plus élevée de PCB apportés par l'alimentation. Il en résulte que l'ingestion de POPs via les sols et les végétaux cultivés sur des sols contaminés constitue une voie prépondérante pour l'exposition des populations, notamment des enfants. L'exposition par ingestion non intentionnelle de sol pour les PCDD/F est, pour les enfants, sensiblement équivalente à celle par ingestion de végétaux cultivés.

La considération de valeurs de BCF estimés pour les polluants disposant de concentrations inférieures aux limites de quantification du laboratoire constitue une approche conservatoire pouvant toutefois aboutir à surestimer sensiblement le risque sanitaire jusqu'à 30%.

Concernant le risque, ce sont majoritairement les PCDD/F et le PCB126 qui tirent le risque sanitaire en cas de consommation de végétaux cultivés sur des sols pollués, notamment pour les enfants, en raison des valeurs toxicologiques élevées alors que ces polluants sont peu transférés dans les végétaux par rapport aux autres PCB.

Résultats en lien avec l'éRé :

Le retour d'expérience de l'application du logiciel TerraSys pour évaluer les risques pour les écosystèmes met en évidence la sensibilité de certains paramètres. En l'absence de PNEC¹ (concentration sans effet prévu) pour les PCB et les PCDD/F, l'évaluation du risque pour les écosystèmes n'a pas pu être menée à terme, seule l'exposition a pu être évaluée. Les BCF peuvent être considérés comme les paramètres essentiels de l'évaluation des transferts de substances. Seules les valeurs de BCF avec un indice de confiance élevé (par exemple ne pas retenir des valeurs estimées à partir de concentrations mesurées inférieures à la limite de quantification) devraient être retenues. De plus, la valeur maximale du BCF, et non sa valeur moyenne, permet de ne pas sous-estimer le transfert de la substance aux maillons les plus élevés du réseau trophique.

En ce qui concerne la description du réseau trophique, il semble suffisamment protecteur de constituer un modèle conceptuel simplifié à la condition d'y intégrer des organismes situés à plusieurs niveaux de relations trophiques. Un premier prédateur suivi d'un prédateur supérieur semble constituer un minimum pour ne pas sous-estimer le transfert de ces contaminants dans l'écosystème.

A ce jour, les risques pour l'Homme sont davantage évalués que ceux pour les écosystèmes en raison des outils existants, de la connaissance des scénarii d'exposition et des valeurs toxicologiques de référence disponibles dans la littérature. Les approches d'évaluation du risque sanitaire pour l'Homme et du risque pour les écosystèmes restent complémentaires pour appréhender l'impact des PCB et des PCDD/F sur l'Environnement.

Les suites du projet TROPHé portent à la fois sur l'acquisition de nouvelles valeurs de transfert dans d'autres contextes que ceux rencontrés ici (multi-pollution en PCB et PCDD/F, sol sableux, 5 espèces végétales et 1 invertébré terrestre), et sur la compréhension des phénomènes influant sur les transferts solplante / sol-invertébré et, par conséquent sur les risques pour l'Homme et pour les écosystèmes. Les études de sensibilité des paramètres restent essentielles pour appréhender leur influence sur l'évaluation des risques, notamment pour les écosystèmes en raison de l'absence d'outils méthodologiques.

Le projet TROPHé s'articule autour de 6 livrables :

- **Livrable 1** : Rapport d'avancement INERIS sur 4 cultures potagères et graminées in-situ, décembre 2014 (intégré dans le livrable 2)
- **Livrable 2** : Synthèse des travaux expérimentaux menés sur le transfert des POPs dans les végétaux et les vers de compost
- Livrable 3 : Evaluation des risques sanitaires sensibilité des paramètres de transfert
- Livrable 4 : Evaluation des risques pour les écosystèmes REX sur l'application des outils et méthodes sur un site pollué avec des POPs
- **Livrable 5** : Fiche technique sur l'approche graduée exemplifiée sur l'évaluation de l'empoisonnement secondaire
- Livrable 6 : ERS et éRé : outils /méthodes communs déployables dans une problématique de gestion SSP.

_

¹ PNEC: Predicted No Effect Concentration

Résumé des livrables 1 et 2

Les livrables 1 et 2 portent sur les travaux expérimentaux menés *in situ* et en laboratoire pour déterminer les facteurs de bioconcentration (BCF), à la fois pour les végétaux potagers (légumes-feuille, légumes-racine, tubercules, légume-fruit) et les vers de compost pour conduire respectivement une évaluation des risques sanitaires pour l'Homme (ERS), et une évaluation des risques pour les écosystèmes (éRé). L'étude porte sur les polychlorobiphényles (PCB) et les polychlorodibenzo-dioxines/-furannes (PCDD/F) soit un total de 35 substances analysées.

Quatre sols affichant une large gamme de concentrations sont testés : pour les PCDD+PCB-dl, 2,5-246 ng I-TEQ/kg (équivalent toxique) (gradient croissant P1<P2<P3<P4) et, pour les PCB indicateur, 3,5-34,9 µg/kg (absence de gradient). La maille P1 présente les concentrations en POP les plus faibles, contrairement aux mailles intermédiaires P2, P3 et P4, présentant les plus fortes concentrations en PCDD+PCB-dl.

Les cultures de végétaux menées dans une enceinte climatique à conditions contrôlées ont permis la détermination de 79 à 129 valeurs de BCF respectivement sur les mailles P1 et P4 par rapport à un potentiel de 175 valeurs (35 substances recherchées parmi 5 espèces végétales cultivées). Les valeurs BCFmoyen obtenues sur les 4 mailles sont globalement comprises dans la gamme 1-10⁻⁴. Les quelques valeurs de BCFmoyen comprises entre 1 et 15 sont observées pour les PCB les moins chlorés (moins de 5 atomes de chlore) au niveau des graminées *in situ*, des graminées et des laitues cultivées en laboratoire, et pour la majorité des PCB au niveau des courgettes. Les valeurs BCF les plus élevées sont celles obtenues sur la maille P1, par rapport à la maille P4, excepté pour les courgettes (maille P2) ; le rapport entre le BCFmin et le BCFmax pour une même espèce végétale cultivée sur les 4 mailles peut atteindre 2 ordres de grandeur.

Parmi les espèces cultivées, les transferts sol-plante sont globalement plus importants pour les PCB que pour les PCDD/F. Les tubercules et les légumes-racines, en contact direct avec les sols, accumulent le plus grand nombre de PCB et PCDD/F mais à des concentrations moindres que les courgettes ou les légumes-feuilles/graminées, par exemple. Les épluchures de carottes présentent des concentrations en POPs 10 fois supérieures par rapport au reste de la racine, soulignant l'influence de l'épluchage sur l'exposition sanitaire des consommateurs.

La présence de PCB dans les salades et les graminées disposant d'une surface foliaire conséquente serait la conséquence d'échanges gazeux en complément du transfert sol-plante, amenant à une accumulation des PCB les plus faiblement chlorés tels que les PCB 28 et PCB 52, et dans une moindre mesure le PCB 101. En raison du dispositif expérimental mis en œuvre, les valeurs BCF proposées correspondent *in fine* à des facteurs de transferts globaux considérant à la fois l'accumulation par transfert racinaire mais aussi par échange gazeux.

Enfin, pour les végétaux, la tendance suivante est observée selon le degré de chloration des substances aussi bien pour les PCB que pour les PCDD/F: les substances les plus faiblement chlorées présentent des valeurs de BCF plus élevées que les substances plus fortement chlorées. Notons aussi pour les PCB coplanaires non-ortho substitués (PCB 77, PCB 81 et PCB 126), des valeurs de BCF sensiblement plus faibles par rapport aux autres PCB de même degré de chloration (non observé pour le PCB 169 en raison du faible nombre de valeurs BCF obtenues (3 valeurs sur l'ensemble de l'étude)).

En parallèle, il est estimé un BCFé sur la base des limites de quantification (LQ) divisées par 2, pour certaines substances pour lesquelles aucun transfert n'a été démontré expérimentalement; lorsque la substance n'a pas été quantifiée dans le sol ou dans le végétal. Aucun BCF n'est proposé si la substance n'est quantifiée ni dans le sol, ni dans le végétal.

Concernant l'exposition des vers de compost aux mêmes mailles contaminées par des POPs, une mortalité de 60% environ a été observée sur la maille P4, et de l'ordre de 15% sur la maille P2, après 28 jours d'exposition. Une augmentation de la biomasse est notée pour les 4 mailles (d'environ 20% sur les mailles P1, P2 et P3 et davantage sur P4). Un transfert des POPs est observé dans la chair des vers. Un plus grand nombre de BCF a été obtenu pour les invertébrés (34 valeurs de BCFmoyen pour un potentiel de 35), avec des valeurs supérieures à celles des végétaux. Les valeurs BCFmoyen [rapportées en vers Matière Fraîche] sont moins dispersées et comprises entre 10-2 et 2. Les PCB affichent des valeurs BCF d'un ordre de grandeur plus élevé que les PCDD/F, sans influence du degré de chloration pour les PCB.

De même que pour les végétaux, les PCB coplanaires non-ortho substitués présentent des valeurs BCF sensiblement plus faibles que les autres PCB de même degré de chloration. Pour les PCDD/F, les valeurs BCF tendent à diminuer en fonction du degré de chloration.

I Introduction

Le projet **TROPHé** est issu de l'appel à projets de recherche GESIPOL lancé en 2013 (Recherche pour la gestion intégrée des sites pollués) et a démarré le 20 décembre 2013 (date de la signature de la convention).

Il est financé par l'ADEME et co-financé par l'INERIS, porteur intégral du projet, dans le cadre de ses programmes d'appui au ministère chargé de l'environnement.

Ce projet porte sur les <u>Transferts et Risques des Organiques Persistants pour l'Homme et les écosystèmes,</u> à savoir les dioxines/furannes (PCDD/F) et les polychlorobiphényls (PCB : PCBi et PCB-dl).

Le présent document correspond aux livrables n°1 et n°2, et synthétise les travaux expérimentaux menés en 2014 et 2015. Ceux-ci portent sur l'étude du transfert des Polluants Organiques Persistants (POP) dans les végétaux potagers et les invertébrés (vers de compost).

Le livrable n°1 portait sur les premiers travaux expérimentaux menés en 2014, relatifs aux transferts dans les végétaux potagers (rapport d'avancement DRC-14-138302-12058A, 18 décembre 2014). Il a été intégralement inséré dans les travaux présentés dans ce document.

1. Projet de recherche TROPHé

1.1 Objectifs de TROPHé

Ce projet a trois objectifs principaux :

- améliorer les connaissances sur les transferts, la bioaccumulation et la biodisponibilité des PCB et des PCDD/F au sein de la chaine alimentaire et des réseaux trophiques, dans le but d'avoir une meilleure prise en compte de ces mécanismes dans les évaluations des risques sanitaires (ERS) et les évaluations de risques pour les écosystèmes (éRé) dans le cadre de la gestion des sites et sols pollués :
- évaluer les expositions et les risques à l'aide des outils de modélisation MODUL'ERS (outil multicompartiment créé et développé par l'INERIS pour l'évaluation des risques sanitaires chez l'Homme) lors des ERS et Terrasys (développé par SANEXEN) utilisé lors des éRé;
- identifier des étapes et des outils communs entre les études ERS et éRé afin d'améliorer les analyses environnementales qui nécessitent aujourd'hui d'être développées et structurées.

Afin de répondre au premier objectif du projet TROPHé d'amélioration des connaissances des transferts, une partie conséquente du projet est consacrée aux expérimentations *in-situ* et *ex-situ*. Ces dernières consistent :

- pour la chaîne alimentaire : en la culture de végétaux potagers, en conditions contrôlées dans une enceinte spécifique (phytotron), sur des sols contaminés par des POPs prélevés sur un site atelier (niveau de contamination croissant en PCDD/F + PCB-dl) et en l'analyse des concentrations en dioxines/furannes et PCB dans les parties végétales consommées par l'Homme;
- pour le réseau trophique : en l'exposition de vers de compost (conformément à la ligne directrice OCDE 317 "Bioaccumulation chez les oligochètes terrestres"²) aux mêmes sols contaminés, pour l'évaluation de la bioaccumulation dans les premiers niveaux trophiques.

² Les <u>Lignes directrices de l'OCDE</u> pour les essais de produits chimiques sont un ensemble de méthodes d'essai les plus pertinentes agréées internationalement et utilisées par les gouvernements, l'industrie et les laboratoires indépendants pour déterminer l'innocuité des produits chimiques et des préparations, y compris les pesticides et les produits chimiques industriels.

1.2 Site atelier

Le projet porte sur un ancien site industriel situé à Saint Cyprien, dans le département de la Loire (42), à environ 17 km au Nord-Ouest de Saint Etienne. Le centre-ville est situé au sud-est, à proximité de la Loire, à moins de 2 km du site.

Ce site, à responsable défaillant, est actuellement géré par l'ADEME (Figure 1).

Le site accueillait anciennement une usine de recyclage de transformateurs électriques, qui a généré une pollution des sols aux PCB ainsi qu'au cuivre. Dans les années 2000, le site était principalement entouré de parcelles agricoles dédiées au pâturage; des activités industrielles et tertiaires étaient et sont toujours présentes au sud et à l'est du site. Le site a fait l'objet d'une dépollution partielle. La zone non concernée par les travaux de dépollution a servi par la suite au stockage de palettes de bois de chantier ou collectées dans les déchèteries. Le 22 août 2008, un incendie s'est déclaré sur ce point de stockage, au cours duquel 22 000 m³ de bois ont pris feu. Face à l'observation d'une mortalité piscicole dans les étangs proches recueillant les eaux d'extinction, l'utilisation d'eau a été proscrite et le feu a été circonscrit par séparation des tas de bois et recouvrement de ces derniers par les terres du site. Le feu ne sera maîtrisé que fin novembre 2008.

(source Google Earth)

Figure 1 : localisation du site de Saint Cyprien

L'imprégnation des terres en PCB et leur mobilisation par l'incendie ont été à l'origine d'une contamination significative des sols et des végétaux en PCDD/F et PCB autour du site. Le lait des bovins a été contaminé et des abattages ont été mis en œuvre et le pâturage a été interdit dans un rayon de 200 m autour du site. Ces mesures de gestion ont été prises au regard d'une part, des concentrations en PCDD/F et PCB mesurées dans différentes denrées alimentaires et d'autre part, des seuils de gestion élaborés par l'AFSSA (cf. avis en réponse à la saisine n°2009-SA-0087³ insérée en Annexe 1) pour déterminer les dispositions à prendre selon les concentrations mesurées dans la matrice sol. Actuellement, les parcelles agricoles mitoyennes au site ont été reconverties. Des panneaux solaires ont été implantés pour la production d'électricité (entreprise LUXEL).

•

³ Avis de l'Agence française de sécurité sanitaire des aliments relatif à la contamination de sols en dioxines et PCB de type dioxine et à l'utilisation possible de ces sols en lien avec d'éventuelles répercussions sur la qualité sanitaire de certains produits agricoles.

1.3 <u>Déroulé du projet en 2014 et 2015</u>

Les deux premières années du projet ont été consacrées pour l'INERIS à :

- la connaissance du site atelier lors d'une visite commune en février 2014 avec l'ADEME, le GISPILOT⁴ et les partenaires extérieurs (voir section 2). Le site atelier est constitué des anciennes parcelles agricoles actuellement exploitées par l'entreprise LUXEL, situées en dehors de l'ancienne emprise industrielle :
- la coordination des partenaires extérieurs pour une mutualisation des actions, prélèvements et analyses;
- le prélèvement sur le site atelier en mars et avril 2014 de terres contaminées pour les expérimentations ex-situ;
- l'analyse de végétaux prélevés in-situ en juin 2014 sur les mailles retenues ;
- la mise en œuvre de l'expérimentation *ex-situ* sur le transfert des POPs dans les végétaux potagers (6 espèces entre 2014 et 2015) ;
- la mise en œuvre de l'expérimentation sur les vers de compost, exposés aux terres contaminées issues du site atelier :
- l'organisation de deux journées d'échanges en novembre 2014 et en mars 2015 sur les résultats expérimentaux acquis avec l'ensemble des partenaires extérieurs. La réunion de mars 2015 a accueilli les membres du Comité de Pilotage constitué par des organismes publics et des entreprises privées.

Le présent rapport présente les résultats des expérimentations *in-situ* et *ex-situ* menées par l'INERIS, dans le cadre de l'étude du transfert des POPs dans :

- les végétaux in-situ, prélevés sur le site atelier de Saint-Cyprien ;
- les végétaux potagers cultivés sur des terres de Saint-Cyprien (site atelier), en conditions contrôlées à l'INERIS;
- les vers de compost exposés aux terres de Saint-Cyprien (site atelier), en conditions contrôlées.

Les travaux sur la bioaccessibilité et la biodisponibilité des POPs dans les sols, obtenus par un partenaire du projet sont mentionnés.

2. Interaction avec les partenaires

2.1 Partenaires extérieurs

Une des spécificités du projet TROPHé est la collaboration de plusieurs partenaires universitaires travaillant sur le même site et sur des échantillons communs. Cette mutualisation organisationnelle et financière a permis d'élargir la contribution scientifique de chacun des partenaires (programme analytique élargi à la totalité des POPs chlorés, augmentation du nombre de terres contaminées testées, etc.).

Les partenaires sont organisés autour de 2 projets et d'une thèse, financés en parallèle par l'ADEME :

- Projet APPOLINE regroupant :
 - ✓ l'Université de Bordeaux (UMR 5200/ LEB Aquitaine Transfert) pour le suivi des biomarqueurs lipidiques dans les parties aériennes végétales ;
 - √ la société ELISOL Environnement pour la caractérisation de la qualité des sols au travers de sa nématofaune⁵,
 - ✓ le laboratoire GéoSciences et Environnement (UMR 5600 / Ecole des Mines de Saint-Etienne);
 - ✓ le bureau d'étude en environnement EODD.

⁴ GISPILOT : Groupement d'Intérêt Scientifique PILOT. Redéploiement Post-Industriel : Loire et Territoires urbains, créé en 2014 par l'Ecole des Mines de Saint-Etienne, englobant entre autres le Site de Saint-Cyprien

⁵ Nématofaune : communauté des nématodes libres et phytophages vivants dans le sol, vers microscopiques (de l'ordre d'1 millimètre de longueur)

- Projet TROPE porté par le laboratoire Chrono Environnement de l'Université de Franche-Comté, (UMR UFC/CNRS 6249) dédié au transfert des POPs dans le réseau trophique au travers des escargots;
- Thèse relative à la bioaccessibilité des PCBi au travers du porcelet (influence de la matière organique), menée au sein de l'UR-AFPA (Unité de Recherche Animal et Fonctionnalités des Produits Animaux / USC 340 Université de Lorraine – INRA).

Le partenaire APESA (Pau) a contacté l'INERIS mi-2015, pour réaliser une batterie de tests biologiques sur les terres de Saint-Cyprien. De nouveaux prélèvements de terre ont été effectués par ses soins au droit des quatre mailles retenues dans le projet TROPHé.

2.2 Actions menées entre 2014 et 2016

Le Tableau 1 présente les actions menées par l'INERIS et les partenaires extérieurs pour mutualiser les prélèvements et les analyses des échantillons de terre contaminée et des végétaux pris en charge par l'INERIS.

Tableau 1 : Liste des actions menées par l'INERIS et les partenaires extérieurs en 2014 et 2015

Tableau 1 :	Tableau 1 : Liste des actions menées par l'INERIS et les partenaires extérieurs en 2014 et 2015 Date Actions Interlocuteurs Nature de l'analyse					
			Nature de l'analyse			
02/2014	Visite de site	- ADEME				
		- INERIS				
		- Partenaires extérieurs				
03/2014	Prélèvement de sol (12 kg au total) sur les 6 mailles pré-sélectionnées en vue de n'en retenir que 4	- GSE (EMSE) pour TROPHé	Analyse chimique (6 échantillons)			
04/2014	Prélèvement de sol (1 290 kg au total) sur les 4 mailles, avec détermination en parallèle de la nématofaune <i>in-situ</i> . Envoi d'échantillons de sols au labo Chrono Environnement pour	- INERIS - ENVISOL Envt pour APPOLINE	Analyse chimique (48 échantillons de sol) Caractérisation des nématodes			
	expérimentation escargot <i>ex-situ</i>					
05/2014	Mise en culture sur sols pollués des végétaux potagers en enceinte contrôlée (4 espèces testées).	INERIS	Analyse chimique des sols (voir ci-dessus)			
06/2014	Mise en place des microcosmes (escargots) <i>in-situ</i> sur le site de Saint Cyprien (durée 28 j)	- Labo Chrono Environnement	Analyse chimique sur la chair d'escargots			
06/2014	Envoi des feuilles de 14 jours des cultures INERIS au LEB	LEB Transfert Aquitaine pour APPOLINE	Biomarqueur lipidique (52 échantillons)			
06/2014	Prélèvement des végétaux <i>in-situ</i> sur le site de Saint-Cyprien	- GSE (EMSE) pour TROPHé	Analyse chimique (12 échantillons)			
		- LEB Transfert Aquitaine APPOLINE	Biomarqueur lipidique			
08/2014	Envoi à l'INERIS de tissus animaux et de sol de la parcelle 132 (a), non retenue dans le projet TROPHé	AFPA_INRA	Bioaccessibilité – analyse chimique (3 échantillons)			
09/2014	Test de toxicité aiguë sur les vers de compost (4 mailles)	INERIS	Test de toxicité (taux de mortalité)			
08 à 12/2014	Récolte des végétaux potagers cultivés en enceintes contrôlées (4 espèces testées).	INERIS	Analyse chimique (36 échantillons)			
11/2014	Journée technique d'échange sur les résultats	- ADEME - INERIS - Partenaires extérieurs				
		<u> </u>	I			

⁽a) Parcelle incendiée présentant les concentrations en POPs les plus élevées, dépassant la valeur de 1 000 ng I-TEG/kg proposée par l'AFSSA n°2009-SA-0087, impliquant une décontamination du sol (voir paragraphe 2.1).

Date	Actions	Interlocuteurs	Nature de l'analyse
03/2015	Journée technique d'échange sur les résultats – choix des espèces potagères pour 2015	- ADEME - INERIS - Partenaires extérieurs	
		- COPIL	
04/2015	Mise en culture sur sols pollués des végétaux potagers en enceinte contrôlée (3 espèces testées) + culture en hydroponie	INERIS	Analyse chimique (36 échantillons de sol)
07/2015	Analyse de l'air dans l'enceinte de culture pendant la culture des végétaux	INERIS	Analyse chimique (1 échantillon d'air)
06/2015	Mise en place des microcosmes (escargots) <i>in-situ</i> sur le site de Saint Cyprien (durée 28 j)	- Labo Chrono Environnement	Analyse chimique
11/2015	Envoi des feuilles des cultures INERIS au LEB	LEB Transfert Aquitaine pour APPOLINE	Biomarqueur lipidique (66 échantillons)
09/2015	Exposition des vers de compost aux sols pollués (2 mailles)	INERIS	Analyse chimique (27 échantillons de vers + 2 échantillons aliments)
12/2015	Exposition des vers de compost aux sols pollués (2 mailles)	INERIS	Analyse chimique (27 échantillons)
08 à 12/2015	Récolte des végétaux potagers (3 espèces testées).	INERIS	Analyse chimique (33 échantillons)
01/2016	Analyse de l'air dans l'enceinte de culture en l'absence de culture de végétaux	INERIS	Analyse chimique (2 échantillons d'air)
04/2016	Journée technique d'échange sur les résultats expérimentaux et les premières évaluations des risques (Homme, écosystème)	- ADEME - INERIS - Partenaires extérieurs - COPIL	
09/2016	Analyse des fractions granulométriques	INERIS	Analyse chimique (32 échantillons)

⁽a) Parcelle incendiée présentant les concentrations en POPs les plus élevées

Structures chimiques et facteur de transfert des **Polluants Organiques Persistants**

1. Rappel sur la structure chimique des POPs

Les polluants suivis dans ce projet de recherche portent sur deux familles principales : les PolyChloroBiphényles ou PCB, et les polychlorodibenzo-dioxines /-furannes (PCDD/F).

Les PCB sont au nombre de 209 congénères selon le nombre d'atomes de chlore et leur position sur les cycles benzéniques. On distingue trois types de PCB en fonction de leur structure chimique et de leur toxicité (Safe, 1992):

- les PCB coplanaires non-ortho substitués dont la structure est proche de la 2,3,7,8-TCDD6 car ils possèdent des groupements chlore seulement en position para et méta. Ils sont dits « coplanaires » car leurs cycles sont dans le même plan. Ce sont les PCB 77, PCB 81, PCB 126 et PCB 169;
- les PCB coplanaires mono-ortho substitués ne possèdent qu'un chlore en position ortho qui empêche les deux cycles d'être dans le même plan et leur toxicité est plus faible que celle des PCB coplanaires non-ortho mais plus forte que celle des PCB non coplanaires ;
- les **PCB non-coplanaires** qui possèdent plus d'un chlore en position ortho.

Les douze PCB dioxin-like (PCB-dl) sont des PCB coplanaires possédant plus de quatre atomes de chlore : PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 et 189. Leur structure proche de celle des dioxines en font des substances carcinogènes pour l'Homme et en particulier pour le foie (Safe, 1992).

Les PCB non dioxin-like (PCB-ndl) étudiés regroupent les PCB 28, 52, 101, 138, 153 et 180. Le terme PCB indicateurs (PCBi) regroupe les six PCB-ndl précédents et le PCB 118 (détails en Annexe 2).

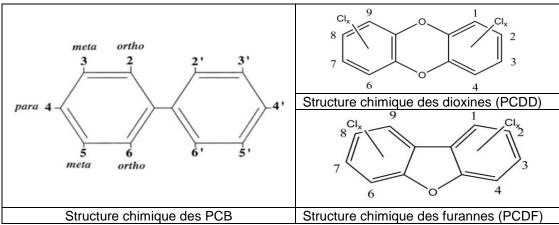


Figure 2 : structure chimique des POPs étudiés

Les polychlorodibenzo-dioxines ou -furannes (PCDD/F) sont des hydrocarbures aromatiques polycycliques chlorés poly-substitués regroupant une série de congénères (210 congénères dont 75 PCDD et 135 PCDF). Chacun de ces congénères est défini par la position et le nombre d'atome de chlore qui sont associés à leur cycle aromatique. Le plus connu est le congénère 2,3,7,8-Tétra-Chloro-Dibenzo para dioxine (TCDD), « dioxine Seveso », connu comme étant le congénère le plus toxique des PCDD/F. Les furannes (PCDF) ont une structure chimique proche des PCDD. Classiquement, 17 congénères sont analysés dans l'environnement : 7 PCDD et 10 PCDF dont le nombre d'atome de chlore varie de 4 à 8 (Annexe 2). De par leur structure chimique, ces molécules sont particulièrement stables et assez peu métabolisées dans les organismes. La maieure partie de la dégradation se fait par photochimie. Ces molécules, fortement rémanentes, s'accumulent notamment dans les tissus graisseux d'origine animale.

En raison de leurs caractéristiques, les PCB et les PCDD/F sont classés parmi la famille des polluants organiques persistants (POPs).

⁶ 2,3,7,8-Tétra-Chloro-Dibenzo para dioxine

2. Expression des résultats pour les substances PCDD/F et PCBdl

Les dioxines, furannes et PCB-dl sont présents sous la forme d'un mélange de congénères. Leurs concentrations peuvent être estimées de deux façons, par la concentration :

- individuelle de chaque congénère, exprimée en ng/kg de matière sèche (MS) ou matière fraîche
- totale des congénères (somme des PCDD/F et PCB-dl).

En plus des expressions massiques usuelles, les valeurs peuvent être rapportées à une valeur en équivalent toxique (TEQ). Le TEQ prend en compte la toxicité des congénères en leur attribuant un facteur d'équivalence toxique (TEF) établi au regard de la toxicité de la 2,3,7,8-TCDD (nommée dioxine de SEVESO) dont le TEF s'élève à 1. Les autres congénères se voient attribuer un facteur équivalent toxique de 1 (même toxicité que la dioxine de SEVESO) ou bien un facteur inférieur.

Pour un mélange donné, le calcul en équivalent toxique (I-TEQ) consiste donc à multiplier la concentration de chaque molécule par son TEF puis à sommer l'ensemble :

Total Toxic Equivalency (TEQ) =
$$\sum_{n=1}^{k} C_n * TEF_n$$

Il existe aujourd'hui deux systèmes attribuant des facteurs TEF aux congénères. Ces systèmes sont celui de l'OMS de 2005 modifiant celui de 1998 et celui de l'OTAN de 1989.

Dans la suite de ce document, l'ensemble des résultats sera exprimé en I-TEQ OMS de 2005, avec ou non prise en compte des limites de quantification (LQ=0). Les facteurs TEF retenus sont présentés en Annexe 3.

3. Détermination des facteurs de bioconcentration (BCF)

Le facteur de bioconcentration correspond au transfert d'une substance d'un compartiment A vers un compartiment B. Pour les végétaux, par exemple, il exprime la capacité d'une substance à migrer du sol vers le végétal cultivé, et dans le cas présent vers les organes réellement consommés par l'Homme. L'abréviation BCF (bio-concentration factor) sera employée dans le reste du document. Ainsi, le BCF, paramètre adimensionnel, est considéré comme étant :

- pour les plantes : le rapport entre la concentration dans le végétal (partie consommée) et la concentration dans le sol d'une même substance. Les unités sont exprimées en ng/kg ou pg/g MS pour le végétal et le sol. Pour les végétaux, il s'agit d'un BCF global considérant d'une part la voie d'absorption et/ou d'adsorption à partir du sol (transfert racinaire), et d'autre part, la voie par absorption gazeuse pour les substances les plus volatiles. En effet, l'air de l'enceinte de culture n'est pas renouvelé (circulation en circuit fermé) et il a été démontré sur la base de mesures dans l'air que des POPs étaient présents sous forme gazeuse dans l'enceinte de culture pendant la croissance des végétaux ;
- pour les vers de compost : le rapport entre la concentration dans l'invertébré et la concentration dans le sol d'une même substance. Les concentrations sont exprimées en pg/g MF pour le vers de compost et en pg/g MS pour le sol, telles que renseignées dans le logiciel TERRASYS.

Transfert global dans les végétaux, exprimé en biomasse végétale sèche [concentration végétal] en pg/g MF x 100 BCF = teneur en matière sèche du végétal x [concentration sol] en pg/g MS Teneur en matière sèche exprimée en pourcentage

Transfert dans les invertébrés, exprimé en biomasse animale fraîche

BCF =

[concentration vers] en pg/g MF

[concentration sol] en pg/g MS

Dans la présente étude, les valeurs BCF sont obtenues pour des contaminations multiples (présence simultanée dans les sols de plusieurs substances organiques chlorées, PCB et PCDD/F). Les phénomènes de compétition entre les substances ne peuvent être exclus et n'ont pas fait l'objet d'une étude approfondie.

Dans une première approche, si la substance n'est quantifiée ni dans le sol ni dans la matrice biologique, la valeur du BCF n'est pas calculée signifiant qu'aucun transfert n'a été constaté.

Dans une seconde approche, un facteur de bioconcentration a été estimé (BCFé) sur la base de la limite de quantification divisée par deux (LQ/2) pour les concentrations non quantifiées dans la matrice biologique <u>ou</u> la matrice sol. De même, en l'absence d'une quantification de la substance dans les 2 matrices, il a été décidé de ne pas procéder à l'estimation de la valeur en raison des incertitudes.

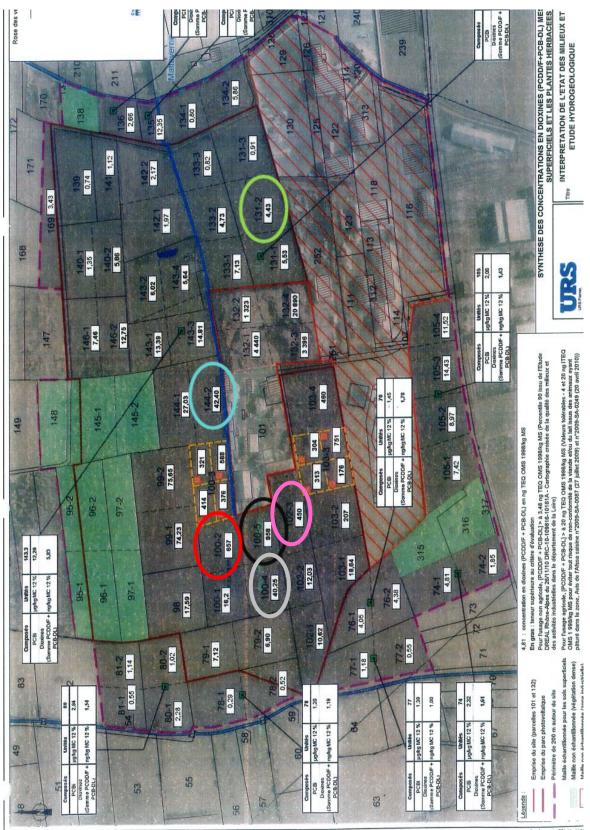
III Caractérisation des sols employés pour les expérimentations ex-situ et in-situ

1. Objectif

L'objectif est de mener, entre l'ensemble des partenaires intervenant sur le site atelier, les expérimentations ex-situ et in-situ sur des terres identiques, afin de mutualiser les coûts analytiques mais aussi de faciliter les comparaisons et les interprétations sur les transferts entre les compartiments (sol, végétal, animal).

Les travaux expérimentaux portent sur 4 mailles sélectionnées sur la base des 6 mailles identifiées au préalable en février 2014 par l'ensemble des partenaires, de manière à disposer de niveaux croissants en dioxines (PCDD/F + PCB-dl) dans les sols. La parcelle 132, siège de l'incendie, est exclue en raison de concentrations très élevées en POPs et de la forte hétérogénéité des valeurs au droit des sols superficiels. La gestion de cette parcelle relève d'un plan de gestion, ce qui n'est pas le cas pour les autres parcelles alentours inscrites dans une démarche d'Interprétation de l'Etat des Milieux (IEM).

Les parcelles du site atelier correspondent aux anciennes parcelles agricoles situées à des distances variables par rapport à la parcelle 132, sur des zones plus ou moins exposées aux retombées atmosphériques au cours de l'incendie de 2008.


2. Choix des mailles

2.1 Pré-sélection

Six mailles ont été pré-sélectionnées sur la base des résultats d'URS d'octobre 2013⁷ (et du maillage proposé et illustré en Figure 3) ainsi que des seuils définis par l'AFSSA dans son avis formulé suite à la saisine n°2009-SA-0087 consécutive à l'incendie, à savoir :

- la maille 131-2 avec une concentration en PCDD/F + PCB-dl de l'ordre de 5 ng I-TEQ/kg. Au regard des valeurs cibles indicatives de l'AFSSA qui définit un sol comme contaminé à partir d'une concentration en dioxines > 5 ng/kg, cette maille peut être considérée comme représentative d'un sol non contaminé, et relever de la gamme de valeurs du « bruit de fond »;
- les mailles 144-2 et 100-4 présentant des concentrations en en PCDD/F + PCB-dl comprises entre 27 et 40 ng I-TEQ/kg. A titre indicatif, la valeur cible indicative de l'AFSSA pour l'arrêt du pâturage des animaux est > 40 ng/kg;
- les mailles 102-3 et 100-2 présentant des concentrations en PCDD/F + PCB-dl comprises entre 450 et 660 ng I-TEQ/kg. La valeur cible indicative de l'AFSSA pour l'arrêt de l'utilisation des sols pour tous usages agricoles est > 100 ng/kg;
- la maille 100-5 avec une concentration en PCDD/F + PCB-dl de l'ordre de 960 ng I-TEQ/kg. Au-delà de 1 000 ng I-TEQ/kg, le sol doit être décontaminé selon l'AFSSA.

⁷Rapport final, Interprétation de l'état des milieux et étude hydrogéologique - Ancien site Bourgier-Vitale – Saint Cyprien (42), 10 octobre 2013, URS, LYO-RAP-13-04049B

Extrait du rapport URS / 4 mailles sélectionnées entourées d'un cercle en vert : 131-2 ; en bleu : 144-2 ; en rouge : 100-2 ; en noir : 100-5. Autres pré-mailles analysées en gris : 100-4 et en rose : 102-3. Figure 3 : localisation des 6 pré-mailles sur le site de Saint-Cyprien

Pour chaque maille, deux kilogrammes de sol ont été prélevés en mars 2014 (échantillonnage sur les 10 premiers centimètres). Cette quantité résulte du regroupement et de l'homogénéisation des 4 sous-échantillons, à raison d'un sous-échantillon par sous-station. Ils ont été envoyés pour analyse au laboratoire EUROFINS Expertises environnementales (avec un total de 6 échantillons correspondant aux 6 mailles présélectionnées). Les résultats analytiques sont présentés dans le Tableau 2.

Tableau 2 : Concentrations dans les sols superficiels pour les 6 mailles pré-sélectionnées

Maille	Concentration en PCDD/F (ng I-TEQ/kg) – 17 cong.	Concentration en PCB-dl (ng I-TEQ/kg) – 12 cong.	Concentration en PCBi (µg/kg) – 7 cong.	Somme PCDD/F + PCB-dI (ng I-TEQ/kg)	Concentrations Etude IEM 2013* (PCDD/F+PCB- dl) - (ng I-TEQ/kg)
131-2 (P1)	1	0,8	2,8	1,8	4,4
144-2 (P2)	19,7	9,9	28,7	29,6	42,4
100-5 (P3)	82,4	8,9	15,6	91,3	958,2
102-3 (P4)	1 660	153	108	1 813	449,7
100-4	12	1,4	4,6	13,4	40,2
100-2	86,7	8	12,9	94,6	657,4

Cong.: congénère

Concentration sans prise en compte de la LQ

Notons des différences de concentrations totales sur les mailles 100-5 et 102-3 entre les résultats antérieurs obtenus par URS en 2012 dans le cadre de l'Interprétation de l'Etat des Milieux et ceux de 2014. Au regard de la nature et de la durée de l'accident technologique à l'origine de la contamination de l'environnement et des présents résultats, une forte hétérogénéité est attendue dans les sols superficiels.

Le choix des 4 mailles pour la mise en œuvre des travaux expérimentaux du projet TROPHé s'est porté sur les parcelles suivantes, en vue d'obtenir un niveau croissant de pollution dans les sols en PCDD/F + PCB-dl (entre parenthèse leur identifiant dans le reste du document) : 131-2 (P1), 144-2 (P2), 100-5 (P3) et 102-3 (P4).

2.2 Prélèvement des sols contaminés

Pour chacune des mailles, les sols ont été prélevés à la pelle, en avril et en mai 2014 entre 0 et 10 cm de profondeur, au droit de 4 sous-stations d'une superficie de 6 m² chacune. Environ 300 kg de terre ont été collectés par maille. Les terres ont ensuite été homogénéisées et tamisées à 1 cm.

Alors que la texture des terres des mailles P1 et P2 paraît homogène, un horizon très superficiel (3 à 5 cm) apparaît distinctement au droit des mailles P3 et P4. Il est composé de matières organiques peu décomposées et noirâtres tel qu'illustré en Figure 4.

^{*}Etude IEM – rapport URS, 10 octobre 2013, LYO-RAP-13-04049B (unité I-TEQ selon OMS2005 pour la Figure 3)

Figure 4: horizon superficiel noirâtre sur la maille P3

Deux séries d'analyses des sols ont été menées sur les terres P1, P2, P3 et P4 en 2014 et 2015 pour les deux séries de culture potagère, sur la base d'un échantillon de sol par bac de culture, soit :

- pour 2014, 12 analyses par maille (4 espèces végétales x 3 réplicats) soit 48 analyses de sol pour les 4 mailles. L'analyse agronomique est réalisée sur 4 échantillons homogènes pour chacune des mailles:
- pour 2015, 9 analyses par maille (3 espèces végétales x 3 réplicats) soit 36 analyses de sol pour les 4 mailles.

Entre les deux séries de cultures, les terres ont été entreposées dans des sacs plastiques fermés partiellement (conditions aérobies), dans un entrepôt, à l'abri de la lumière et des intempéries.

Afin d'appréhender la toxicité globale des terres vis-à-vis des autres tests menés par les partenaires du projet (biomarqueur lipidique, nématodes, escargots), les analyses chimiques ont été élargies à huit métaux et seize HAP sur les 4 échantillons de terre P1 à P4, prélevés dans les bacs de culture à l'issue de la première culture menée en 2014. Des analyses agronomiques sont aussi menées.

2.3 <u>Influence de la granulométrie sur les concentrations en POP dans les sols</u>

A l'issue de la réunion technique d'avril 2016, il a été convenu d'évaluer la répartition des PCB et des PCDD/F au sein des fractions granulométriques du sol. Pour cela, le sol, précédemment tamisé à 1 cm (voir section 2.2), a été tamisé mécaniquement sans broyage préalable selon les tailles de tamis suivantes (Figure 5) :

- Fraction < 250 µm correspondante à la fraction susceptible d'adhérer à la peau lors de contact mainbouche chez les enfants par exemple (InVS/INERIS, 2012);
- Fraction 250 µm 4 mm, la taille maximale du tamis correspond à celle utilisée pour les expérimentations sur les invertébrés pour les projets TROPHé et TROPe;
- Fraction 4 mm 1 cm, la taille maximale du tamis correspond à celle utilisée pour les expérimentations de culture de végétaux (projet TROPHé).

En complément de ces 3 modalités, les POPs ont été analysés sur la fraction 0-1 cm correspondant à la fraction envoyée au laboratoire d'analyses en 2014 et 2015 pour la détermination des concentrations totales en POPs dans les terres testées. Cette analyse permettra d'effectuer un bilan massique.

Pour les 3 fractions 250 µm – 4 mm, 4 mm – 1 cm et 0-1 cm, le tamisage mécanique est suivi d'un broyage mécanique léger pour obtenir des terres présentant un diamètre inférieur à 2 mm, afin de ne pas générer de refus au niveau du laboratoire d'analyse. Pour les 4 fractions, deux réplicats ont été analysés sur les quatre mailles (P1 à P4) conduisant à 32 analyses de sol.

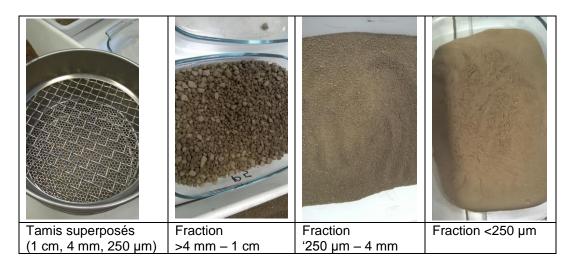


Figure 5 : Fractions granulométriques obtenues pour P1 après tamisage mécanique sans broyage préalable

2.4 Programme analytique

Les analyses chimiques visant à déterminer les concentrations en PCBi, PCB-dl et PCDD/F dans les terres ont été confiées au laboratoire EUROFINS Expertises environnementales, basé à Maxéville (54) :

- PCBi (7): PCB 28 / PCB 52 / PCB 101 / PCB 118 / PCB 138 / PCB 153 / PCB 180;
- PCB-dl (12): PCB 77 / PCB 81 / PCB 105 / PCB 114 / PCB 118 / PCB 123 / PCB 126 / PCB 156 / PCB 157 / PCB 167 / PCB 169 / PCB 189;
- PCDD (7): 2,3,7,8-TCDD / 1,2,3,7,8-PeCDD / 1,2,3,4,7,8-HxCDD / 1,2,3,6,7,8-HxCDD / 1,2,3,7,8,9-HxCDD / 1,2,3,4,6,7,8-HpCDD / OCDD;
- PCDF (10):2,3,7,8-TCDF / 1,2,3,7,8-PeCDF / 2,3,4,7,8-PeCDF / 1,2,3,4,7,8-HxCDF / 1,2,3,6,7,8-HxCDF / 1,2,3,7,8,9-HxCDF / 2,3,4,6,7,8-HxCDF / 1,2,3,4,6,7,8-HpCDF / 1,2,3,4,7,8,9-HpCDF / OCDF.

Pour l'analyse des métaux ⁸ et HAP (16) ⁹, les analyses ont été confiées au laboratoire EUROFINS Environnement France, basé à Saverne (67).

Les analyses agronomiques menées sur les sols ont été réalisées par GALYS (41). Elles visent à déterminer la texture des sols, leur pH, leur teneur en matière organique (MO) et leur rapport C/N.

Pour les analyses de sol, les échantillons ont été analysés avec un spectromètre de masse à haute résolution (HRMS) pour les PCB et avec un HRMS couplé à une chromatographie gazeuse (GC-HRMS) pour les dioxines et les furannes.

3. Résultats pour les sols

L'ensemble des concentrations I-TEQ pour les composés PCDD/F et PCB-dl est exprimé selon le référentiel OMS 2005. En première interprétation, les limites de quantification n'ont pas été prises en compte.

Le tableau synthétique des résultats analytiques des concentrations mesurées dans les sols est inséré en Annexe 4.

⁸ Métaux : arsenic As, cadmium Cd, chrome Cr, cuivre Cu, mercure Hg, nickel Ni, plomb Pb, zinc Zn

⁹ HAP: Acénaphtène, Acénaphthylène, Anthracène, Benzo(a)anthracène, Benzo(a)pyrène, Benzo(b)fluoranthène, Benzo(ghi)Pérylène, Benzo(k)fluoranthène, Chrysène, Dibenzo(a,h)anthracène, Fluoranthène, Fluorène, Indeno-(1,2,3-cd)-Pyrène, Naphtalène, Phénanthrène, Pyrène

3.1 Caractérisation des sols

Les caractéristiques pédologique et agronomique des sols suivantes ont été déterminées sur les 4 mailles (Tableau 3 et Annexe 4) :

- texture sableuse pour les 4 mailles avec une présence forte de galets, grossièrement éliminés lors du prélèvement sur le terrain :
- pH compris entre 4,6 (maille P3) et 6,2;
- rapport C/N compris entre 8,5 et 10,9.

Lors des prélèvements de sol sur le site, il est apparu que l'horizon de surface sur les mailles P3 et P4 était riche en matière organique (horizon noir sur les premiers centimètres), alors que les mailles P1 et P2, présentaient un horizon homogène sur la totalité du prélèvement réalisé entre 0 et 10 cm.

Tableau 3 : Récapitulatif des caractéristiques pédologique et agronomique du sol

	Granulométrie					
Analyses	Sables (%)	Limons (%)	Argiles (%)	MO (%)	pHeau	C/N
P1	82,3	11	5,1	1,6	5,9	8,5
P2	79,4	12,8	6,3	1,5	6,2	9,0
P3	78,7	12,4	5,9	3,0	4,6	9,2
P4	83,0	8,8	5,3	2,9	5,9	10,9

Les Tableau 4 et Tableau 5 synthétisent les niveaux de pollution en POPs dans les sols superficiels des 4 mailles. Les valeurs affichées pour chaque maille correspondent aux moyennes des concentrations pour les 12 ou 9 bacs mis en culture en 2014 ou 2015. Les valeurs inférieures aux LQ ne sont pas considérées.

Tableau 4: Niveau de concentrations en POPs dans les sols des 4 mailles - série de culture 2014

Concentration par famille dans les sols Données 2014 / n=12	Unité	P1	P2	P3	P4
PCBi (7 congénères)	ng/kg	3 482 (±307)	34 893 (±5 219)	10 703 (±1 977)	30 606 (±4 405)
PCB-dl (12 cong.)	ng/kg	373 (±29)	4 231 (±444)	2 216 (±404)	5 062 (±801)
PCB-dl (12 cong.)	ng I-TEQ/kg	1,1	12,9	7,9	22,8
PCDD/F (17 cong.)	ng/kg	46 (±4)	665 (±55)	1 494 (±290)	5 410 (±1226)
PCDD/F (17 cong.)	ng I-TEQ/kg	1,4	23,9	69,2	218,5
PCDD/F + PCB-dI	ng I-TEQ/kg	2,5	36,8	77	241,3

n: nombre de bac de culture analysé par maille

(xx) : écart-type des concentrations

Tableau 5 : Niveau de concentrations en POPs dans les sols des 4 mailles – série de culture 2015

Concentration par famille dans les sols Données 2015 / n=9	Unité	P1	P2	P3	P4
PCBi (7 congénères)	ng/kg	3 954 (±515)	39 874 (±5 967)	12 627 (±2 882)	33 382 (±4 819)
PCB-dl (12 cong.)	ng/kg	388 (±45)	4 680 (±586)	2 514 (±633)	5 595 (±1 129)
PCB-dl (12 cong.)	ng I-TEQ/kg	1,2	14,7	8,6	27,1
PCDD/F (17 cong.)	ng/kg	125 (±217)	668 (±88)	1 526 (±505)	5 590 (±981)
PCDD/F (17 cong.)	ng I-TEQ/kg	1,8	25,2	73,6	235,0
PCDD/F + PCB-dI	ng I-TEQ/kg	3,0	39,9	82,2	262,1

n: nombre de bac de culture analysé par maille

Le niveau de pollution est croissant pour les PCDD/F de P1 à P4, ce qui n'est pas systématiquement le cas pour les PCBi et les PCB-dl. Ces divergences laisseraient à penser l'existence de pratiques locales historiques différentes sur l'ensemble du site, outre l'incendie de 2008. En effet, la maille P4 a été identifiée par le partenaire de l'EMSE comme une zone de brûlage de câbles au droit de laquelle des résidus de plastiques ont été observés *in situ* dans les sols.

Il en résulte, pour les PCDD/F dans les sols exprimés en ng/kg et en ng I-TEQ/kg, des concentrations avec des valeurs de 2 ordres de grandeur entre la maille la plus faiblement contaminée et celle présentant la plus forte contamination.

Les niveaux de concentrations sont similaires entre les séries 2014 et 2015, excepté pour :

- la somme des PCBi pour la maille P2 qui affiche en 2015 une valeur plus élevée par rapport à celle de 2014 (différence statistiquement significative, tests de Student précédés de tests de Fisher, α=0,05, p=0,016).;
- la somme des PCDD/F pour la maille P1 qui affiche en 2015 une valeur plus élevée par rapport à celle de 2014, qui se reflète peu lorsque la somme est exprimée en I-TEQ.

Deux anomalies sont observées sur les sols des bacs de culture en 2015 sur P1 (pour le PCB 118, variation de 2 ordres de grandeur entre les 3 réplicats) et sur P4 (pour les PCDD/F avec des variations jusqu'à 1 ordre de grandeur entre les 3 réplicats), augmentant significativement les écarts-types associés.

La Figure 6 présente les niveaux de concentrations dans les sols pour chacune des familles (PCDD/F, PCBi et PCB-dl, exprimées en ng/kg MS), sur la base des données de 2014.

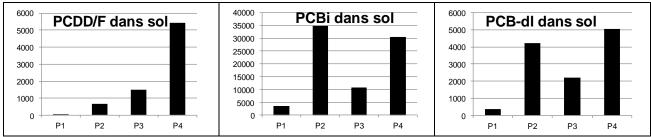


Figure 6 : niveaux des POPs dans les sols (unité : ng/kg MS)

Les profils de distribution par congénère sont illustrés en Annexe 4. Leur répartition est globalement similaire sur les 4 mailles, avec généralement l'absence des congénères les plus légers (faiblement chlorés) sur la maille P1. Pour les PCDD/F, les trois congénères majoritaires sont l'OCDD (P1 et P2), le 1,2,3,4,6,7,8 HpCDF (P4) et l'OCDF (P2, P3 et P4).

Pour les PCB-dl, le congénère majoritaire est le PCB 118 (environ 40%). Pour les PCB-ndl, les deux congénères majoritaires sont les PCB 138 et PCB 153.

Notons en parallèle, la prédominance des furannes (PCDF) par rapport aux dioxines (PCDD), de l'ordre de 60-70% sur P1 et P2 et de l'ordre de 80 % sur P3 et P4. Sur la somme PCDD/F et PCB-dl (exprimé en concentration brute ng/kg), les PCDD/F n'en représentent que 10-15% sur P1 et P2 alors que le pourcentage atteint 40-50% sur P3 et P4.

3.2 Répartition des POPs selon les fractions granulométriques

A l'issue du tamisage des terres, la fraction 250 μ m-4 mm est la fraction majoritaire à 70 % si la masse de cette fraction est rapportée à la masse totale (plus précisément 73 % pour P1 et P2 – 68 % pour P3 et P4). La fraction <250 μ m est inférieure à 10% de la masse pour P1 et P2, alors qu'elle est de 12% et 19% respectivement pour P4 et P3 (Figure 7). La fraction >1 cm représente au maximum 1% de la masse.

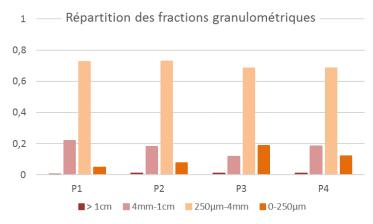


Figure 7 : Répartition massique des fractions granulométriques pour les 4 mailles

Le Tableau 6 présente les concentrations obtenues sur les fractions '0-1 cm' et '< 250 μ m'. C'est au niveau de la fraction la plus fine des sols (< 250 μ m) que les concentrations exprimées en ng/kg MS de PCB et de PCDD/F sont les plus élevées.

Tableau 6 : Concentrations en POPs pour les fractions 0-1 cm et <250 µm

Maille	aille P1				P2			P3			P4		
Concentration en ng/kg ou Ratio R1	Conc. (0-1 cm)	Conc. '<250 µm'	R1	Conc. '0-1 cm'	Conc. '<250 μm'	R1	Conc. '0-1 cm'	Conc. '<250 μm'	R1	Conc. '0-1 cm'	Conc. '<250 μm'	R1	
Σ PCBi (7 congénères)	2613	7468	3	28204	71754	2	8664	31043	4	32401	71147	2	
Σ PCB-dI (12 cong.)	310	867	3	3584	8892	3	1853	6672	4	5848	12273	2	
Σ PCDD/F(17 cong.)	45	112	2	615	1635	2	1320	5281	4	6763	12845	2	

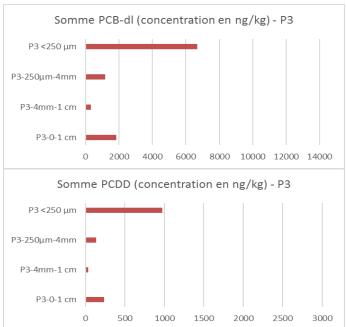
Ratio R1: concentration fraction <250 µm (ng/kg) / concentration fraction '0-1cm' (valeur arrondie à l'unité)

Quelle que soit la maille, le ratio entre la concentration de la fraction <250 µm et la concentration dans une des 3 autres fractions est globalement compris entre 2 et 4 (valeur arrondie à l'unité - Tableau 7). Cette observation est valable pour les 4 mailles testées, quel que soit le niveau de pollution des terres, excepté sur P3 pour :

- la fraction 4 mm-1 cm affichant des ratios plus élevés pour les 3 familles chimiques, compris entre 21 et 26 ;
- la fraction 250 µm-4 mm affichant des ratios plus modérés, compris entre 5 et 7.

Tableau 7: Ratios des concentrations selon les fractions par rapport à la fraction <250 μm'

Maille	P1			P2			P3			P4		
Ratio	R1	R2	R3									
Σ PCBi (7 congénères)	3	4	3	2	3	2	4	21	6	2	3	3
Σ PCB-dl (12 cong.)	3	4	3	3	3	2	4	21	5	2	3	3
Σ PCDD/F(17 cong.)	2	2	2	2	4	3	4	26	7	2	3	3


Ratio R1: concentration fraction <250 µm (ng/kg) / concentration fraction 0-1cm (ng/kg)

Ratio R2: concentration fraction <250 µm (ng/kg) / concentration fraction '4mm-1cm' (ng/kg)

Ratio R3: concentration fraction <250 µm (ng/kg) / concentration fraction 250µm-4mm (ng/kg)

En gris : ratios les plus élevés

Les ratios R1, R2 et R3 apparaissent homogènes d'une famille chimique à l'autre (PCBi, PCB-dl et PCDD/F). Seule la maille P3 présente des concentrations beaucoup plus faibles sur la fraction '4 mm-1cm' et dans une moindre mesure, sur la fraction '250 μ m-4mm', par rapport à la fraction '<250 μ m' (Figure 8).

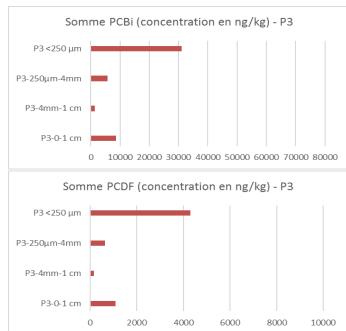


Figure 8: Concentrations en PCBi, PCB-dl et PCDD/F selon les fractions granulométriques (cas maille P3)

Notons que les ratios présentés ci-dessus pour les familles chimiques sont valables aussi pour chacun des congénères au sein de chaque famille (tests réalisés pour PCB77, PCB153, 1,2,3,4,6,7,8-HpCDF).

La distribution massique des POPs dans les fractions du sol est étroitement liée à la répartition massique des fractions. En effet, les ratios de concentrations observés entre les fractions compensent peu la répartition des fractions pour les mailles P1 et P2, et dans une moindre mesure pour P4, comme illustré en Figure 9.

Quelle que soit la famille chimique considérée, les polluants sont majoritairement présents dans la fraction 250 μ m-4 mm, à 70% environ pour P1 et P2, et à 55% environ pour P4. Ce pourcentage chute à 35% pour P3. Au niveau de la maille P3, les polluants sont majoritairement présents à 60% environ dans la fraction la plus fine, à savoir <250 μ m.

Dans la suite du document, les concentrations totales se réfèrent à la fraction 0-1cm. Ces valeurs ont été considérées pour évaluer les coefficients de transfert dans les végétaux et les invertébrés.

Au vu de ces résultats, les hypothèses suivantes peuvent être émises :

- pour les végétaux, la distribution massique des POPs aura peu d'influence sur les coefficients de transfert car les terres ont été tamisées à 1 mm avant leur mise en culture. Les racines sont en contact avec les 3 fractions granulométriques;
- pour les invertébrés, les terres ayant été préalablement tamisées à 4 mm, ils ne sont en contact qu'avec deux fractions représentant 85% de la masse de polluants pour P1, P2 et P4, et 98% pour P3. Les coefficients de transfert pour les invertébrés calculés sur la base de la fraction '0-1 cm' dans le reste du rapport pourraient être sous-estimés de 15% au maximum pour les mailles P1, P2 et P4. Ce qui peut être considéré comme marginal à ce stade.

Taux de recouvrement : (somme des concentrations sur les trois fractions - concentration de la fraction 0-1cm)/ concentration de la fraction 0-1cm, exprimé en pourcentage Taux > 0 : somme des concentrations sur les trois fractions [<250µm + 250µm-4mm + 4mm-1cm] > concentration totale de la fraction [0-1cm]

Taux < 0 : somme des concentrations sur les trois fractions [<250µm + 250µm-4mm + 4mm-1cm] < concentration totale de la fraction [0-1cm]

Taux = 0 :: la somme des concentrations sur les trois fractions [<250µm + 250µm-4mm + 4mm-1cm] est similaire à la concentration totale de la fraction [0-1cm]

Figure 9 : Distribution massique des PCBi, PCB-dl et PCDD/F selon les fractions granulométriques

3.3 Niveaux de contamination des sols par d'autres composés

Les concentrations en métaux et en HAP sont illustrées sur la Figure 10 et présentées en Annexe 4. Les concentrations en métaux sont globalement similaires entre les 4 mailles, excepté pour :

- Cu avec des concentrations comprises entre 15 mg/kg (P1) et 545 mg/kg (P4);
- Pb avec des concentrations comprises entre 47 mg/kg (P1) et 340-405 mg/kg (respectivement P2 et P4);
- Zn avec des concentrations comprises entre 60 mg/kg (P1) et 157 mg/kg (P4).

Du mercure a été quantifié sur les 4 mailles à raison de 0,13-0,14 mg/kg.

Les HAP ne sont pas quantifiés sur les mailles P2 et P3. Seul le benzo(b)fluoranthène est quantifié sur la maille P1 avec 0,061 mg/kg. Les principaux composés quantifiés sur la maille P4 sont le benzo(a)pyrène, le benzo(b)fluoranthène, le chrysène, le fluorène et le pyrène dont les concentrations sont comprises entre 4,4 et 8,8 mg/kg soit un total de 57 mg/kg pour les 16 HAP.

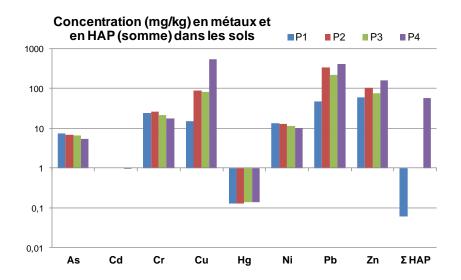
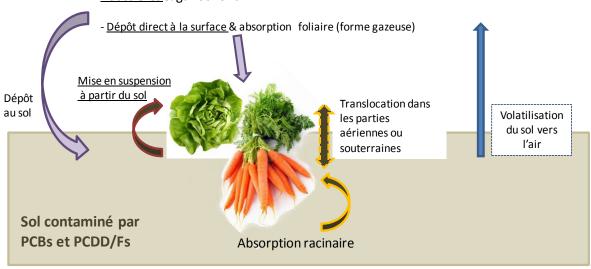


Figure 10 : Niveaux de concentrations en métaux et pour la somme des 16 HAP dans les sols (unité : mg/kg MS)

IV Evaluation du transfert des POPs du sol vers les végétaux et détermination des BCF

1. Objectif

L'évaluation du transfert des POPs du sol vers les végétaux a été conduite en vue de déterminer les BCF dans les parties aériennes et souterraines consommées potentiellement par les animaux d'élevage et par l'Homme, et *in fine* d'appréhender les expositions potentielles


Considérant que le BCF est dépendant, en l'occurrence, du végétal, de ses conditions de croissance et des caractéristiques du sol, et afin de s'affranchir de certains facteurs (dépôts atmosphériques, dépôts particulaires...), deux types d'expérimentations ont été réalisés :

- en conditions réelles, sur le site de Saint Cyprien pour les végétaux potentiellement broutés par les animaux d'élevage (transfert des POPs in situ). Dans ce contexte, les concentrations en POPs mesurées dans les parties aériennes des végétaux sauvages sont le résultat de plusieurs voies de transfert : transfert sol-plante, dépôts particulaires, absorption gazeuse, etc.;
- > et en **conditions contrôlées** (enceinte de culture ou phytotron, voir paragraphe 3.4) pour les végétaux consommés par l'Homme.

Le schéma conceptuel illustré en Figure 11 rappelle les principales sources de contamination à l'origine d'une contamination des végétaux, ainsi que les voies de tranfert potentielles en distinguant les conditions in situ telles que rencontrées sur le site atelier des conditions contrôlées telles que mise en oeuvre dans cette étude.

Poussières & gaz dans l'air:

<u>En souligné</u>: modalités et voies de transfert observées dans <u>les conditions in-situ</u> sur le site atelier (non considérées dans les conditions contrôlées du phytrotron)

Sur la base du guide d'échantillonnage des plantes potagères dans le cadre des diagnostics environnementaux – ADEME, 2014 (2^{nde} édition)

Figure 11 : Schéma conceptuel simplifié avec les sources et vecteurs de transfert impliqués dans la contamination des végétaux

2. Matériels et méthodes - expérimentation in situ

2.1 Lots de végétaux

Une couverture végétale est naturellement présente sur le site de Saint Cyprien au droit des 4 mailles sélectionnées, qui se trouvent à l'aplomb de panneaux photo-voltaïques. Les végétaux ont été identifiés et récoltés manuellement en juin 2014 par le partenaire GSE. Le partenaire LEB Aquitaine Transfert, présent lors du prélèvement, a déterminé l'indice oméga-3 (biomarqueur lipidique) sur ces mêmes échantillons. Sur chaque maille (au droit des 4 sous-stations), les végétaux ont été prélevés et répartis en 3 pools :

- Pool 1 : mélange de tous les végétaux ;
- Pool 2 : uniquement les graminées, composées de : houlque, dactyle, avoine... ;
- Pool 3 : espèce dominante autre que les graminées : ronce (*Rubus sp.*).

Il en résulte le prélèvement de 12 échantillons (3 pools par maille x 4 mailles). Aucun réplicat n'a été réalisé.

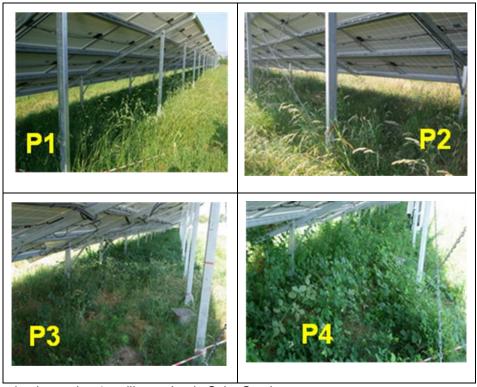


Figure 12 : végétaux in-situ sur les 4 mailles – site de Saint Cyprien

2.2 Collecte, préparation des végétaux et analyses

Seules les parties aériennes des végétaux, composées des feuilles et des tiges florales, sont récoltées. Les parties aériennes sont coupées quelques centimètres au-dessus de la surface du sol pour éviter toute contamination.

Sans lavage à l'eau, les parties aériennes sont envoyées directement au laboratoire pour analyse des POPs.

3. Matériels et méthodes – expérimentation en conditions contrôlées

3.1 <u>Sélection des végétaux</u>

Pour appréhender le transfert des POPs du sol aux végétaux potagers, plusieurs espèces ont été mises en culture (Tableau 3). En 2014, le choix s'est porté sur la carotte, la pomme de terre, la courgette et la laitue, qui constituent 4 espèces potagères représentatives des principales catégories de légumes cultivées en France.

A l'issue des résultats de cette première série de culture, le choix des cultures pour 2015 s'est porté sur 3 espèces (haricot, laitue et graminées). Ces cultures avaient pour objectif d'une part d'approfondir le transfert dans les légumes fruit (sélection du haricot) et ainsi compléter les résultats obtenus avec les courgettes, et d'autre part, de confirmer/infirmer les premières tendances observées :

- <u>Hypothèse 1</u>: influence de la volatilisation des POPs légers et de leur éventuelle absorption gazeuse par les végétaux type feuille, présentant une large surface foliaire d'échange. Cette hypothèse est émise à l'issue de la première série de culture de laitue en 2014 affichant des teneurs élevées et homogènes en PCB28 et PCB52 notamment dans les feuilles alors que leurs concentrations dans les sols sont faibles. Pour confirmer une éventuelle volatilisation de POPs à faible nombre de chlore et s'affranchir du substrat « sol », des laitues ont été cultivées dans l'enceinte en 2015 sur une solution nutritive exempte de POPs. Cette culture a été menée en parallèle d'une nouvelle culture de laitue sur les sols des 4 mailles pour évaluer d'éventuelles absorptions gazeuses. Une analyse de l'air ambiant du phytotron a été effectuée en 2015 pendant et après la seconde série de cultures;
- <u>Hypothèse 2</u>: influence éventuelle du dépôt particulaire sur le transfert des POPs dans les graminées (famille botanique identifiée parmi les végétaux prélevés in situ). Il s'agissait de confirmer les forts transferts de POPs mesurés en 2014 sur les graminées prélevées in-situ, en cultivant des graminées en conditions contrôlées et pour lesquelles le dépôt particulaire est fortement réduit.

Les résultats obtenus en 2014 sur les graminées in-situ ont également été vérifiés (hypothèse 2) avec une culture en laboratoire de trois espèces de graminées rencontrées in-situ sur les mailles sélectionnées (Holcus lanatus, Dactylis glomerata et Trisetum flavescens).

Tableau 8 : Végétaux cultivés en 2014 et 2015 sur les sols contaminés

2014	2015						
Légume fruit : courgette (COU – variété Belor HF1)	Légume fruit : haricot (HA – variété Oxinel)						
Légumes racines et tubercules :	Graminées: choix en fonction des espèces						
pomme de terre (PDT – variété Charlotte)	identifiées in-situ: Holcus lanatus, Dactylis						
carotte (CA – variété Nanco HF1)	glomerata et Trisetum flavescens.						
Légume feuille : laitue (L – variété Dorée de Printemps), espèce végétale notamment normalisée pour la							
détermination des biomarqueurs lipidiques (oméga3). Une variété blonde est requise.							

Les graines des végétaux potagers (marque Vilmorin) et les tubercules de pomme de terre ont été achetées en jardinerie. Les graines de graminées ont été fournies par Gazons de France (77) pour *Dactylis glomerata Lustica*, et par Phytosem (05) pour *Trisetum flavescens* Trisett 51 et *Holcus lanatus* « Enrobé ».

3.2 Culture des végétaux sur sol

Les végétaux sont cultivés dans des bacs en verre de 5 L ou de 12,5 L, pouvant contenir 5 ou 10 kg de terre (dimension petit bac = 200 mm x 150 mm x 200 mm, dimension grand bac = 300 mm x 220 mm x 240 mm). Pour les 4 mailles testées (P1 à P4), trois réplicats sont mis en œuvre pour chaque espèce végétale. Afin de suivre la production de biomasse et identifier d'éventuelles difficultés de croissance, des laitues et des haricots (1 pied par bac) ont été plantés dans des bacs en verre de 5 L contenant du terreau acheté en

jardinerie (2014) ou du sol agricole témoin (2015) . Le terreau et le sol agricole ont été analysés après plantation pour déterminer les niveaux en POPs.

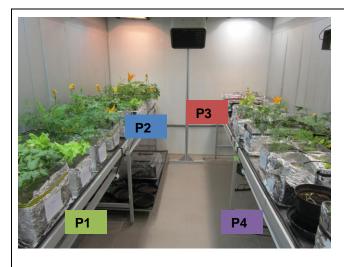
Les densités de plantation sont rapportées dans le Tableau 9. Les graines ont été pré-gonflées dans de l'eau distillée 24h à 48h selon l'espèce, avant leur semis.

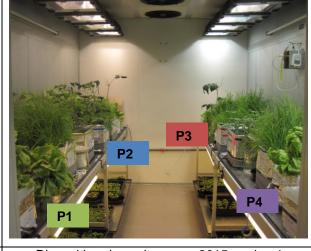
Tableau 9 : Densité de semis/plantation et quantité de terre utilisée par bac

	Carotte	Courgette	Pomme de terre	Laitue	Graminées	Haricot
2014	CA	COU	PDT	L		
Quantité terre	5 kg	5 kg	10 kg	5 kg		
Nb de pieds/bac	5	1	3 tubercules	2 puis 1		
2015				LAI	GRA	HA
Quantité terre				5 kg	10 kg	10 kg
Nb de pieds/bac				1	1200 graines	2 sur P1/P2
•					(a)	4 sur P3/P4

(a) Résultats des tests de germination : taux de germination de 40% pour la houlque, 55% pour l'avoine et 15% pour le dactyle. En raison d'un faible taux de germination et d'une densité finale souhaitée d'une graine au cm², le semis a été doublé et a consisté en la plantation de 400 graines de chaque espèce, soit un total de 1200 graines par bac de culture d'une superficie de 700 cm² (poids pour 400 graines = 0,15 g pour la houlque = 0,30 g pour le dactyle = 0,12 g pour l'avoine).

En raison d'un retard de développement sur les mailles P3 et P4, de nouvelles graines de laitue ont été ressemées avec un décalage de 1 mois.


Chaque bac de culture porte un nom unique, qui permet d'identifier la maille, le réplicat et l'espèce selon la combinaison suivante :


Ainsi le bac portant la dénomination « P3 CA R1 » représente le réplicat 1 de carotte cultivée sur le sol provenant de la maille P3.

Les bacs contenant les terres d'une même maille ont été regroupés sur une même paillasse.

Au préalable, les bacs ont été lavés à l'eau distillée, séchés à l'air puis rincés à l'hexane pour éliminer toute présence de polluants organiques. Un second rinçage à l'acétone a permis d'éliminer les traces d'hexane avant le remplissage. Un prélèvement de terre est effectué pour chaque bac afin de disposer ultérieurement d'une analyse de sol pour déterminer les BCF, au moment du remplissage de chaque bac par la terre. Ainsi, un échantillon de 600 g de terre est prélevé puis envoyé pour analyse pour un total de 48 échantillons de sol contaminé en 2014 (3 réplicats x 4 espèces végétales x 4 mailles) et 36 en 2015 (3 réplicats x 3 espèces végétales x 4 mailles).

La disposition des 4 paillasses et les cultures mises en œuvre en 2014 et 2015 sont illustrées en Figure 13. Les bacs sont regroupés en fonction de l'origine des terres : paillasses P1 et P2 à gauche, paillasses P3 et P4 à droite.

Disposition des cultures en 2014 sur les 4 paillasses

Disposition des cultures en 2015 sur les 4

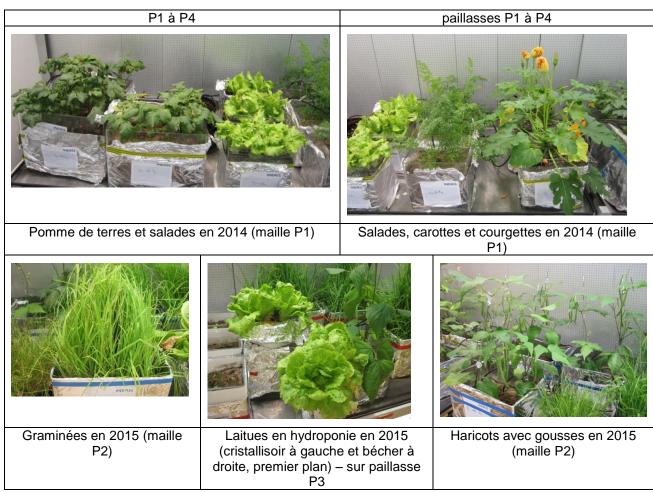


Figure 13 : espèces végétales cultivées en enceinte climatique / INERIS – cultures de 2014 et de 2015

3.3 <u>Culture des laitues en hydroponie</u>

La culture des salades en hydroponie sur solution nutritive permet de s'affranchir du transfert racinaire des POPs et d'évaluer le transfert atmosphère-plante. Deux dispositifs ont été mis en place et testés en parallèle :

- le premier dispositif (Figure 14) est composé d'un tamis contenant du sable à gros grains (2 mm), le tout reposant sur les bords d'un bécher d'un litre. Le sable a été lavé à l'eau distillée puis à l'hexane, et rincé à l'acétone pour éliminer toutes traces d'éventuels polluants organiques. Le bécher est recouvert de papier d'aluminium pour éviter le développement d'algues. Un bécher a été placé sur chaque paillasse, soit quatre béchers au total. Plusieurs graines ont été plantées sur ce dispositif le 14 avril 2015, mais seuls deux pieds ont été maintenus par bécher pour favoriser leur croissance. Du grillage a également été ajouté sur les rebords des béchers pour éviter aux feuilles d'être en contact avec la solution nutritive;
- le second dispositif (Figure 15) a été mis en place lorsque les salades ont atteint le stade de croissance « deux feuilles », le 27 avril 2015. Huit salades (1 cristallisoir par paillasse) issues des béchers ont été transplantées sur des rondelles de mousse de 7 cm de diamètre et de 2 cm d'épaisseur achetées chez Culture Indoor (75) et entaillées d'une fente. Ces rondelles ont été mises à flotter dans des cristallisoirs de 14 cm de diamètre contenant 600 mL de solution nutritive. Ces derniers ont été aussi recouverts d'aluminium.

Figure 14 : dispositif composé d'un bécher surmonté d'un tamis rempli de sable

Figure 15 : dispositif composé d'un cristallisoir et de rondelles en mousse flottantes

La solution nutritive est une solution de Sonneveld (Sonneveld and Voogt 2009) légèrement modifiée résultant de recherches menées par le Département d'horticulture de l'Université de Cornell (USA). La solution finale est un mélange de trois solutions mères (détails de leur composition en Annexe 5). Les solutions sont changées toutes les semaines et un bullage permanent d'air comprimé à l'aide de diffuseurs a été mis en place pour assurer l'oxygénation des racines.

Les salades cultivées en hydroponie sont placées dans la même enceinte climatique que les salades cultivées sur les sols.

3.4 Mise en place et suivi des cultures en conditions contrôlées

Enceinte de culture (phytotron)

Le phytotron de l'INERIS est une chambre climatique conçue et installée par l'entreprise Froids et Mesure (49) possédant des paramètres contrôlables (température et humidité de l'air, cycle jour/nuit). Une ventilation intégrée permet une circulation de l'air en circuit fermé. Le phytotron mesure 3,6 m de long, 2,4 m de large et 2,25 m de haut (cotes extérieures), et dispose d'un volume intérieur approximatif de 25 m³. Il est composé de 4 paillasses, alimentées par des rampes d'irrigation dont la durée de fonctionnement est contrôlée par l'opérateur (arrosage goutte à goutte quotidien, complété par un arrosage manuel nécessaire pour compenser les écarts d'un bac à l'autre et d'une paillasse à l'autre). Des excès d'eau sont toutefois survenus sur la paillasse P1 (salades et carottes).

Les paramètres de croissance retenus étaient les suivants : cycle jour de 10 h pendant le premier mois puis de 12h ; humidité relative de l'air à 70 % ; température de l'air à 18°C (nuit) et 22°C (jour).

Fertilisation des bacs de culture

Suite aux analyses agronomiques réalisées sur les 4 mailles en 2014, il a été identifié :

- un manque d'azote pour les laitues (35 U¹º dans le sol au lieu des 80 U conseillées). Les faibles biomasses obtenues avec la laitue en 2014 ont conduit à mettre en place une fertilisation plus intensive en 2015 (100 U). Le premier apport de 50 U a été réalisé un mois après le semis à partir d'une solution de nitrate d'ammonium (Sigma-Aldrich). Un deuxième et troisième apport de 25U chacun ont été effectués respectivement deux mois, et deux mois et demi après le semis. Pour les salades replantées sur les mailles P3 et P4, des apports supplémentaires de 25 U ont été réalisés un mois et demi, et deux mois et demi après le semis ;
- un manque d'azote pour les pommes de terre (apport ponctuel de 100 U) ;
- un manque d'azote pour les carottes (apport ponctuel de 40 U) ;
- un manque d'azote pour les courgettes (2 apports de 80 U chacun) ;
- un manque de phosphore sur les mailles P3 et P4, pour les courgettes (apport ponctuel de 70 U).

^{10 1} U d'azote = 1 kg d'azote/ha

L'estimation des besoins de chaque culture a été réalisée à partir de fiches techniques disponibles. Les unités de fertilisation appliquées aux cultures et la fréquence sont précisées sur les planches du suivi des végétaux insérées en Annexe 6.

L'amendement minéral en azote a été pratiqué pour chaque culture à base d'une solution de NH4NO3 (Sigma Aldrich). Etant donné le pH acide de cette solution, une solution de KOH (Millipore) a été utilisée pour ramener le pH à 7 et ne pas perturber le sol.

La solution pour l'amendement phosphaté a été préparée à partir d'une solution de H₃PO₄ pur (Acros Organics) tamponnée par une solution de KOH pour obtenir un pH de 7.

Lutte phytosanitaire

En 2014, pour les pommes de terre, un traitement préventif à partir de bicarbonate de soude à 8 g/L mélangé à un agent mouillant (savon noir) a été appliqué sur le feuillage.

A partir de la mi-juin 2014, des pucerons ont été observés sur des plants de pomme de terre. Une élimination manuelle puis l'introduction de larves de coccinelles ont été mises en œuvre, suivi par l'application commerciale de pyrèthre mélangé à de l'huile de colza (marque Truffaut) en raison de la prolifération des insectes. Les pucerons ont été présents dans le phytotron jusqu'à la récolte des végétaux et ont engendré de nombreux dégâts sur les pommes de terre conduisant à la récolte très précoce des pommes de terre sur la maille P3, mais aussi sur les salades (nécroses dues aux piqûres).

En 2015, trois semaines après les semis des haricots, les plants sur les mailles P3 et P4 ont montré des signes de ralentissement de croissance et de coloration des nervures en marron. Cette maladie a été identifiée comme étant l'anthracnose, maladie du haricot causée par un champignon, Colletotrichum lindemuthianu (Borges et al. 2012). Les haricots ont été traités avec une solution de 20 g/L de bouillie bordelaise de marque Fertiligène (Naturen). Les plants P1 et P2 ont été également traités en préventif lors de la première application le 7/05/2015. Un second traitement a été réalisé le 12/06/2015 uniquement sur les plants P3 et P4. Une troisième application a été faite le 15/07/2015 sur tous les plants. Chaque application était réalisée en fin de journée.

Récolte des végétaux et préparation

Les végétaux ont généralement été récoltés à l'atteinte de leur stade de maturité, à savoir :

- pour les légumes-racines et tubercules : au moment de la fanaison des parties aériennes pour les pommes de terre (entre le 25 août et le 17 septembre 2014 – soit 94 à 117 jours après plantation) et les carottes (entre le 25 septembre et le 13 octobre 2014 soit 125 à 143 jours après semis) ;
- pour les légumes-fruits : à l'atteinte d'une taille optimale pour les courgettes (entre le 26 août et le 25 septembre 2014 soit 95 à 125 jours après semis) et pour les haricots (mailles P1 et P2 : entre le 11 juin et le 21 juillet 2015 soit 58 à 98 jours après semis ; mailles P3 et P4 : entre le 17 juin et le 23 septembre 20015 soit 64 à 162 jours après semis). La durée de culture des haricots sur les mailles P3 et P4 a été allongée afin de récolter une biomasse suffisante pour les analyses ;
- pour les légumes-feuilles de 2014: avant la nécrose généralisée des feuilles pour les salades (nécrose imputée au développement des pucerons et aux traitements phytosanitaires successifs), entre le 20 août et le 2 septembre 2014, soit 89 à 102 jours après semis. Au vu de la faible biomasse obtenue sur les mailles P3 et P4 (10 à 30 g MF), une seconde culture
 - de laitue a débuté le 2 septembre 2014, sur les mêmes bacs, après homogénéisation des terres et fertilisation en NH₄NO₃ avec une densité de semis plus faible (1 pied par bac au lieu de 2). La récolte a eu lieu en décembre 2014 après 3 mois de culture.
- pour les légumes-feuilles de 2015 : après 3 mois de culture pour les salades cultivées sur les bacs et en hydroponie (2 échantillons cultivés en bécher et positionnés sur les paillasses P1 et P3). Une récolte intermédiaire a eu lieu pour les salades cultivées en hydroponie à 2 mois (2 échantillons cultivés en bécher et positionnés sur les paillasses P2 et P4) et à 4 mois (1 échantillon cultivé en cristallisoir au stade montaison, correspondant à la date de récolte des salades cultivées sur les mailles P3 et P4).
- pour les graminées cultivées en 2015 : après 3 mois de culture, les feuilles atteignant une hauteur de 40 cm environ. Les feuilles sont coupées à l'aide d'un scalpel à environ 4 cm du sol pour éviter

toute contamination éventuelle par des particules de sol. Le stade floraison, observé sur les graminées récoltées in-situ en juin 2014, n'était pas atteint dans l'enceinte climatique. Après cette première coupe, la culture a été poursuivie pendant 2 mois sans atteinte du stade floraison. Les feuilles de la deuxième coupe n'ont pas été analysées.

Généralement, les dates de récoltes plus tardives correspondaient aux mailles P3 et P4 en raison d'un développement décalé, excepté pour les pommes de terre dont la date plus tardive correspondait aux mailles P1 et P2.

Les végétaux ont été préparés dans le laboratoire de l'INERIS, au plus près des habitudes alimentaires, avant leur envoi et analyse au laboratoire :

- les pommes de terre, les gousses de haricot et les courgettes ont été lavées à l'eau déminéralisée;
 les extrémités des courgettes et des haricots généralement non consommées ont été supprimées.
 A noter que les pommes de terre n'ont pas été épluchées avant analyse au regard de la faible quantité de matière disponible;
- les carottes ont été lavées à l'eau déminéralisée puis épluchées ;
- les graminées n'ont pas été lavées ;
- les parties nécrosées des salades lavées ont été éliminées manuellement.

La biomasse fraîche est déterminée pour les organes et les épluchures sur le poids frais, avant lavage. Les végétaux sont placés dans les sacs en plastique fournis par le laboratoire et envoyés au laboratoire dans des glacières réfrigérées juste après leur prélèvement.

En raison d'une faible biomasse produite en 2015 pour les salades et les haricots cultivés sur les mailles P3 et P4, les réplicats de chaque maille ont été poolés pour assurer une biomasse suffisante pour l'analyse. Ainsi, à titre d'exemple, il a été analysé 1 échantillon poolé de laitue sur P3 au lieu des 3 réplicats. Au total, 4 échantillons poolés ont été constitués : P3-LAI, P4-LAI, P3-HA, P4-HA.

Pour les haricots dont la récolte s'est étalée sur plusieurs semaines pour un même bac, les gousses ont été conservées au préalable à -18°C avant envoi au laboratoire. Il en est de même pour les salades cultivées en hydroponie et récoltées à T=3 mois. Pour les pommes de terre, les tubercules ont été conservés 1 mois pour les mailles P1 et P2, et 2 mois pour les mailles P3 et P4 au réfrigérateur (3-5°C) avant leur envoi pour analyse.

Qualité de l'air ambiant dans le phytotron

Les concentrations des PCB et PCDD/F dans l'air ambiant de l'enceinte climatique ont été contrôlées par prélèvement à l'aide d'une cartouche PUF-XAD2-PUF (support Orbo 1500 chez Supelco) placée sur une pompe MicroVol 1100 Low-Flow Air-Sampler (Ecotech) avec un débit de 3L/min pendant 68 h (Figure 16). La cartouche a été placée au niveau des paillasses au centre de l'enceinte. Ce dispositif a permis de faire passer 12.24 m³ d'air sur la cartouche soit environ 50% du volume de la chambre de culture.

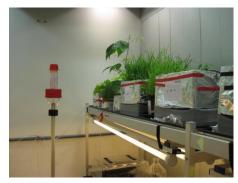


Figure 16 : dispositif d'échantillonnage de l'air ambiant dans l'enceinte sur Orbo 1500 (juillet 2015) Deux campagnes de mesure ont été réalisées afin d'apprécier l'éventuelle contribution des bacs de terre à l'enrichissement de l'air ambiant du phytotron en POPs :

- en juillet 2015 pendant la culture des graminées, des laitues et des haricots (1 cartouche) ;
- en janvier 2016, après l'arrêt des cultures et nettoyage de l'enceinte climatique (1 cartouche dans l'enceinte vide). Une seconde cartouche a été utilisée comme blanc analytique.

Au total, 3 cartouches ont été analysés pour déterminer la quantité de PCB et PCDD/F absorbée sur les supports.

3.5 Programme analytique

Les analyses chimiques visant à déterminer les concentrations en PCBi, PCB-dl et PCDD/F des matrices végétales et animales (voir aussi le paragraphe 2.7 du chapitre VI pour les vers de compost mais aussi les escargots en lien avec le projet TROPE) ont été confiées au laboratoire EUROFINS Expertises environnementales, basé à Maxéville (54). Les échantillons sont traités dans un laboratoire partenaire implanté à Hambourg, en Allemagne. Après enregistrement au laboratoire de Maxéville, les végétaux sont acheminés dans les 24 h au laboratoire partenaire allemand.

Les analyses chimiques visant à déterminer les concentrations en PCBi, PCB-dl et PCDD/F dans la matrice air ont été confiées au laboratoire EUROFINS Environnement France, basé à Saverne (67). Il en est de même pour les analyses de métaux et de HAP dans les sols.

Pour les végétaux, les PCBi ont été analysés par GC-HRMS tandis que pour les PCB-dl et PCDD/F la technique utilisée était soit le GC-HRMS soit une chromatographie gazeuse couplée à un spectromètre de masse en tandem (GC-MS/MS). Pour les PCBi et les PCDD/F présents dans l'air, la cartouche PUF-XAD2-PUF a été analysée par HRMS tandis que les PCB-dl ont été analysés par HRMS couplé à une chromatographie gazeuse (GC-HRMS).

4. Résultats expérimentaux

4.1 Qualité de l'air de l'enceinte de culture

L'analyse des deux échantillons prélevés dans l'enceinte de culture en juillet 2015 pendant l'expérimentation puis en janvier 2016 après son arrêt met en évidence la présence des PCB 28 et PCB 52 dans l'air ambiant, PCB les plus légers contenant respectivement 3 et 4 atomes de chlore. A l'issue de 3 jours de prélèvement, les quantités captées sur les supports de prélèvement sont globalement identiques entre les 2 campagnes avec :

- 1 400 à 1 550 pg/support de PCB 28 correspondant à une concentration comprise entre 114 et 127 pg/m³;
- 3 450 à 3 590 pg/support de PCB 52 correspondant à une concentration comprise entre 282 et 293 pg/m³.

L'analyse d'un support 'blanc' en lien avec la campagne de janvier 2016 montre une valeur de 898 pg/support de PCB 52 correspondant à une concentration de 73,4 pg/m³ (et PCB 28 < 820 pg/support). Aucun autre PCBi, PCB-dl ou PCDD/F n'a été quantifié (voir Annexe 7). Seuls les PCB 101, PCB 105 et PCB 118 ont été détectés ; ils sont reportés en Figure 17 avec la valeur de leur limite de quantification.

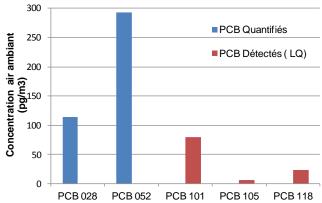


Figure 17 : POPs quantifiés et détectés dans l'enceinte de culture (prélèvement de juillet 2015)

A titre indicatif, la CTA (concentration tolerable in Air) liée aux PCBi est de 0,5 μg/m³ soit 1 000 fois plus élevée que les valeurs mesurées dans l'air ambiant de l'enceinte (donnée RIVM, 2001 extraite de la fiche de données toxicologiques et environnementales des substances chimiques, INERIS, 2005).

L'origine de ces PCB dans l'air ambiant peut être attribuée soit aux terres mises en œuvre pour les expérimentations, soit à une présence ubiquitaire dans l'air ambiant. Le Tableau 7 rapporte les quantités de PCB mesurées dans l'air (valeurs de juillet 2015) et celles issues des terres mises en œuvre pour les cultures. La quantité en PCB dans l'air apparaît très faible par rapport à la quantité en PCB présents dans les sols. Il est difficile à ce stade de certifier que les PCB 28 et PCB 52 mesurés dans l'air ambiant proviennent de la volatilisation des terres impactées.

Tableau	10 · Quantité e	n PCB dans l'ai	r et dans les sols
1 abioaa	TO . Qualitito c	in i OD dano i ai	01 44110 100 0010

	Quantité (pg/support)	Quantité en ng dans l'air de l'enceinte	Quantité en ng dans le sol de tous les bacs de culture	Rapport air/sol en %
PCB 28	1 400	2,86	15 859	0,018
PCB 52	3 590	7,33	49 509	0,015
PCB 101	980*	2,00	416 306	0,0005
PCB 105	79*	0,16	161 423	0,0001
PCB 118	280*	0,57	416 591	0,00014

Exploitation des données de juillet 2015*

Volume de l'enceinte estimée : 25 m³.

^{*} Limite de quantification fournie par le laboratoire

4.2 <u>Développement et biomasse des végétaux potagers</u>

Dans le cadre de l'étude, la biomasse récoltée reflète d'une part l'état sanitaire des végétaux, et d'autre part, l'effet de la qualité des sols sur leur développement.

Des attaques de pucerons sur les cultures de 2014 ont engendré une récolte précoce des tubercules de pomme de terre sur la maille P3 malgré la lutte biologique puis chimique, et ont affaibli les pommes de terre et les laitues cultivées sur les autres mailles.

Une attaque d'anthracnose a touché les haricots des mailles P3 et P4 en 2015, engendrant un faible développement des pieds et une faible production de gousses.

Suite à l'observation d'un développement faible ou ralenti de ces végétaux, il a été nécessaire de procéder à :

- un second semis de graines de laitue sur les mailles P3 et P4 en 2015 (décalage d'un mois);
- un semis plus dense de graines de haricots sur les mailles P3 et P4 en 2015 (4 pieds au lieu de 2 pieds sur les mailles P1 et P2).

Les biomasses les plus faibles sont observées sur les mailles P3 et/ou P4 pour la majorité des végétaux (carottes, courgettes, laitues, haricots et pommes de terre), excepté les graminées comme illustré en Figure 18. Les biomasses rapportées correspondent aux organes consommés (tubercule, feuille, fruit, gousse).

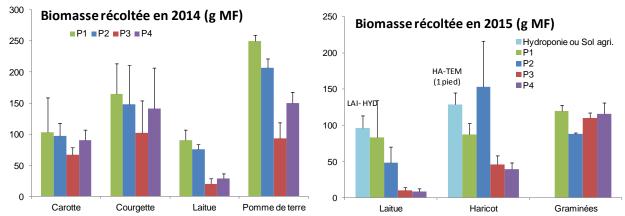


Figure 18 : biomasse produite en conditions contrôlées

Le pourrissement de carottes sur P1-CA-R3 en raison d'un excès d'eau engendre un écart-type plus important sur la maille P1 (non observé sur les autres mailles affichant une biomasse homogène). Il en est de même pour les laitues de P1-LAI-R3 cultivées en 2015 (excès d'eau entrainant un développement moindre).

La biomasse de la laitue cultivée en 2015 sur les mailles P3 et P4 est très faible par rapport à celle de 2014, malgré la fertilisation azotée apportée.

4.3 Concentrations dans les organes consommés

Les concentrations dans les organes entiers (non épluchés) varient en fonction de la famille chimique et de l'espèce végétale. Les résultats exprimés en matière fraîche sont détaillés en Annexe 8 pour les graminées et en Annexe 9 pour les végétaux potagers, et synthétisés dans le Tableau 11 (valeur moyenne pour les 3 réplicats et les 4 mailles). La variabilité des concentrations obtenues sur les 4 mailles est approchée au travers du rapport concentration maximale/concentration minimale (toute maille et tout réplicat confondus).

Tableau 11: Concentrations moyennes en POPs dans les végétaux pour les 3 familles analytiques (toutes mailles confondues)

Concentration en pg/g MF dans les organes entiers	GRA in situ [n=4]	GRA laboratoire [n=12]	LAI 2014 [n=12]	LAI 2015 [n=7]	LAI HYD [n=2]
ΣPCBi (7 congénères)	1 969	1 094	311	178	177
	(4)	(2)	(6)	(15)	(<2)
ΣPCB-dl (12 cong.)	312	255	83	30	31
	(4)	(2)	(10)	(9)	(<2)
ΣPCDD/F (17 cong.)	1,3 (13)	0,7	0,26 (185)	0,21 (23)	0,008 (<2)

Concentration en pg/g MF dans les organes entiers	PDT entière [n=12]	CA entière [n=11]	CA épluchée [n=12]	COU entière [n=11]	HA [n=8]
ΣPCBi (7 congénères)	301	398	80	3 699	32
	(81)	(46)	(119)	(137)	(4)
ΣPCB-dl (12 cong.)	29	4	5	357	13
	(10)	(66)	(97)	(104)	(<2)
ΣPCDD/F (17 cong.)	2,9	33	0,74	7,6	0,05
	(162)	(19)	(293)	(422)	(<2)

PDT pomme de terre, CA carotte, COU courgette, LAI laitue, GRA graminées, HA gousse de haricot, HYD culture en hydroponie.

PCB 118 comptabilisé dans les sommes ΣPCBi (dont il représente moins de 10%) et ΣPCB-dl.

Les concentrations des congénères inférieures aux limites de quantification ne sont pas considérées.

Variabilité des concentrations en fonction des espèces végétales (Tableau 11) :

La famille des PCBi affiche les concentrations maximales dans les végétaux, avec des valeurs moyennes comprises entre 32 et 3 699 pg/g MF (soit une amplitude de 2 ordres de grandeur). Les PCB-dl présentent des valeurs moyennes comprises entre 4 et 357 pg/g MF (soit une amplitude de 2 ordres de grandeur). La famille des PCDD/F affiche des concentrations moyennes comprises entre 0,008 et 33 pg/g MF (soit une amplitude de 4 ordres de grandeur).

Les PCBi sont majoritaires dans les végétaux d'un ordre de grandeur par rapport aux PCB-dl, et de plus de deux ordres de grandeur par rapport aux PCDD/F.

Le classement des espèces les plus accumulatrices dans les conditions d'étude pour les 3 familles analytiques est le suivant :

PCBi:

COU > GRA in situ > GRA labo > CA entière > LAI 2014 > PDT > LAI 2015 = LAI HYD > CA éplu > HA

PCB-dl:

COU > GRA in situ > GRA labo > LAI 2014 > LAI HYD = LAI 2015 = PDT > HA > CA éplu = CA entière

PCDD/F:

CA entière > COU > PDT > GRA in situ > CA éplu = GRA labo > LAI 2014 > LAI 2015 > HA > LAI HYD

Il est observé que :

- les pommes de terre et les carottes non épluchées présentent des concentrations en PCBi similaires. Les concentrations en PCB-dl sont plus élevées dans les pommes de terre par rapport aux carottes. En contact direct avec le sol, leurs teneurs en PCDD/F sont globalement du même ordre de grandeur que celles mesurées dans les courgettes, et dépassent celles des feuilles de laitue d'un ordre de grandeur;
- les concentrations en PCBi et PCDD/F dans la carotte épluchée sont nettement plus faibles que dans la carotte non épluchée, ce qui laisse supposer que les épluchures des carottes concentrent ces substances (tendance non observée pour les PCB-dl); ;

⁽x) : rapport entre la concentration maximale et la concentration minimale (toute maille et tout réplicat confondus)

n : nombre d'échantillon (toute maille et tout réplicat confondus).

- les courgettes non épluchées présentent des concentrations en PCB, jusqu'à 1 ordre de grandeur supérieures aux tubercules/racines;
- les graminées in-situ et labo présentent des concentrations en POPs dans leurs feuilles supérieures à celles des laitues :
- les haricots et les laitues cultivées en hydroponie présentent les concentrations les plus faibles en PCDD/F.

Variabilité des concentrations en fonction du niveau de contamination (Tableau 11 etAnnexe 10) :

Pour une même espèce végétale et une même substance, les concentrations en POPs dans le végétal varient selon le niveau de contamination des sols avec un rapport des concentrations maximales/minimales dans le végétal :

- de moins d'un ordre de grandeur pour les graminées prélevées in-situ et cultivées en conditions contrôlées (GRA labo) ainsi que pour les haricots et les laitues cultivées en hydroponie (LAI HYD);
- d'un à deux ordres de grandeur pour les autres espèces végétales (jusqu'à la valeur de 422 pour les courgettes).

Une valeur élevée du rapport des concentrations max/min indique ici que les concentrations dans le végétal dépendent du niveau de concentrations dans le sol. C'est notamment le cas des PCDD/F pour la pomme de terre, la carotte, la courgette et la laitue. Pour les PCB, le rapport est supérieur à 100 uniquement pour la carotte épluchée et la courgette (respectivement 119 et 137).

Notons enfin que la variabilité est généralement faible voire très faible entre les réplicats confirmant la répétabilité des mesures effectuées (excepté pour quelques échantillons dont la biomasse était faible pour certains ou présentant des anomalies analytiques¹¹).

Substances non quantifiées dans les végétaux

Il est intéressant de constater que certains congénères n'ont pas été quantifiés dans certaines catégories de légumes. Les congénères non quantifiés dans les végétaux sont présentés dans le Tableau 12.

Dans les gousses de haricots, seules 13 substances sur les 35 analysées sont quantifiées (11 dans la famille des PCB et 2 dans la famille des PCDF), aucun PCDD n'est quantifié.

Pour les autres végétaux, le nombre de substances quantifiées est compris entre 22 et 32. Ainsi, la courgette, la carotte (épluchée ou entière), la pomme de terre et les graminées in-situ sont les végétaux présentant plus de 30 substances quantifiées dans les organes consommés.

La majorité des PCDD/F n'est pas quantifiée dans les légumes-feuilles (laitue) ou légumes-fruits (haricot). En revanche, les PCDD/F sont systématiquement quantifiés dans les légumes souterrains (légume – racine et tubercule) ainsi que dans la courgette, connue comme 'accumulatrice' (Hülster et al., 1994 en lien avec les PCDD/F - White et al., 2005, Whitfield Aslund et al., 2007 et 2008, Zeeb et al., 2006 en lien avec les PCB)¹².

Le 1,2,3,7,8,9-HxCDF, non quantifié dans les sols des 4 mailles (excepté l'anomalie sur un échantillon de sol GRA labo) n'est quantifié dans aucun végétal analysé. Ses limites de quantification dans les végétaux et les sols sont similaires à celles des autres PCDF.

Le PCB le plus léger (PCB 28 – 3 atomes de chlore) n'est quantifié que dans les légumes-feuilles présentant une large surface foliaire dédiée aux échanges gazeux (graminées, laitues), en lien avec sa quantification dans l'air ambiant de l'enceinte de culture.

¹¹ Faibles concentrations observées pour P4-CA-R2 et R3 par rapport à PA-CA-R1 (PCB et PCDD/F). Faibles concentrations pour P3-CA par rapport à P1-CA pour PCBi et PCB-dl.

¹² Hülster, A., Müller, J.F., Marschner, H., 1994. Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ. Sci. Technol. 28, 1110–1115

White, J.C., Parrish, Z.D., Isleyen, M., Gent, M.P., Lannucci-Berger, W., Eitzer, B.D., Kelsey, J.W., Mattina, M.I., 2005. Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species. Int. J. Phytoremediation 8, p 63–79

Whitfield Åslund ML, Zeeb BA, Rutter A, Reimer KJ, 2007. In situ phytoextraction of polychlorinated biphenyl — (PCB) contaminated soil. Sci Total Environ;374(1), p 1–12

Zeeb BA, Amphlett JS, Rutter A, Reimer KJ, 2006. Potential for phytoremediation of polychlorinated biphenyl-(PCB-)contaminated soil. Int J Phytoremediat; 8(3), p 199–221

Tableau 12: Substances non quantifiées dans les végétaux pour les 3 familles analytiques (toutes mailles confondues)

PCB-ndl	Végétaux concernés par l'absence de quantification	PCDD/F	Végétaux concernés par l'absence de quantification
PCB 28	Tous sauf graminées et laitues	2,3,7,8-TCDD	GRA, LAI, HA
PCB 52	PDT, CA épluchée	1,2,3,7,8-PeCDD	GRA _{labo} , LAI, HA
PCB 101	CA épluchée	1,2,3,4,7,8-HxCDD	GRA, LAI, HA
PCB 138	HA	1,2,3,6,7,8-HxCDD	GRA _{labo} , LAI, HA
PCB 153	HA	1,2,3,7,8,9-HxCDD	GRA, LAI, HA
PCB 180	HA, LAI ₂₀₁₄	1,2,3,4,6,7,8-HpCDD	HA, LAI ₂₀₁₅
PCB-dl		OCDD	GRA _{labo} , LAI, HA, COU
PCB 77	LAI 2015	2,3,7,8-TCDF	-
PCB 81	HA, LAI ₂₀₁₅	1,2,3,7,8-PeCDF	-
PCB 105	-	2,3,4,7,8-PeCDF	HA
PCB 114	-	1,2,3,4,7,8-HxCDF	HA
PCB 118	-	1,2,3,6,7,8-HxCDF	HA, LAI ₂₀₁₅
PCB 123	-	1,2,3,7,8,9-HxCDF	<u>Tous</u>
PCB 126	-	2,3,4,6,7,8-HxCDF	HA, LAI ₂₀₁₅
PCB 156	-	1,2,3,4,7,8,9-HpCDF	HA, LAI ₂₀₁₅
PCB 157	-	1,2,3,4,6,7,8-HpCDF	HA
PCB 167	-	OCDF	HA
PCB 169	GRA labo, CA épluché, COU, HA, LAI 2014 & 2015		
PCB 189	HA		

PDT pomme de terre, CA carotte, COU courgette, LAI laitue, GRA graminées, HA gousse de haricot, HYD culture en hydroponie.

Focus sur les laitues - hypothèse 1

La mise en culture en 2015 de laitues sur des solutions nutritives, supprimant la voie de transfert racinaire, a mis en évidence une accumulation des PCB dans les feuilles via les échanges gazeux dans l'enceinte de culture (Figure 19). Tous les PCB sont quantifiés dans les laitues cultivées en hydroponie, excepté PCB 81, PCB 169 et PCB 189 (respectivement 4 CI, 6 CI et 7 CI).

La superposition des courbes relatives aux concentrations exprimées en matière sèche pour les laitues cultivées sur les mailles P2, P3, P4 et en hydroponie montre, pour les PCB faiblement chlorés (≤ PCB 101), la prédominance des échanges gazeux sur le transfert racinaire. Au-delà du PCB 101, le transfert racinaire domine avec des concentrations dans les feuilles dépendantes des concentrations dans les sols. La tendance s'accentue pour les PCB fortement chlorés (6 Cl et 7 Cl).

Notons que les concentrations plus faibles en PCB observées pour les laitues cultivées sur P1 sont en lien avec la biomasse plus importante produite sur cette maille par rapport aux mailles P2, P3, et P4 (biomasse plus importante pour une surface foliaire quasiment identique).

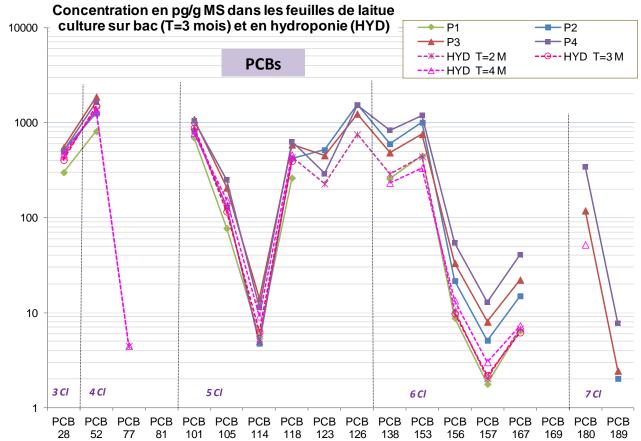


Figure 19 : concentrations des PCB dans les feuilles de laitue cultivées sur les 4 mailles et en solution hydroponique

En parallèle, il est à noter pour les laitues cultivées en hydroponie des concentrations augmentant avec le temps d'exposition notamment pour les PCB.

Aucune PCDD n'est quantifiée dans les feuilles de laitue cultivées sur les mailles P1 à P4 ou en solution hydroponique. Aucun transfert racinaire ni échange gazeux n'ont été mis en évidence pour les PCDD. En revanche, l'accumulation des PCDDF dans les feuilles de laitue provient essentiellement du transfert racinaire (Figure 20). Seules deux furannes faiblement chlorées (4 et 5 atomes de chlore) sont quantifiées dans les laitues hydroponiques. Un plus grand nombre de furannes dont les plus fortement chlorées, est quantifié sur les laitues cultivées sur les mailles P3 et P4.

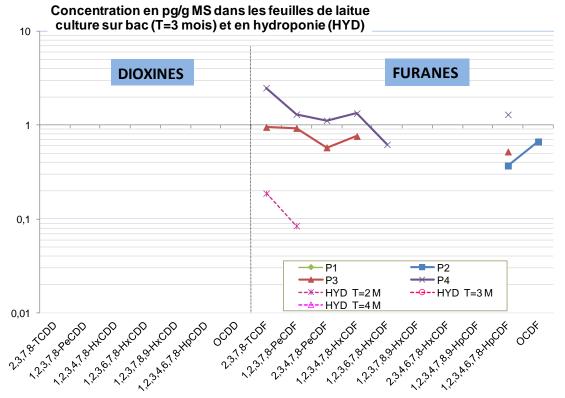
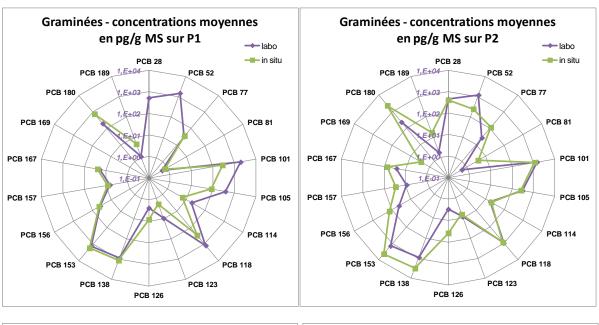


Figure 20 : Concentrations des PCDD/F dans les feuilles de laitue cultivées sur les 4 mailles et en solution hydroponique

Focus sur les graminées - hypothèse 2 (Tableau 11 et Figure 21 en échelle logarithmique) :

Exprimées en matière fraîche, les concentrations en POPs dans les graminées prélevées in situ ou cultivées en laboratoire sont du même ordre de grandeur, confirmant l'accumulation des POPs dans les feuilles observées en 2014. L'expression des concentrations en matière sèche, telle que présentée en Figure 21 permet de considérer l'état végétatif des végétaux à la récolte qui diffère entre les 2 modalités : stade floraison pour les graminées in situ (taux d'humidité moyen de 28 %), et stade végétatif pour les graminées labo (taux d'humidité moyen de 18 % avec absence de tige florale après 3 mois de culture). Seuls les PCB sont présentés car les PCDD/F sont mesurés à de plus faibles concentrations (avec une prédominance des furannes).


Il est constaté pour les graminées :

- des profils similaires entre les 2 types de culture avec moins d'un ordre de grandeur entre les concentrations mesurées sur les graminées in-situ ou cultivées en conditions contrôlées;
- des profils similaires pour les 4 mailles, tirés par de fortes concentrations en PCB 101, PCB 118, PCB 138, PCB 153 et PCB 180 (concentration supérieure à 1 000 pg/g MS notamment sur la maille P2) – congénères possédant 5 à 7 atomes de chlore;
- une concentration plus élevée en PCB 52, PCB 101, PCB 114, PCB 105 et PCB 118 sur les graminées cultivées en conditions contrôlées sur les mailles P1 et P3, en lien probable avec la présence quantifiée ou détectée dans l'air de l'enceinte de ces congénères (PCB 52, PCB 101, PCB 105, PCB 118). Cette tendance n'est cependant pas vérifiée pour le PCB 28, lui aussi quantifié dans l'air ambiant de l'enceinte;
- sur la maille P2, un décrochage entre les 2 types de culture, des profils de concentrations au-delà du PCB 123 avec des concentrations plus élevées en PCB pour les graminées in-situ.

NB1: la considération d'un dépôt et/ou d'un transfert majoritaire de certains PCB provenant de particules de terre vers les feuilles des graminées in-situ non lavées vis-à-vis d'un transfert racinaire sol-plante ne semble pas pertinente pour expliquer les écarts entre les concentrations pour les 2 types de culture. En effet, un transfert majoritaire de PCB via les particules de terre induirait des BCF identiques entre les congénères, ce qui n'est pas le cas puisqu'il est observé une variation des valeurs de BCF notamment avec l'augmentation du nombre d'atomes de chlore pour les graminées in-situ (voir section ultérieure).

NB2 : pour les graminées prélevées in-situ sur le site atelier, hormis l'incendie de 2008, les sources secondaires de POPs telles que le chauffage urbain ou les rejets industriels n'ont pas été recherchées. De même, l'air ambiant gazeux in-situ n'a pas été échantillonné ni caractérisé. Dans ce contexte, il est difficile de compléter la présente analyse mais il reste intéressant à souligner que les profils des PCB pour les 2 types de graminées sont similaires.

En conclusion, pour les graminées, l'accumulation des PCB par les voies racinaire et gazeuse est prépondérante. Il n'est cependant pas possible à ce stade de déterminer la part attribuable au transfert gazeux par rapport au transfert racinaire, dans l'accumulation des POPs dans les feuilles. Cette tendance est confirmée dans les sections ultérieures par les hautes valeurs en BCF mesurées pour les congénères faiblement chlorés (≤ 5 atomes de chlore). Dans les graminées cultivées en laboratoire, le transfert de certains POPs est similaire à celui de la courgette sur la base des valeurs BCF mesurées avec notamment des BCFmoyens compris entre 2 et 4 pour les PCB 101 à PCB 118 pour les graminées et les courgettes. L'effet d'un dépôt de particules de terre sur l'accumulation des POPs par les graminées in-situ n'a pas été démontré dans cette étude.

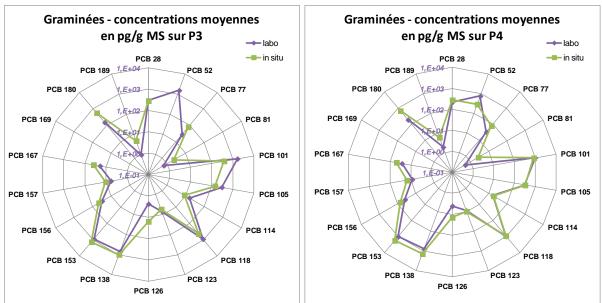
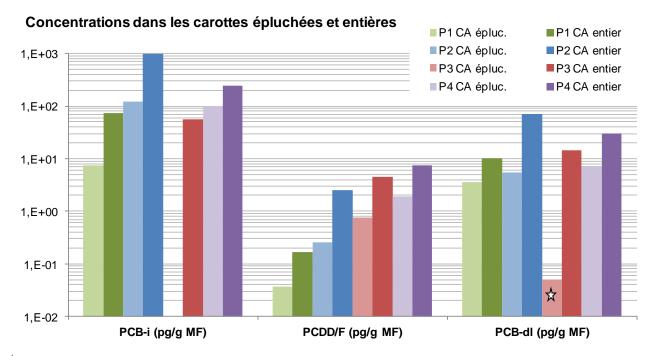



Figure 21 : concentrations des PCB dans les graminées in-situ et en laboratoire sur les 4 mailles testées

Focus sur les carottes (Tableau 11) :

Les résultats analytiques relatifs aux carottes entières et épluchées sont illustrés par famille de POPs en Figure 22 et insérés en Annexe 9. Les concentrations en POPs dans la carotte épluchée sont jusqu'à 100 fois inférieures à celles mesurées dans les épluchures (détail en Annexe 9). Les concentrations sont proches des LQ dans la carotte épluchée pour la majorité des POPs, notamment sur la maille P1. Il n'a pas été quantifié de PCBi dans la carotte épluchée sur la maille P3.

☆ anomalie analytique probable pour les PCB-dl sur la maille P3

Figure 22 : Concentrations des POPs dans les carottes entières et épluchées sur les 4 mailles testées

Globalement l'épluchage des carottes permet de diminuer d'un ordre de grandeur les concentrations en PCBi, PCB-dl et PCDD/F dans le végétal, quel que soit leur niveau de concentration dans les sols.

4.4 Végétaux potagers et valeurs réglementaires

Le règlement européen n°2011/516/UE relatif à la réduction de la présence de dioxines, de furannes et de PCB dans les denrées alimentaires recommande d'identifier la source potentielle d'émission de POPs et de traiter celle-ci si les niveaux d'intervention dans les fruits et légumes sont dépassés.

Le Tableau 13 synthétise les mailles pour lesquelles les niveaux d'intervention sont atteints ou dépassés, avec les valeurs mesurées dans les végétaux non épluchés.

Tableau 13: Végétaux non épluchés pour lesquels les niveaux d'intervention sont atteints ou dépassés (recommandation n°2011/516/UE)

Niveau d'intervention	P1	P2	Р3	P4
PCDD/F (17 cong.) 0,3 pg I-TEQ/g MF	Aucun dépassement	COU (1,1) CA (0,38)		PDT (0,5) COU (1,9) CA (0,59)
PCB-dl (12 cong.) 0,1 pg l-TEQ/g MF		PDT (0,11) COU (0,2) CA (0,2)	LAI ₂₀₁₄ (0,1)	PDT (0,11) COU (0,2) CA (0,1)

PDT pomme de terre, CA carotte, COU courgette, LAI laitue, GRA graminées, HA gousse de haricot, HYD culture en hydroponie. TEQ-OMS 2005

Valeur en gras : dépassement ou atteinte du niveau d'intervention

Il en résulte :

- l'absence de dépassement des niveaux d'intervention pour les gousses de haricots et les carottes épluchées, toutes mailles confondues;
- l'absence de dépassement des niveaux d'intervention sur la maille P1 ;
- des dépassements pour les PCDD/F et/ou PCB-dl pour certains végétaux (pomme de terre et/ou courgette et/ou carotte et/ou laitue), plus fréquents sur la maille P4 que sur la maille P2 (∑PCDD/F + PCB-dl pour P4= 241 ng I-TEQ/kg et∑PCDD/F + PCB-dl pour P2= 37 ng I-TEQ/kg dans les sols).

4.5 <u>Denrées animales et valeurs réglementaires</u>

Le règlement N°277/2012 de la Commission du 28 mars 2012¹³ fixe les teneurs maximales en PCDD/F et en PCB dans les denrées animales telles que le fourrage. Le Tableau 14 rapporte les concentrations mesurées sur les graminées prélevées sur site en juin 2014 (in-situ) et sur celles cultivées en enceinte climatique en 2015 (concentrations rapportées en matière sèche, complétées par l'écart-type).

Tableau 14: Dépassement des teneurs maximales dans les graminées (règlement n°277/2012)

Substances	Tend maxim MF ou	nales	Cultures	P1	P2	P3	P4
∑PCDD/F	0,75 TEQ/g		GRA in situ	0,1	0,4	0,3	0,1
(pg TEQ/g MS)	= 0,89 TEQ/g		GRA labo	0,20 (±0,10)	0,24 (±0,06)	0,34 (±0,04)	0,55 (±0,05)
∑PCDD/F + PCB-dI	1,25 TEQ/g		GRA in situ	0,92	<u>4,42</u>	<u>1,93</u>	<u>1,57</u>
(pg TEQ/g MS)	= 1,42 pg TEQ/g MS**		GRA labo	0,50 (±0,17)	0,58 (±0,12)	0,62 (±0,10)	0,99 (±0,12)
∑PCB-ndl (6 cong.)	10 ng/g		GRA in situ	3,9	<u>11,6</u>	3,6	5,3
(ng/g MS)	= 11,4 ng/g MS**		GRA labo	6,3 (±0,6)	5,7 (±1,1)	4,5 (±0,9)	3,8 (±5,3)
Rappel des concentrations dans les sols (données 2014)							
∑PCDD/F + PCB-dI		EQ/kg MS	2,5	36,8	77	241,3	
∑ PCB-c	∑ PCB-dl		Lang MO	1,1	12,9	7,9	22,8

^{* :} teneur fixée par le réglement européen pour les végétaux présentant une humidité à 12%

GRA: graminées

Non considération des concentrations inférieures aux limites de quantification (la considération des LQ entraı̂ne une augmentation des concentrations entre 15 et 30% pour la Σ PCDD/F + PCB-dl)

Valeur en gras soulignée : dépassement de la teneur maximale fixée par le règlement européen

Il est noté pour les PCB-ndl (somme des 6 congénères) :

- l'absence de dépassement des teneurs maximales pour les graminées cultivées en conditions contrôlées (quelle que soit la maille considérée) avec des concentrations comprises entre 3,8 et 6,3 ng/g MS;
- un dépassement de la teneur maximale pour les graminées in-situ au droit de la maille P2 avec 11,6 ng/g MS (pour une teneur maximale fixée à 11,4 ng/g MS).

^{** :} concentration rapportée en matière sèche (MS)

¹³ Règlement modifiant les annexes I et II de la directive 2002/32/CE du Parlement européen et du Conseil

Aucun dépassement de la teneur maximale de 0,85 pg TEQ/g MS (équivalent 0,75 pg TEQ/g MF) fixée pour la somme des PCDD/F n'est observé pour les graminées in-situ et les graminées cultivées en conditions contrôlées.

Il est noté pour la somme des PCDD/F + PCB-dl :

- l'absence de dépassement des teneurs maximales pour les graminées cultivées en conditions contrôlées (quelle que soit la maille considérée) avec des concentrations comprises entre 0,5 et 1 pg I-TEQ/g MS;
- trois dépassements des teneurs maximales pour les graminées in-situ au droit des mailles P2, P3 et P4 avec des concentrations comprises entre 1,6 et 4,4 pg I-TEQ/g MS (pour une teneur maximale fixée à 1,42 pg/g MS).

En conclusion, les graminées cultivées en conditions contrôlées et n'ayant pas atteint le stade floraison après 3 mois de culture sont conformes pour l'alimentation animale, ce qui n'est pas le cas pour les graminées prélevées sur le terrain au droit des mailles P2, P3 et P4 en raison des dépassements pour les PCBi et/ou Σ PCDD/F + PCB-dl.

4.6 Facteur de transfert dans les végétaux (BCF)

Au regard des nombreux résultats acquis, le présent paragraphe est structuré de la manière suivante :

- 1. Présentation des BCFmoyens sous forme tabulaire et graphique. Les résultats détaillés par maille sont insérés en Annexe 8 pour les graminées et en Annexe 9 pour les végétaux potagers ;
- 2. Discussion des principales tendances ;
- 3. Proposition de BCF pour les évaluations des risques sanitaires et des risques pour les écosystèmes.

Il est rappelé que les valeurs de BCFmoyens obtenus pour les légumes-fruits/feuilles dans le cadre de la présente étude ne peuvent être entièrement attribués au transfert racinaire pour les PCBi et les PCB-dl dont le nombre d'atomes de chlore est inférieur à 6. Les valeurs correspondent à une accumulation globale composée, d'une part, par le transfert racinaire, et d'autre part, par la volatilisation des composés (échanges gazeux au travers des surfaces foliaires).

Valeurs de BCFmoven

Les valeurs BCF présentées **en première approche** correspondent, pour chaque congénère, au rapport entre la concentration dans les végétaux et celle dans le sol, dès lors que la substance est quantifiée dans le végétal <u>et</u> dans le sol. Le BCF n'est pas calculé si la substance n'est pas quantifiée dans le végétal et/ou le sol.

Le calcul d'une moyenne des valeurs BCF obtenues sur les 4 mailles permet d'esquisser les grandes tendances en termes de transferts des POPs par rapport à la considération des valeurs BCF obtenues individuellement sur les mailles (BCF P1, BCF P2, BCF P3 ou BCF P4), telles qu'illustrées par exemple sur les Figure 25 et Figure 26.

Le BCFmoyen est calculé sur la base de la moyenne des BCF obtenus sur chacune des mailles (chaque maille ayant 3 réplicats), soit au maximum 12 valeurs (4 mailles x 3 réplicats). Les valeurs ainsi obtenues sont :

- présentées dans le Tableau 15 où la variabilité des BCF obtenus pour toutes les mailles et les réplicats est mise en évidence au travers d'un code couleur attribué au rapport BCFmax/BCFmin pour une substance et une espèce végétale considérées.
 Un rapport élevé (>100) signifie ici que l'accumulation de la substance dans la plante dépend du niveau de concentration dans les sols, autrement dit que l'amplitude de la valeur BCF est élevée
- illustrées en Figure 23 en classant les PCB et les PCDD/F par ordre croissant de leur nombre d'atomes de chlore. Pour les PCB (PCBi et PCB-dl confondus), le nombre de chlore est compris entre 3 et 7, et pour les PCDD/F compris entre 4 et 8.

Nombre de valeurs BCF déterminées expérimentalement

sur les 4 mailles testées ; et

A l'issue des deux séries de culture, 13 à 33 valeurs de BCFmoyen ont été calculés selon l'espèce végétale considérée (Tableau 15).

Un très faible nombre de substances a été quantifié dans les gousses de haricot (valeurs de BCF déterminées pour 11 PCB et 2 PCDFs).

Pour les laitues, il a été calculé 22 à 26 valeurs de BCF (dont une très grande majorité pour les PCB). Pour les graminées, 27 à 31 valeurs de BCF ont été calculées. Ce nombre atteint 30-33 valeurs BCF pour les pommes de terre, les carottes et les courgettes.

Les valeurs BCFmoyen s'échelonnent de **0,00016 à 15**, respectivement pour la 1,2,3,4,7,8,9-HpCDF dans la laitue₂₀₁₄ et le PCB 52 dans la courgette.

Parmi les PCB et les PCDD/F, quelques congénères se démarquent quant à leur quantification « ubiquitaire » dans les 9 végétaux testés (Figure 24). Cette observation est illustrée par le nombre cumulé de valeurs BCF obtenues pour l'ensemble des végétaux testés :

- au niveau des PCB, le nombre maximal atteint est de 83 valeurs pour le PCB 105, suivi par le PCB 118. Quatre autres PCB se distinguent avec un nombre cumulé de valeurs compris entre 70 et 80 : PCB 123, PCB 156, PCB 157 et PCB 167. Les nombres les plus faibles (<10 valeurs BCF) sont obtenus pour le PCB 28 et le PCB 169;
- au niveau des PCDD/F: le nombre maximal atteint est de 74-75 valeurs pour deux furannes (2,3,7,8-TCDF et 1,2,3,7,8-PeDF). Cinq autres furannes et une dioxine (HpCDD) se distinguent avec un nombre cumulé de valeurs compris entre 50 et 70. Les nombres les plus faibles (<20 valeurs BCF) sont obtenus pour trois dioxines (TCDD, 1,2,3,7,8,9-HxCDD et OCDD).

Tableau 15: BCFmoyens calculés pour les végétaux testés sans prise en compte des concentrations inférieures aux limites de quantification

BCFmoyens -12 valeurs au max- sans considération de	GRA in situ 2014	GRA labo 2015	PDT	CA entier	CA épluché	cou	НА	LAI2014	LAI2015
valeurs LQ/2	(n=4)	(n=12)	(n=12)	(n=11)	(n=12)	(n=11)	(n=8)	(n=12)	(n=7)
PCB 28	2,7E+00	4,0E+00	pas de BCF	2,4E+00	4,9E+00				
PCB 52	1,2E+00	6,8E+00	pas de BCF	5,9E-01	pas de BCF	1,5E+01	1,0E+00	1,3E+01	8,3E+00
PCB 77	1,5E+00	8,2E-01	2,9E-02	1,4E-01	2,2E-01	3,8E-01	1,4E-02	3,7E-01	pas de BCF
PCB 81	6,3E-01	8,4E-02	3,7E-02	1,0E-01	1,7E-02	1,4E-01	pas de BCF	9,5E-02	pas de BCF
PCB 101	7,3E-01	3,7E+00	7,5E-02	6,0E-01	pas de BCF	3,9E+00	7,4E-02	1,9E+00	1,3E+00
PCB 105	6,4E-01	1,9E+00	6,2E-02	1,2E-01	1,0E-01	1,7E+00	1,7E-01	1,0E+00	5,6E-01
PCB 114	2,0E+00	4,2E+00	5,0E-02	1,2E-01	3,8E-02	2,6E+00	9,0E-02	1,9E+00	5,4E-01
PCB 118	9,0E-01	2,6E+00	6,6E-02	1,4E-01	8,9E-02	1,8E+00	2,9E-01	1,5E+00	7,7E-01
PCB 123	3,3E-01	7,4E-01	1,1E-01	1,6E-01	6,6E-02	1,8E+00	7,5E-02	1,1E+00	2,1E-01
PCB 126	3,5E-01	6,3E-02	5,6E-02	7,7E-02	1,0E-02	8,0E-02	1,1E-02	1,4E-02	9,3E-03
PCB 138	4,5E-01	2,9E-01	9,4E-02	1,8E-01	2,8E-02	1,9E+00	pas de BCF	1,8E-01	1,0E-01
PCB 153	5,5E-01	3,2E-01	1,1E-01	2,1E-01	4,9E-02	2,3E+00	pas de BCF	1,9E-01	1,4E-01
PCB 156	2,5E-01	1,7E-01	5,8E-02	1,1E-01	2,0E-02	1,4E+00	5,4E-03	1,4E-01	6,6E-02
PCB 157	2,4E-01	1,3E-01	7,1E-02	1,1E-01	1,7E-02	1,3E+00	4,5E-03	1,8E-01	6,9E-02
PCB 167	2,3E-01	1,4E-01	7,3E-02	1,2E-01	1,8E-02	1,2E+00	5,9E-03	1,1E-01	5,9E-02
PCB 169	1,7E-01	pas de BCF	3,8E-02	2,8E-01	pas de BCF				
PCB 180	4,3E-01	7,5E-02	5,7E-02	1,5E-01	2,8E-02	1,2E+00	pas de BCF	pas de BCF	5,4E-02
PCB 189	1,3E-01	1,9E-02	4,8E-02	7,5E-02	9,7E-03	4,8E-01	pas de BCF	3,1E-02	2,4E-02
2,3,7,8-TCDD	pas de BCF	pas de BCF	1,5E-02	2,5E-02	4,0E-03	1,1E-01	pas de BCF	pas de BCF	pas de BCF
2,3,7,8-TCDF	2,7E-02	9,5E-02	3,6E-02	9,4E-02	3,3E-02	2,7E-01	2,7E-03	9,2E-03	1,1E-02
1,2,3,7,8-PeCDD	2,8E-02	pas de BCF	1,8E-02	4,9E-02	4,9E-03	3,5E-01	pas de BCF	pas de BCF	pas de BCF
1,2,3,7,8-PeCDF	3,3E-02	5,4E-02	2,7E-02	6,7E-02	2,1E-02	2,7E-01	9,8E-04	2,1E-02	1,1E-02
2,3,4,7,8-PeCDF	3,2E-02	3,1E-02	2,5E-02	5,6E-02	6,6E-03	2,4E-01	pas de BCF	2,4E-02	8,2E-03
1,2,3,4,7,8-HxCDD	pas de BCF	pas de BCF	1,5E-02	3,9E-02	4,8E-03	3,4E-01	pas de BCF	pas de BCF	pas de BCF
1,2,3,4,7,8-HxCDF	6,0E-03	2,0E-02	1,8E-02	3,7E-02	4,9E-03	2,4E-01	pas de BCF	3,5E-03	6,2E-03
1,2,3,6,7,8-HxCDD	2,1E-02	pas de BCF	1,6E-02	3,8E-02	4,8E-03	2,1E-01	pas de BCF	pas de BCF	pas de BCF
1,2,3,6,7,8-HxCDF	6,8E-03	2,3E-02	1,4E-02	3,9E-02	5,6E-03	1,3E-01	pas de BCF	1,2E-03	3,1E-03
1,2,3,7,8,9-HxCDD	pas de BCF	pas de BCF	7,4E-03	3,3E-02	3,3E-03	2,1E-02	pas de BCF	pas de BCF	pas de BCF
2,3,4,6,7,8-HxCDF	5,7E-03	1,1E-02	1,1E-02	3,2E-02	4,4E-03	9,0E-02	pas de BCF	9,7E-04	pas de BCF
1,2,3,4,6,7,8-HpCDD	2,8E-02	1,5E-02	8,0E-03	2,0E-02	3,5E-03	5,6E-02	pas de BCF	2,2E-03	pas de BCF
1,2,3,4,6,7,8-HpCDF	8,1E-03	4,0E-02	3,7E-02	8,2E-02	1,1E-02	2,3E-01	pas de BCF	5,0E-03	3,2E-02
1,2,3,4,7,8,9-HpCDF	1,0E-02	1,9E-03	1,5E-03	5,2E-03	9,6E-04	9,7E-03	pas de BCF	1,6E-04	pas de BCF
OCDD	6,3E-03	pas de BCF	4,1E-03	1,4E-02	2,8E-03	pas de BCF	pas de BCF	pas de BCF	pas de BCF
OCDF	4,2E-03	5,9E-03	3,9E-03	1,3E-02	2,3E-03	1,1E-02	pas de BCF	5,1E-04	3,0E-02
Nombre de BCFmoyen calculé par végétal (sur un total de 35 subst.)	31	27	32	33	30	31	13	26	22

 $\underline{\text{légende}}$ n: nombre d'échantillons végétaux exploitables par espèce testée (Σ mailles x réplicats)

en gras : BCFmoyen calculé sur la totalité des échantillons

(moyenne calculée sur les n valeurs - aucune concentration dans les sols ou les végétaux inférieure à la LQ) en normal: moyenne des valeurs BCF

pas de BCF:

pas de calcul de BCF car au moins une concentration dans végétal ou dans sol inférieure à la LQ rapport BCFmax/BCFmin est inférieur à 10 (tous sols et réplicats confondus)

rapport BCFmax/BCFmin est compris entre 10 et 100 (tous sols et réplicats confondus)

rapport BCFmax/BCFmin est compris entre 100 et 200 (tous sols et réplicats confondus)

rapport BCFmax/BCFmin est compris entre 200 et 300 (tous sols et réplicats confondus)

^{* 1,2,3,7,8,9-}HxCDF non présenté car aucune quantification dans les végétaux

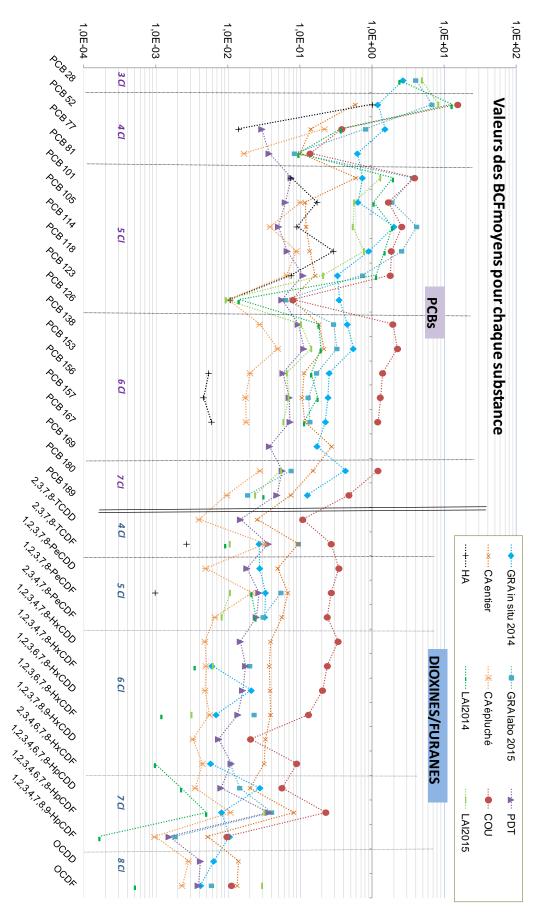


Figure 23 : BCFmoyen par congénère en fonction de leur degré de chloration pour les végétaux testés sans considération des concentrations inférieures aux limites de quantification

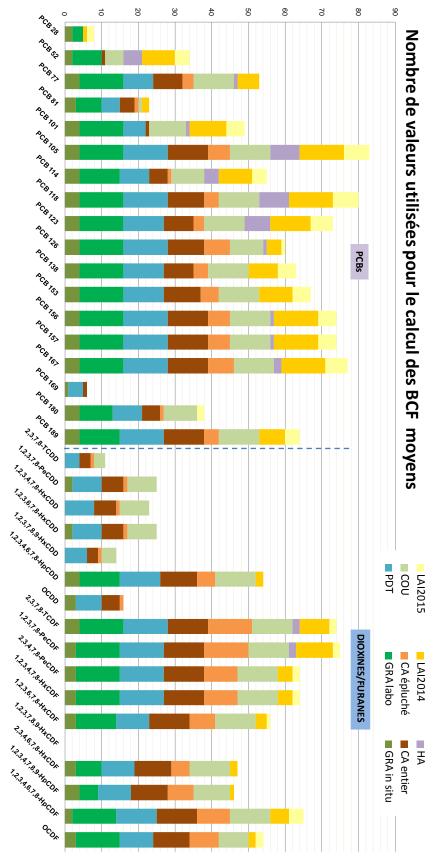


Figure 24 : Nombre de valeurs entrant dans le calcul du BCF moyen, par substance et végétal

Robustesse des valeurs BCFmoyen déterminées expérimentalement (Tableau 15)

Les valeurs affichées en gras dans le Tableau 15 attestent que tous les échantillons « n » exploitables ont été utilisés pour le calcul du BCFmoyen, confirmant la robustesse de la valeur de BCF calculée. Tel est le cas pour le PCB 77 pour les graminées in-situ sur la base des 4 échantillons disponibles (n=4 mailles x 1 réplicat – moyenne des 4 valeurs de BCF par maille) ou pour les graminées cultivées en laboratoire sur la base des 12 échantillons disponibles (n=4 mailles x 3 réplicats - moyenne des 12 valeurs de BCF).

Ainsi, pour les graminées et les courgettes, plus de 50% des valeurs de BCF ont été moyennées sur tous les échantillons exploitables. Ce pourcentage est inférieur à 10% pour les carottes épluchées et les laitues 2015, en l'absence de détermination possible de la valeur BCF pour certaines mailles et certains réplicats ; de nombreuses concentrations étant inférieures à la limite de quantification dans les végétaux.

Représentativité des valeurs BCFmoyen déterminées expérimentalement (Tableau 15)

Le code couleur du Tableau 15 indique pour un grand nombre de substances, une faible dispersion des valeurs de BCF (toutes mailles et tous réplicats confondus) en raison d'un rapport du BCFmax/BCFmin inférieur à 10 (case blanche) ou inférieur à 100 (case verte).

Ainsi, une faible dispersion des valeurs BCF est notée pour toutes les substances quantifiées dans la pomme de terre (rapport < 10).

Un rapport BCFmax/BCFmin compris entre 100 et 200 (case bleue) est observé pour 4 substances (PCDD/F) au niveau des graminées in-situ (HpCDD), des graminées labo (2 HxCDF, HpCDD et HpCDF), et des courgettes (HpCDD).

Un rapport BCFmax/BCFmin compris entre 200 et 300 (case rouge) est observé pour 3 substances (PCDD/F) au niveau des graminées in-situ (HpCDF), et des graminées labo (HpCDF, OCDF). Au niveau des graminées cultivées en conditions contrôlées, cela signifie pour les furannes fortement chlorées (≥ 7 atomes de chlore) une forte dispersion des valeurs de BCF avec des valeurs de BCF comprises dans une gamme de 0,001 à 0,25 pour le HpCDF, et de 0,00012 à 0,03 pour l'OCDF (respectivement un rapport BCFmax/BCFmin de 247 et 252).

Pour les rapports supérieurs à 2 ordres de grandeur (>100), le calcul d'un BCFmoyen sur les 4 mailles de sol reste discutable, c'est pourquoi il est recommandé de considérer la gamme BCFmin-BCFmax en complément de la valeur moyenne. Le *Tableau 15* complété de la gamme est présenté en Annexe 11.

Pour une même espèce végétale, les BCF les plus élevés sont majoritairement déterminés sur la maille P1, présentant les concentrations en PCB et PCDD/F dans les sols les plus faibles. Les graphiques présentant les valeurs BCF en fonction des mailles P1 à P4 sont insérés en Annexe 12.

<u>Variabilité des BCFmoyens en fonction des espèces végétales</u> (Tableau 15 et Figure 23)

L'illustration des BCFmoyens des PCB et PCDD/F en fonction des espèces végétales met en évidence les tendances suivantes :

- des valeurs BCFmoyens plus élevées pour les PCB par rapport à celles des PCDD/F pour toutes les espèces végétales;
- des comportements similaires des POPs entre les espèces végétales. Ainsi un fort transfert de PCB chez la courgette s'accompagne d'un fort transfert des PCDD/F. Les faibles transferts en PCB chez la pomme de terre et la carotte épluchée s'accompagnent de faibles transferts de PCDD/F. En revanche, les forts transferts en PCB observés chez les graminées et les laitues (valeurs BCFmoyen similaires à celles de la courgette, notamment pour les PCB-5 CI) s'accompagnent de transferts en PCDD/F plus faibles (valeurs BCFmoyen proches de celles de la pomme de terre et de la carotte);

pour les PCB:

- deux valeurs BCFmoyen sont comprises entre 10 et 15, et concernent le PCB 52 chez la laitue₂₀₁₄ et la courgette (la valeur est de 8,3 pour la laitue₂₀₁₅). Ces valeurs suggèrent une accumulation préférentielle des PCB légers par voie gazeuse par rapport à la voie racinaire;
- une trentaine de valeurs BCFmoyen est comprise entre 1 et 10, et concerne les PCB des classes 3 à 5 Cl (excepté pour PCB 81 et PCB 126) pour les végétaux suivants : courgette, graminées (in-situ

et labo), et laitues2014 & 2015. Seule la courgette affiche des valeurs de BCFmoyen supérieures à 1 pour les degrés de chloration supérieurs, à savoir 6 et 7 Cl.

- la majorité des valeurs BCFmoyen est comprise entre 0,01 et 1.
- cinq valeurs BCFmoyen sont comprises entre 0,001 et 0,01. Elles concernent le PCB 126 dans les feuilles de laitue₂₀₁₅, les PCB 156/157/167 dans les gousses de haricot et le PCB 189 dans la carotte épluchée.

Peu d'études détaillées sont disponibles quant aux valeurs de BCF et ces dernières portent essentiellement sur les PCB (Tableau 16). Les valeurs de BCF citées ci-après ont été définies sur la base de sources bibliographiques et sont celles utilisées par l'outil MODUL'ERS.

Ainsi pour les graminées, les valeurs de BCF obtenues par Zhao et al. (2006) sont globalement du même ordre de grandeur pour certains congénères parmi les 17 congénères étudiés dont les concentrations dans les sols dépassaient celles des mailles les plus contaminées (P2 ou P4) dans la présente étude. Les valeurs BCF présentées par Zhao et al. sont comprises entre 2 et 5,4 pour 13 congénères (la valeur de 11 est une valeur estimée sur la base de la LQsol). Elles sont inférieures à 1 pour 3 congénères avec des valeurs autour de 0,95-0,96 pour les PCB 77, PCB 126 et PCB 189. La valeur BCF de 0,0013 pour le PCB 81 est une valeur estimée sur la base de la LQvégétal. Dans la présente étude, les valeurs les plus faibles sont obtenues parmi les graminées cultivées en conditions contrôlées avec des BCFmoyens compris entre 0,016 et 0,084 pour les PCB 81, PCB 126, PCB 169, PCB 180 et PCB 189.

Concernant les carottes lavées, non épluchées, l'étude de Bobovnikova (2000) sur 6 congénères montre des valeurs de BCF supérieures ou égales à 1 pour deux congénères : PCB105 et PCB 180 avec respectivement des valeurs de 1 et 3,3 (les valeurs obtenues dans la présente étude sont de 0,12 et 0,15). Les 4 autres valeurs obtenues par Bobovnikova sont comprises entre 0,08 et 0,97 pour les PCB 52, PCB 77, PCB 101, PCB 138. Pour ces mêmes congénères, les valeurs BCF obtenues dans la présente étude sont comprises entre 0.14 et 0.6, la valeur la plus faible étant rencontrée pour le PCB 77 dans les 2 études (Tableau 16).

Concernant les pommes de terre lavées, l'étude de Bobovnikova (2000) montre des valeurs de BCF très faibles comprises entre 0,0002 et 0,02 pour les 6 congénères. Ces valeurs sont de 2 ordres de grandeur plus faibles que celles obtenues dans la présente étude pour le PCB 77 et le PCB 138.

Tableau 16: Valeurs BCF pour les PCB extraites de la littérature

Référence	Zhao et al. 2006	Bobovnikova et al. (2000)				
Type de Sol	Sol agricole contan	niné par les dépô d'une usine		s et les déchets		
	Somme PCB : 739 µg/kg		(sol A : 30 mg/kg le de 62 congénè			
Végétal prélevé in-situ	Graminées lavées	Carottes lavées, non épluchées (a)	Pommes de terre lavées(b)	Persil		
PCB 28	3,02					
PCB 52	3,78	0,86	0,00084	0,36		
PCB 101	5,40	0,97	0,0078	0,53		
PCB 138	4,10	0,18	0,00086	0,07		
PCB 153	4,31					
PCB 180	2,45	3,33	0,0209	1,4		
PCB 77	0,95	0,08	0,00024	0,048		
PCB 81	0,013*					
PCB 105	1,99	-	-	0,47		
PCB 118	2,09					

Référence	Zhao et al. 2006	Bobovnikova et al. (2000)		
PCB 114	4,75			
PCB 126	0,95			
PCB 167	2,09			
PCB 156	3,12			
PCB 157	3,12			
PCB 169	11**			
PCB 189	0,96			

^{*} LQ végétal (3 µg/g MS) pris en considération dans le calcul de la valeur BCF estimé

- (a) concentrations en PCB totaux dans les carottes entières (2350 μg/kg MF) et dans les carottes épluchées (1500 μg/kg MF) sur le sol A, et de 49,7 μg/kg MF pour les carottes entières sur le sol B
- (b) concentrations en PCB totaux dans les pommes de terre pelées (7,6 et 4 μg/kg MF respectivement sur les sols A et B). Les concentrations dans les pommes de terre entière sont 1,8 à 2,5 fois plus élevées

pour les PCDD/F:

- dix valeurs BCFmoyen sont comprises entre 0,1 et 1, et concernent les PCDD/F des classes 4 à 7 Cl mesurées dans la courgette (avec une majorité des classes 4, 5 et 6 Cl).
- la majorité des valeurs BCFmoyen est comprise entre 0,001 et 0,1.
- quatre valeurs BCFmoyen sont comprises entre **0,0001 et 0,001.** Elles concernent le 1,2,3,7,8-PeCDF dans les gousses de haricot, les furannes (2,3,4,6,7,8-HxCDF, 1,2,3,4,7,8,9-HpCDF, OCDF) dans les feuilles de laitue₂₀₁₄ et le 1,2,3,4,7,8,9-HpCDF dans la carotte épluchée.

Influence de l'épluchage sur les BCFmoyens pour les carottes (Annexe 11, Figure 23)

L'épluchage des carottes engendre globalement une diminution des valeurs BCFmoyens d'un ordre de grandeur environ pour la majorité des substances (PCB et PCDD). Ce n'est toutefois pas le cas pour celles faiblement chlorées telles que PCB 77, PCB 105 (PCB-dl à 4 - 5 atomes de chlore) et 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF (furannes à 4 - 5 atomes de chlore) pour lesquels les BCFmoyens obtenus sur les carottes épluchées ou non sont similaires (même ordre de grandeur).

La présence de carotène expliquerait la plus forte accumulation de POPs chez la carotte par rapport à la pomme de terre, comme observé pour le DDT (DichloroDiphénylTrichloroéthane - composé organique persistant) avec un facteur d'accumulation de 12,8 pour les carottes comparé à 6,7 pour les pommes de terre (Edwards, 1975, cité par Bobovnikova, 2000).

Enfin, le mode de cuisson, non abordé dans la présente étude, est à même de modifier les concentrations dans les végétaux consommés. L'équipe de Hori (2001) a observé, pour les feuilles de komatsuna (épinard), une diminution des concentrations en PCDD/F de plus de 80% après le lavage puis de 27% après la cuisson. Cette tendance n'a pas été observée pour les PCB-dl.

<u>Variabilité des BCFmoyens en fonction du poids moléculaire et du nombre d'atomes de chlore</u> (Figure 23) L'illustration des BCFmoyen en fonction du poids moléculaire et du degré de chloration des PCB et PCDD/F met en évidence les tendances suivantes :

pour les PCB:

- une diminution globale de la valeur du BCFmoyen avec l'augmentation du poids moléculaire et du degré de chloration pour toutes les espèces végétales excepté la pomme de terre. Cette diminution peut atteindre 1 à 2 ordres de grandeur entre les PCB-3 Cl et les PCB-7 Cl;
- trois « anomalies » de valeurs plus faibles au sein de la classe PCB-3 Cl pour les PCB 77 et PCB 81, et au sein de la classe PCB-4 Cl pour PCB 126. Notons que ces trois PCB sont des PCB coplanaires non-ortho substitués (au même titre que le PCB 169 peu quantifié dans les matrices végétales).

^{**} LQ sol (1 µg/g MS) pris en considération dans le calcul de la valeur BCF estimé

^{***} valeur extraite de graphiques

pour les PCDD/F:

- une diminution globale de la valeur du BCFmoyen avec l'augmentation du poids moléculaire et du degré de chloration pour toutes les espèces végétales ;
- trois « anomalies » de valeurs plus faibles au sein de la classe PCDD/F-4 CI pour la 2,3,7,8-TCDD, au sein de la classe PCDD/F-6 CI pour la 1,2,3,7,8,9 HxCDD et au sein de la classe PCDD/F- 7 CI pour la 1,2,3,4,7,8,9 HxCDF. Il s'agit de 2 dioxines et d'1 furanne qui présentent des valeurs de BCFmoyen plus faibles par rapport aux congénères de la même classe et des classes suivantes ;
- une « anomalie » de valeur plus forte au sein de la classe PCDD/F-7 Cl pour la 1,2,3,4,6,7,8 HxCDF.

Les tendances relatives aux BCFmoyen sont globalement observées pour les valeurs BCF obtenues sur chaque maille prise individuellement comme illustré pour les mailles P1 ou P4 (respectivement Figure 25 et Figure 26). Seules 5 espèces végétales sont présentées (pomme de terre, carotte, courgette, haricot, laitue).

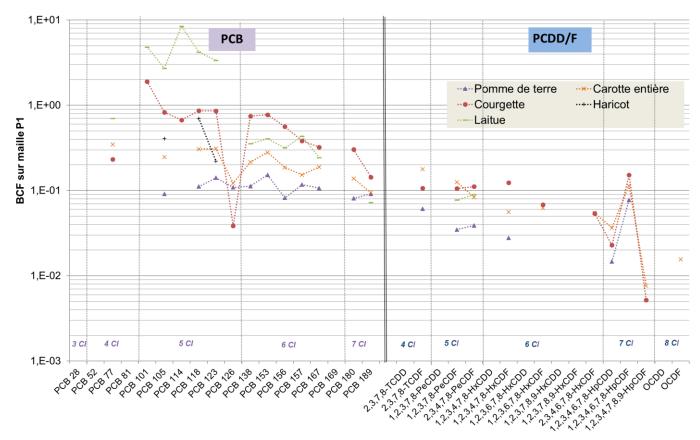


Figure 25 : Evolution des valeurs BCF selon le degré de chloration pour les végétaux cultivés sur la maille P1

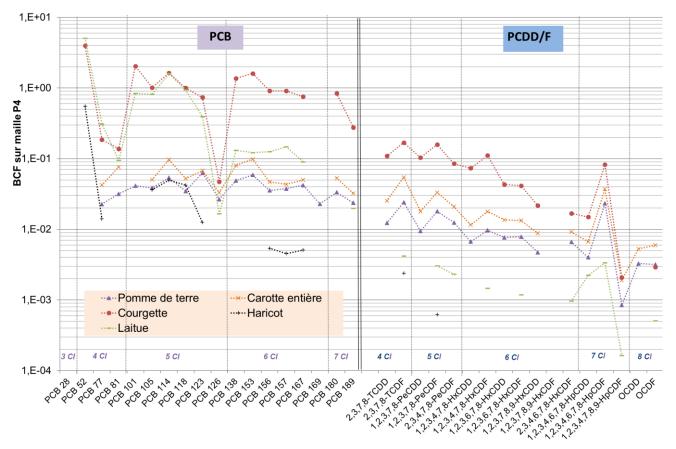
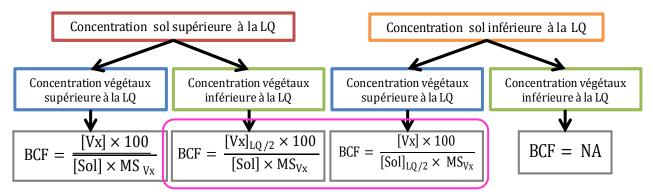


Figure 26 : Evolution des valeurs BCF selon le degré de chloration pour les végétaux cultivés sur la maille P4

Conclusions sur les BCFmoyens déterminés expérimentalement

Au vu des résultats obtenus, les valeurs de BCFmoyen proposées dans le Tableau 15 et déterminées pour chacune des espèces végétales et chaque congénère, permettent d'estimer le **transfert global** des POPs (transfert racinaire et échange gazeux non dissociables notamment pour les PCB faiblement chlorés) pour la gamme de concentrations des substances mesurées dans les sols. En dehors de cette gamme de concentration, les valeurs proposées ne peuvent être extrapolées sans vérification expérimentale.


La gamme des BCFmin-BCFmax mesurées complète le Tableau 15 inséré en Annexe 11. Notons que pour les laitues, le choix a été fait de ne conserver que la série de valeurs obtenues en 2014, en raison d'une biomasse produite plus importante en 2014 par rapport à 2015 (notamment sur les mailles P3 et P4), et en raison d'un nombre plus élevé de valeurs BCFmoyen déterminé expérimentalement en 2014. Pour les graminées, les valeurs de BCF obtenues sur les graminées prélevées in-situ sont conservées pour s'affranchir des échanges gazeux potentiellement exarcerbés dans l'enceinte climatique, malgré un faible nombre d'échantillons analysés. Pour les graminées cultivées en conditions contrôlées, l'intérêt réside dans le stade végétatif atteint qui correspondrait à une repousse entre deux mises à l'herbe des animaux d'élevage (le stade épiaison n'a pas été atteint en conditions contrôlées).

Valeurs de BCFmoyens estimés

Pour les substances non quantifiées dans le végétal ou dans le sol, des valeurs BCFmoyens sont estimées dans une seconde approche sur la base des limites de quantification. Cette approche se défend davantage du point de vue de l'évaluation des risques, que du point de vue « biologie » proprement dit puisque le transfert vers l'organe consommé n'est pas mis en évidence. L'approche de l'évaluateur des risques est jugée conservatoire dans cette seconde approche.

Les règles de calcul des BCF estimés (BCFé) telles qu'illustrées dans diagramme de la Figure 27 sont retenues:

- calcul du BCFé si la concentration dans la matrice végétale ou sol est inférieure à la limite de quantification, sur la base de la valeur de limite de quantification divisée par 2;
- absence de calcul du BCFé si les concentrations dans la matrice végétale ET sol sont inférieures à la limite de quantification (incertitudes trop élevées quant à un transfert potentiel).

avec : [Vx] ou [Sol] la concentration quantifiée de la substance dans le végétal ou dans le sol [Vx]LQ/2 ou [Sol]LQ/2 la valeur de LQ divisée par deux pour la concentration de la substance dans le végétal ou dans le sol si la substance n'est pas quantifiée

MS_{Vx} le pourcentage en matière sèche du végétal pour chaque réplicat

NA signifie « Non Applicable »

Figure 27 : Méthode de calcul des BCF estimés (BCFé).

L'estimation de la valeur du BCFé est discutée pour chaque espèce végétale ci-après. Les valeurs BCFé ainsi estimées apparaissent avec un encadré jaune dans les figures, pour les distinguer des valeurs BCF calculées selon la première approche.

BCFé et graminées in-situ

La valeur BCFé est estimée pour les trois dioxines non quantifiées dans les matrices végétale et/ou sol : 2,3,7,8 TCDD - 1,2,3,4,7,8-HxCDF et 1,2,3,7,8,9-HxCDD (Figure 28). Notons que ces 3 substances ne sont quantifiées ni dans les graminées et ni dans les sols pour la maille P1. La 1,2,3,7,8,9 HxCDF n'est quantifiée ni dans les 4 mailles ni dans les graminées, et de ce fait elle ne dispose pas de BCFé.

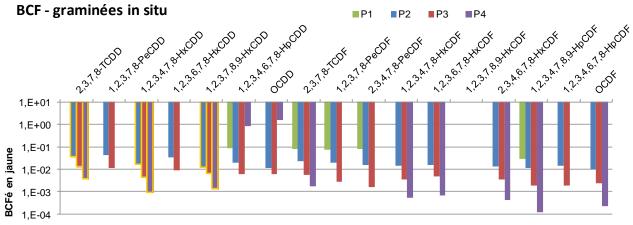


Figure 28 : BCF estimé proposés pour les dioxines dans les graminées in-situ

Les valeurs estimées proposées, comprises entre 0,0009 et 0,037 pour les 3 dioxines, sont cohérentes avec les valeurs obtenues en première approche pour les autres congénères de même classe (degré de chloration).

BCFé et graminées cultivées en conditions contrôlées

La valeur BCFé est estimée pour le PCB 169 et six des sept dioxines non quantifiées dans la matrice végétale et/ou le sol (maille P1) (Figure 29 et Figure 30).

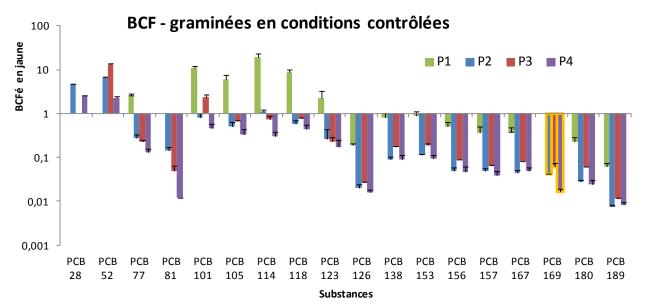


Figure 29 : BCF estimé proposés pour les PCB dans les graminées cultivées en conditions contrôlées

La valeur de BCF estimée de 0,039 pour le PCB 169 est cohérente avec les valeurs de la classe supérieure (7 Cl).

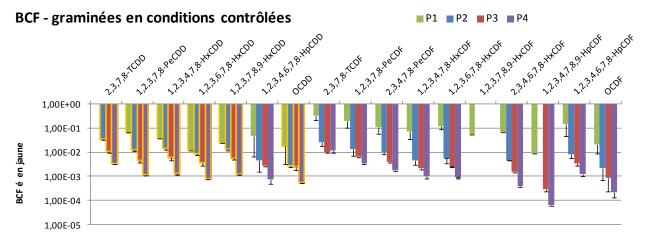


Figure 30 : BCF estimé proposés pour les dioxines dans les graminées cultivées en conditions contrôlées Pour les 6 dioxines, les valeurs estimées proposées sont comprises entre 0,005 et 0,016 et sont cohérentes, d'une part avec les valeurs obtenues en première approche pour les autres congénères de même classe (degré de chloration), et d'autre part, avec les obtenues en première approche pour les graminées in-situ.

BCFé et pommes de terre entières

La valeur BCFé est estimée pour les PCB les plus légers : PCB 28 et PCB 52. Ces 2 congénères ne sont pas quantifiés dans les tubercules non épluchés. Des BCF calculés selon la première approche sont disponibles pour toutes les autres substances.

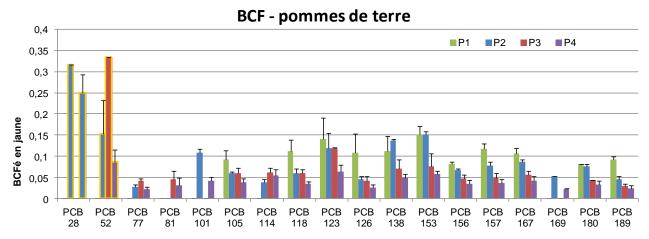


Figure 31 : BCF estimé proposés pour les PCB dans les pommes de terre

Les valeurs estimées apparaissent peu cohérentes avec les autres BCF notamment celles calculées pour les PCB -4 CI (PCB 77 et PCB 81) avec une valeur maximale de 0,33 pour PCB 52 sur la maille P3, soit 2 à 10 fois plus élevées que celles mesurées expérimentalement pour les autres congénères. Notons toutefois que la valeur proposée pour le PCB 52 dans les tubercules est du même ordre de grandeur que celle obtenue pour les carottes entières (PCB 52 : valeur moyenne de 0,59 pour les carottes et de 0,15 pour les tubercules).

Il ne paraît pas pertinent de proposer des BCFé pour les PCB 28 et PCB 52. Considérer leur transfert dans les pommes de terre dans le cadre d'une évaluation des risques sanitaires serait une approche jugée « trop conservatoire », au vu des valeurs estimées.

BCFé et carottes épluchées

La valeur BCFé est estimée pour 4 PCB : PCB 28, PCB 52, PCB 101 et PCB 169. Ces 4 congénères ne sont pas quantifiés dans les carottes épluchées. Des BCF calculés selon la première approche sont disponibles pour toutes les autres substances.

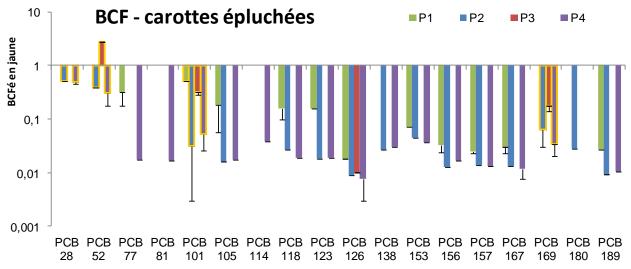


Figure 32 : BCF estimé proposés pour les PCB dans les carottes épluchées

Les valeurs BCFé estimées pour PCB 28 et PCB 52 apparaissent peu cohérentes avec les autres BCF avec des valeurs comprises entre 0,3 et 2,8, soit 10 fois plus élevées que celles pour PCB 77 (4 CI – classe identique) sur la maille P4, par exemple.

Les valeurs BCFé estimées pour PCB 101 sont comprises dans la gamme des valeurs BCF calculées en première approche pour les autres PCB-5 Cl (PCB 105 à PCB 126), avec toutefois une valeur élevée sur les mailles P1 et P3.

Il en est de même pour les valeurs BCFé estimées pour PCB 169. Pour le PCB 101 et PCB 169, les valeurs moyennes BCFé proposées sont respectivement de 0,23 et 0,091.

Il ne paraît pas pertinent de proposer des BCFé pour les PCB 28 et PCB 52. Considérer leur transfert dans les carottes épluchées dans le cadre d'une évaluation des risques sanitaires serait une approche « trop conservatoire » au vu des valeurs estimées proposées.

BCFé et carottes entières

La valeur BCFé est estimée pour le PCB 28, non quantifié dans les carottes entières. Des BCF calculés selon la première approche sont disponibles pour toutes les autres substances.

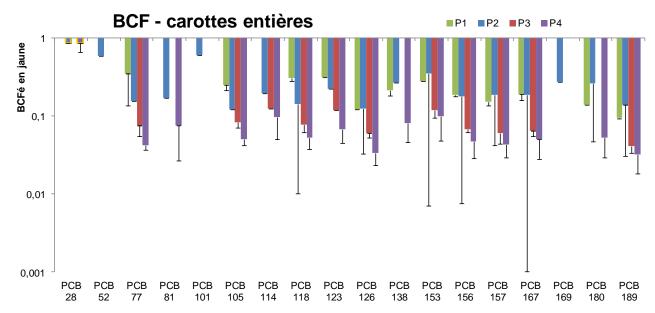


Figure 33 : BCF estimé proposés pour les PCB dans les carottes entières

La valeur BCFé estimée de 0,86 pour PCB 28 sur les mailles P1 et P3 apparait élevée et peu cohérente avec les autres BCF notamment celle de 0,14 calculée pour PCB 77, par exemple.

Il ne paraît pas pertinent de proposer un BCFé pour le PCB28. Considérer son transfert dans les carottes entières dans le cadre d'une évaluation des risques sanitaires serait une approche « trop conservatoire » au vu de la valeur estimée proposée.

BCFé et courgettes entières

La valeur BCFé est estimée pour 2 PCB (PCB 28, PCB169) et 1 dioxine (OCDD). Ces 3 substances ne sont pas quantifiées dans les courgettes entières. Des BCF calculés selon la première approche sont disponibles pour toutes les autres substances.

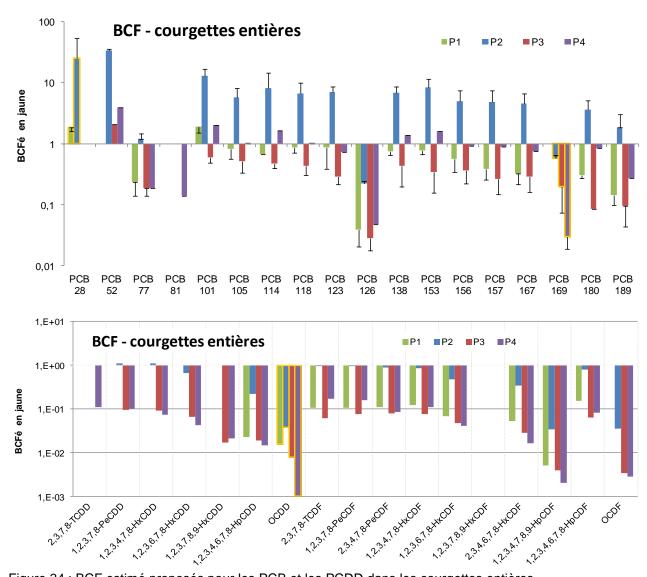


Figure 34 : BCF estimé proposés pour les PCB et les PCDD dans les courgettes entières

Les valeurs estimées proposées pour le PCB 28 (valeur moyenne de 14 avec respectivement 1,8 et 25 pour les mailles P1 et P2) sont cohérentes avec les valeurs obtenues en première approche pour les autres congénères. Toutefois il est probable que l'accumulation dans le fruit soit liée à la fois au transfert racinaire et au transfert gazeux du fait de la présence quantifiée de PCB 28 dans l'air ambiant de l'enceinte climatique. Cette valeur BCFé est à considérer avec précaution.

La valeur estimée proposée pour le PCB 169 sur la maille P3 est cohérente avec les valeurs obtenues en première approche pour les autres congénères. Ce n'est pas le cas sur les mailles P2 et P4 pour lesquelles les valeurs estimées BCFé sont jusqu'à plus de 10 fois inférieures aux valeurs calculées pour les autres congénères de même classe. Il en résulte pour le PCB 169 une valeur moyenne de BCFé de 0,23, d'un ordre de grandeur plus faible que pour les congénères de même classe, rendant cette valeur BCF peu pertinente.

Les valeurs estimées proposées pour l'OCDD (BCFé moyen de 0,014 avec des valeurs comprises entre 0,001 et 0,038 selon les mailles) sont cohérentes avec les valeurs obtenues en première approche pour les autres congénères de même classe (OCDF).

BCFé et gousses de haricot

La valeur BCFé est estimée pour 7 PCB (PCB 28, PCB 81, PCB 138, PCB 153, PCB 169, PCB 180 et PCB 189). Ces 7 substances ne sont pas quantifiées dans les gousses de haricot. Des BCF calculés selon la première approche sont disponibles pour toutes les autres substances.

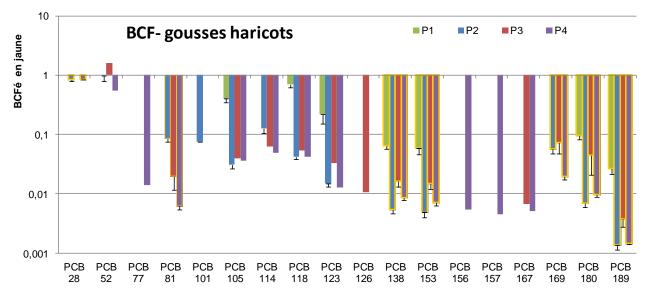


Figure 35 : BCF estimé proposés pour les PCB dans les gousses de haricots

Les valeurs estimées proposées pour le PCB 28 (respectivement 0,84 et 0,85 pour les mailles P2 et P4) sont cohérentes avec les valeurs obtenues en première approche pour le congénère PCB 52, comprenant un atome de CI supplémentaire. Toutefois il est probable que l'accumulation dans la gousse soit liée à la fois au transfert racinaire et au transfert gazeux du fait de la présence quantifiée de PCB 28 dans l'air ambiant de l'enceinte climatique. Cette valeur BCFé est à considérer avec précaution.

Il est difficile de se prononcer quant aux valeurs proposées pour les PCB des classes 6 et 7 Cl (PCB 138, PCB 153, PCB 169, PCB 180 et PCB 189).

La valeur BCFé est estimée pour tous les PCDD/F, excepté les 2 furannes les plus faiblement chlorées (2,3,7,8-TCDF et 1,2,3,7,8-PeCDF).

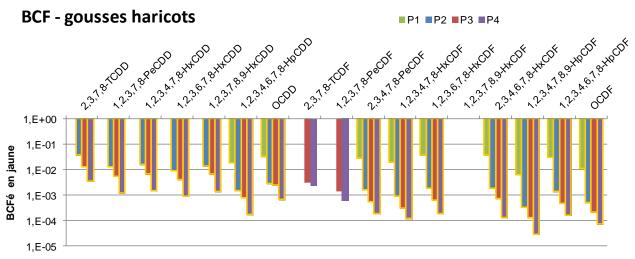


Figure 36 : BCF estimé proposés pour les PCDD dans les gousses de haricots

Il est difficile de se prononcer quant aux valeurs proposées pour les 14 PCDD/F avec des valeurs comprises entre 0,1 et 0,01 pour les mailles P2, et des valeurs proches de 0,001 pour la majorité des furannes sur les mailles P3/P4.

In fine, les valeurs moyennes de BCFé sont comprises entre 0,0017 et 0,018 pour les 14 PCDD/F.

BCFé et laitues

La valeur BCFé est estimée pour 2 PCB des classes 6 et 7 Cl (PCB 169, PCB 180). Ces 2 substances ne sont pas quantifiées dans les feuilles de laitue. Des BCF calculés selon la première approche sont disponibles pour toutes les autres substances.

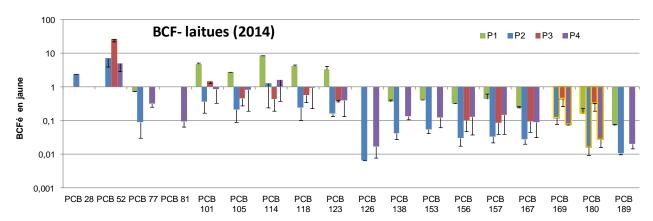


Figure 37 : BCF estimé proposés pour les PCB dans les laitues

Les valeurs estimées proposées pour les PCB 169 et PCB 180 (comprises entre 0,016 et 0,45) sont cohérentes avec les valeurs obtenues en première approche pour les congénères de classes similaires.

La valeur BCFé est estimée pour 6 dioxines (à l'exclusion de la 1,2,3,4,6,7,8-HpCDD).

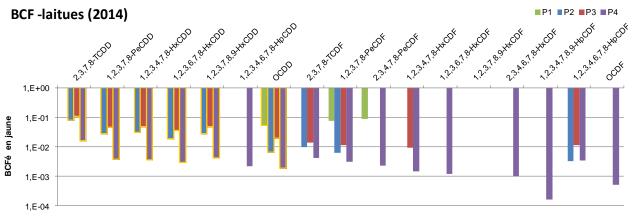


Figure 38 : BCFé proposés pour les PCB et les PCDD dans les laitues

Il est difficile de se prononcer quant aux valeurs proposées pour les 6 dioxines, notamment pour les mailles P1, P2 et P3 pour lesquelles aucune valeur BCFmoyen n'est disponible pour la Hepta-dioxine, seule dioxine disposant d'un BCFmoyen calculé uniquement sur la maille P4.

In fine, les valeurs moyennes de BCFé sont comprises entre 0,019 et 0,065 pour les 6 PCDD/F.

Proposition de BCF estimés

Les 42 valeurs de BCF estimé pour les 7 espèces végétales retenues sont présentées dans le Tableau 17. Le plus grand nombre de valeurs BCFé proposé concerne les gousses de haricots (21) et les feuilles de laitue (8). Sont distinguées les valeurs jugées pertinentes par rapport aux autres congénères de même classe (en **gras** dans le tableau), et les valeurs moins pertinentes (en **gras** italique dans le tableau) – d'autre part, en raison de la quantification des PCB 28 et 52 dans l'air ambiant de l'enceinte climatique, et d'autre part, d'une comparaison peu approfondie avec les autres congénères du fait d'un nombre restreint de valeurs BCF obtenues.

L'ensemble des BCF et BCFé proposés est illustré en Figure 39, pour les 7 espèces végétales (graminées in-situ GRA, tubercules entiers de pomme de terre PDT, carottes épluchées ou entières CA, fruits entiers de courgette COU, gousses de haricot HA, feuilles de laitues cultivées en 2014).

Tableau 17: Proposition des BCFmoyens estimés sur la base des limites de quantification

Proposition des	GRA in situ	GRA labo						
<u>BCFmoyens</u> avec considération des	2014	2015	PDT	CA entier	CA épluché	COU	НА	LAI2014
valeurs LQ/2	(n=4)	(n=12)	(n=12)	(n=11)	(n=12)	(n=11)	(n=8)	(n=12)
PCB 28	2,7E+00	4,0E+00	2,7E-01	8,6E-01	5,0E-01	1,4E+01	8,4E-01	2,4E+00
PCB 52	1,2E+00	6,8E+00	1,5E-01	5,9E-01	7,0E-01	1,5E+01	1,0E+00	1,3E+01
PCB 77	1,5E+00	8,2E-01	2,9E-02	1,4E-01	2,2E-01	3,8E-01	1,4E-02	3,7E-01
PCB 81	6,3E-01	8,4E-02	3,7E-02	1,0E-01	1,7E-02	1,4E-01	3,7E-02	9,5E-02
PCB 101	7,3E-01	3,7E+00	7,5E-02	6,0E-01	2,3E-01	3,9E+00	7,4E-02	1,9E+00
PCB 105	6,4E-01	1,9E+00	6,2E-02	1,2E-01	1,0E-01	1,7E+00	1,7E-01	1,0E+00
PCB 114	2,0E+00	4,2E+00	5,0E-02	1,2E-01	3,8E-02	2,6E+00	9,0E-02	1,9E+00
PCB 118	9,0E-01	2,6E+00	6,6E-02	1,4E-01	8,9E-02	1,8E+00	2,9E-01	1,5E+00
PCB 123	3,3E-01	7,4E-01	1,1E-01	1,6E-01	6,6E-02	1,8E+00	7,5E-02	1,1E+00
PCB 126	3,5E-01	6,3E-02	5,6E-02	7,7E-02	1,0E-02	8,0E-02	1,1E-02	1,4E-02
PCB 138	4,5E-01	2,9E-01	9,4E-02	1,8E-01	2,8E-02	1,9E+00	2,4E-02	1,8E-01
PCB 153	5,5E-01	3,2E-01	1,1E-01	2,1E-01	4,9E-02	2,3E+00	2,1E-02	1,9E-01
PCB 156	2,5E-01	1,7E-01	5,8E-02	1,1E-01	2,0E-02	1,4E+00	5,4E-03	1,4E-01
PCB 157	2,4E-01	1,3E-01	7,1E-02	1,1E-01	1,7E-02	1,3E+00	4,5E-03	1,8E-01
PCB 167	2,3E-01	1,4E-01	7,3E-02	1,2E-01	1,8E-02	1,2E+00	5,9E-03	1,1E-01
PCB 169	1,7E-01	3,9E-02	3,8E-02	2,8E-01	9,1E-02	2,3E-01	4,9E-02	2,2E-01
PCB 180	4,3E-01	7,5E-02	5,7E-02	1,5E-01	2,8E-02	1,2E+00	4,0E-02	1,3E-01
PCB 189	1,3E-01	1,9E-02	4,8E-02	7,5E-02	9,7E-03	4,8E-01	8,2E-03	3,1E-02
2,3,7,8-TCDD	1,8E-02	1,6E-02	1,5E-02	2,5E-02	4,0E-03	1,1E-01	1,8E-02	6,5E-02
2,3,7,8-TCDF	2,7E-02	9,5E-02	3,6E-02	9,4E-02	3,3E-02	2,7E-01	2,7E-03	9,2E-03
1,2,3,7,8-PeCDD	2,8E-02	1,2E-02	1,8E-02	4,9E-02	4,9E-03	3,5E-01	6,4E-03	2,6E-02
1,2,3,7,8-PeCDF	3,3E-02	5,4E-02	2,7E-02	6,7E-02	2,1E-02	2,7E-01	9,8E-04	2,1E-02
2,3,4,7,8-PeCDF	3,2E-02	3,1E-02	2,5E-02	5,6E-02	6,6E-03	2,4E-01	7,7E-03	2,4E-02
1,2,3,4,7,8-HxCDD	7,5E-03	1,0E-02	1,5E-02	3,9E-02	4,8E-03	3,4E-01	7,9E-03	2,7E-02
1,2,3,4,7,8-HxCDF	6,0E-03	2,0E-02	1,8E-02	3,7E-02	4,9E-03	2,4E-01	5,3E-03	3,5E-03
1,2,3,6,7,8-HxCDD	2,1E-02	5,1E-03	1,6E-02	3,8E-02	4,8E-03	2,1E-01	4,6E-03	1,9E-02
1,2,3,6,7,8-HxCDF	6,8E-03	2,3E-02	1,4E-02	3,9E-02	5,6E-03	1,3E-01	1,1E-02	1,2E-03
1,2,3,7,8,9-HxCDD	6,7E-03	8,6E-03	7,4E-03	3,3E-02	3,3E-03	2,1E-02	7,3E-03	2,7E-02
2,3,4,6,7,8-HxCDF	5,7E-03	1,1E-02	1,1E-02	3,2E-02	4,4E-03	9,0E-02	9,8E-03	9,7E-04
1,2,3,4,6,7,8-HpCDD	2,8E-02	1,5E-02	8,0E-03	2,0E-02	3,5E-03	5,6E-02	5,1E-03	2,2E-03
1,2,3,4,6,7,8-HpCDF	8,1E-03	4,0E-02	3,7E-02	8,2E-02	1,1E-02	2,3E-01	8,0E-03	5,0E-03
1,2,3,4,7,8,9-HpCDF	1,0E-02	1,9E-03	1,5E-03	5,2E-03	9,6E-04	9,7E-03	1,7E-03	1,6E-04
OCDD	6,3E-03	5,9E-03	4,1E-03	1,4E-02	2,8E-03	1,4E-02	9,7E-03	2,0E-02
OCDF	4,2E-03	5,9E-03	3,9E-03	1,3E-02	2,3E-03	1,1E-02	2,9E-03	5,1E-04
Nombre de BCF estimés par végétal	3	7	2	1	4	3 /Σ:!!	21	8

légende n: nombre d'échantillons végétaux exploitables par espèce testée (Σmailles x réplicats)

en gris : BCF calculé expérimentalement sur la base des concentrations quantifiées <u>dans les sols</u>

ET les végétaux

en gras : BCF estimé en considérant les limites de quantification LQ/2 pour les substances non quantifiées dans les sols ou les végétaux

en *italique* : valeur BCF estimé jugée peu pertinente au vu des autres valeurs obtenues expérimentaleme

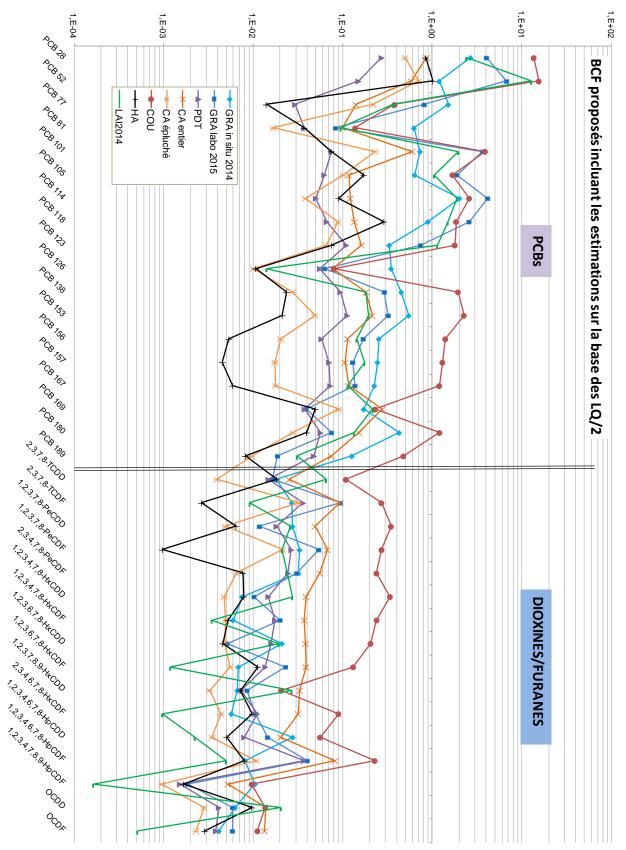


Figure 39 : BCF proposés pour toutes les substances d'intérêt et tous les végétaux, y compris les BCF estimés

5. Conclusions sur les transferts dans les végétaux

Les cultures de végétaux mises en œuvre en conditions contrôlées et *in-situ*, ont mis en évidence des transferts de POPs et notamment des PCB dans les graminées *in-situ* mais aussi dans les végétaux potagers avec des facteurs de transfert plus ou moins élevées en fonction des espèces.

Les paramètres influant sur le transfert des PCB et des PCDD/F dans les végétaux identifiés à l'issue des essais expérimentaux sont :

- la structure des POPs avec des transferts plus importants pour les PCB par rapport aux PCDD/F pouvant atteindre 3 ordres de grandeur entre les BCFmin et BCFmax pour une même espèce végétale;
- l'espèce végétale avec des transferts accrus de PCB mais aussi de PCDD/F dans les courgettes entières. Les tubercules et racines, en contact direct avec les sols, accumulent le plus grand nombre de PCB et PCDD/F mais à des concentrations moindres que les courgettes ou les légumes-feuilles/graminées;
- le niveau de pollution des sols et de leurs caractéristiques agronomiques : les BCF les plus élevés sont ceux obtenus sur les mailles P1, les moins impactées en POPs suggérant des phénomènes de détoxification au sein des plantes et/ou des plateaux de tolérance ;
- la présence de POPs dans l'air ambiant, notamment pour les espèces telles que les salades et les graminées disposant d'une surface foliaire conséquente au travers de laquelle les échanges gazeux mènent à une accumulation des PCB les plus faiblement chlorés tels que les PCB 28 et PCB 52, et dans une moindre mesure le PCB 101;
- le degré de chloration des substances aussi bien pour les PCB que pour les PCDD/F. Les substances les plus faiblement chlorées présentent des facteurs de transfert plus élevés que les substances plus fortement chlorées. Notons que les PCB coplanaires non-ortho substitués tels que les PCB 77, PCB 81 et PCB 126 présentent généralement les BCF les plus faibles de leur classe (classe 4 Cl pour les deux premiers et classe 6 Cl pour le dernier). Cette tendance n'a pas été observée pour le PCB 169 en raison du faible nombre de valeurs BCF obtenues (3 valeurs pour les 8 espèces testées).

Des valeurs BCFmoyen sont proposées à l'issue des essais expérimentaux ainsi qu'une interprétation des résultats sur ces valeurs qui a permis de mettre en évidence les grandes tendances mentionnées ci-dessus. Les valeurs BCF obtenues maille par maille sont disponibles en annexe 9. Il reviendra à tout évaluateur des risques souhaitant modéliser le transfert des POPs dans les végétaux de considérer la série de valeurs adaptée au contexte et aux objectifs de l'étude (BCF P1, BCF P2, BCF P3, BCF P4 ou BCFmoyen). Le livrable n°3, dédié à la sensibilité des paramètres dans le cadre de l'évaluation des risques sanitaires, traite notamment des valeurs BCF obtenues sur les mailles P1 et P4.

V Bioaccessibilité et biodisponibilité des POPs dans les sols

1. Notion de biodisponibilité et de bioaccessibilité

Les notions mentionnées ci-après sont extraites du guide InVS – INERIS de 2012¹⁴.

La fraction <u>bioaccessible</u> par voie orale d'un polluant présent dans une matrice (exemple : nourriture, terre, eau, etc.) est la fraction massique du polluant qui est extraite de la matrice et mise en solution par l'action mécanique et chimique du passage dans le tractus gastro-intestinal. Cette fraction peut être appréhendée au travers de tests in vitro tel que le protocole unifié du groupe BARGE¹⁵ mis en oeuvre pour les métaux tels que le cadmium, le plomb et l'arsenic. Ce protocole fait l'objet d'un projet de norme NF ISO 17 924 relative à la Qualité du sol - Évaluation de l'exposition humaine par ingestion de sol et de matériaux du sol -- procédures pour la mesure de la bioaccessibilité/biodisponibilité pour l'être humain des métaux dans le sol. Le test FOREhST16 modifié pour les substances organiques a été validé à ce jour pour les HAP.

La fraction <u>biodisponible</u> par voie orale d'un polluant présent dans une matrice est quant à elle la fraction massique de ce polluant qui atteint la circulation sanguine et donc potentiellement sa cible biologique. Cette fraction est appréhendée au travers de tests in vivo au travers desquels les animaux testés sont alimentés avec des sols contaminés, par exemple. La norme NF ISO 17 402 :2008 définit les lignes directrices pour la sélection et l'application des méthodes d'évaluation de la biodisponibilité des contaminants dans le sol et les matériaux du sol.

2. Biodisponibilité dans PCB dans les sols

Les travaux sur la biodisponibilité et la bioaccessibilité des PCBi ont été menés par l'UR-AFPA de l'Université de Lorraine dans le cadre d'une thèse soutenue en 2014 intitulée « Évaluation du risque sanitaire lié à l'ingestion involontaire de sol - Étude des propriétés du sol sur la biodisponibilité relative des PCB » 17 . Il s'agissait notamment d'évaluer l'influence de la matière organique sur la biodisponibilité chez le porcelet des PCBi présents dans des sols. Les travaux sur la bioaccessibilité se sont poursuivis en 2016. Les sols étudiés proviennent de la parcelle 132 du site de Saint-Cyprien, non retenue dans le cadre de TROPHé. Cette parcelle, siège de l'incendie, présente des concentrations en PCB et PCDD/F significativement supérieures aux mailles P2 ou P4 de la présente étude avec des concentrations, jusqu'à plus de 450 fois la concentration en Σ PCB-dI + PCDD/F mesurée sur la maille P4 (Tableau 18).

Les deux sols se distinguent par des teneurs en matière organique MO et en black carbon¹⁸ différentes avec le sol A1 moins pollué et moins chargé en MO par rapport à A2.

La biodisponibilité est déterminée sur la base des concentrations mesurées dans le tissu adipeux et le foie des porcelets.

Tableau 18: Niveau de pollution dans les sols utilisés pour déterminer la biodisponibilité

	Sol A1	Sol A2
Σ PCBi (μg/g)	13,6	148,3
рН	7,47	7,48
Taux carbone organique (g/kg)	41,2	123
Black carbon (g/kg)	1,57	3,94

¹⁴ Quantités de terre et poussières ingérées par un enfant de moins de 6 ans et bioaccessibilité des polluants : état des connaissances et propositions, guide pratique InVS – INERIS,

¹⁵ groupe de recherche BARGE - BioAccessibility Research Group in Europe, qui fédère plusieurs laboratoires et instituts de recherche

¹⁶ FOREhST: Fed ORganic Estimation human Simulation Test

¹⁷ Matthieu Delannoy, Thèse soutenue le 3 décembre 2014, Université de Lorraine, ENSAIA – UR AFPA

¹⁸ Black carbon: matière organique à la condensation maximale. Le charbon actif est un modèle du black carbon

Les taux de biodisponibilité se révèlent assez élevés avec des valeurs comprises entre 46 et 94% selon le congénère considéré (Tableau 19). L'étude n'a pas permis de déterminer des taux pour les PCB les plus légers.

Tableau 19: Biodisponibilité déterminée chez le porcelet exposé aux sols étudiés

	Sol A1	Sol A2
PCB 101	83 %	46 %
PCB 138	92 %	68 %
PCB 153	94 %	60 %
PCB 180	83 %	79 %

Ces résultats sont cohérents avec de précédentes études menées sur le porc et le rat. Ainsi, Pu et al. (2006) mettent en évidence pour les PCB 52 et PCB 118, à partir de sols dopés, des taux de bioaccessibilité compris entre 40 et 79% et une biodisponibilité relative comprise entre 87 et 126%. Les autres études consultées concernent les PCDD/F:

- Taux de bioaccessibilité compris entre 8 et 45% (avec une moyenne à 22%) et biodisponibilité relative comprise entre 17 et 50%, à partir du dopage de 5 sols – Finley et al. 2009;
- Biodisponibilité relative entre 27 et 66% déterminée à partir du tissu adipeux et du foie sur deux animaux (rat et porc) – Budinsky et al. 2008;
- Biodisponibilité relative de 32 % pour le foie et de 25% pour le tissu adipeux Wittsiepe et al. 2007.

L'application des tests in vitro sur les sols de type FOREhST met en évidence un protocole expérimental peu robuste à l'heure actuelle pour les PCB. Les premiers résultats présentés dans le Tableau 20 sont toutefois cohérents avec ceux obtenus pour la biodisponibilité avec des taux plus élevés pour le sol A1 par rapport au sol A2, et des taux majoritairement élevés notamment pour le sol A1 (> 30%).

Tableau 20: Bioaccessibilité déterminée via le test in vitro FOREhST pour 2 sols

	Sol A1	Sol A2
PCB 28	57 %	4 %
PCB 52	36 %	15 %
PCB 101	40 %	13 %
PCB 118	70 %	26 %
PCB 138	67 %	40 %
PCB 153	> 100 %	35 %
PCB 180	*	*

^{*} données non exploitables

3. Mise en perspective par rapport au présent projet

Il a été envisagé dans le cadre de cette étude d'élargir les résultats de biodisponibilité obtenus pour les PCBi aux PCB-dl, en analysant les PCB-dl dans les différentes matrices biologiques prélevées sur les porcelets par l'UF AFPA.

Cependant, pour la courbe d'étalonnage, les sols ont été dopés avec de l'huile spikée avec de l'arochlor 1254 contenant une forte proportion de PCBi (24 à 28%) avec en revanche, une très faible proportion de PCB-dl entre 0,8 et 12% (pourcentage donné respectivement par l'Agence Seine Normandie et l'ATSDR). La gamme d'étalonnage est établie sur 6 doses élaborées à partir de cette huile spikée, et pour la dose intermédiaire D3, seul le PCB 118 aurait été quantifié (aucune quantification des autres PCB-dl).

Dans ce contexte, il n'a pas été possible d'évaluer la disponibilité des PCB-dl sur la base des échantillons biologiques (foie et tissu adipeux) mis à disposition par l'UF AFPA.

Seules trois analyses ont été conduites par le laboratoire Eurofins en août 2014 sur un échantillon de sol pollué, de tissu adipeux TA et de foie des porcelets. Les résultats sont présentés dans le Tableau 21,

complétés par les concentrations mesurées pour les PCBi sur les mêmes échantillons par d'autres laboratoires.

Tableau 21: Concentrations mesurées dans le foie et le tissu adipeux des porcelets

	Sol A2	Tissu adipeux	Foie
PCDD/F	20 906 pg/g	< LQ	8,4 pg/g (0,04 %)
	=4 830 ng I-TEQ/kg	< 1,3 ng I-TEQ/kg	= 0,7 ng I-TEQ/kg
PCB-dl	86 000 000 pg/g	1033,3 pg/g (0,0012 %)	72,5 pg/g (0,0001 %)
	=106 000 ng I-TEQ/kg	= 0,031 ng I-TEQ/kg	= 0,2 ng I-TEQ/kg
PCBi	1 530 µg/g (148,3**)	32,4 ng/g MS (21,8*)	4,2 ng/g MS (11,4*)
		(0,0021 %)	(0,0003 %)

(valeur)*: concentration obtenue par le laboratoire de l'UR-AFPA

(valeur)**: concentration obtenue par le laboratoire CARSO implanté à Vénissieux (69) (0,002 %): rapport entre la concentration dans la matrice biologique et celle dans le sol

Ces analyses mettent en évidence :

- la capacité du foie à accumuler les PCDD/F (PCDD/F non quantifiés dans le tissu adipeux) avec un pourcentage de 0,04% quand le rapport des concentrations dans le foie par rapport au sol est calculé. Ce pourcentage est le plus élevé comparé à ceux calculés pour les PCBi et PCB-dl (respectivement 0,0003 et 0,0001%);
- la capacité du tissu adipeux à accumuler davantage de PCB-dl par rapport au foie, d'un ordre de grandeur.

Il est noté un écart dans le dosage des PCBi dans les sols de plus d'un ordre de grandeur entre les 2 analyses réalisées dans deux laboratoires différents, non expliqué à ce jour, alors que la répartition des congénères est similaire. La répartition des congénères pour les PCBi est également similaire dans le foie pour les 2 analyses.

Il reste intéressant de poursuivre les travaux de bioaccessibilité et de biodisponibilité en incluant les PCBdl et les PCDD/F pour statuer sur leur capacité à être mieux absorbés et assimilés par l'Homme par rapport aux PCBi.

VI Bioaccumulation des POPs chez les invertébrés du sol

1. Objectif

Les essais réalisés visent à caractériser le transfert des POPs vers les organismes représentatifs des oligochètes terrestres *via* le calcul des facteurs de bioconcentration (BCF) pour chacune des substances recherchées (PCB; PCDD/F). Les essais ont été réalisés en considérant les sols provenant des quatre mailles décrites précédemment.

2. Matériel et méthode

2.1 Principe de l'essai

La caractérisation du transfert et de la bioconcentration des POPs chez le ver s'est faite sur la base des recommandations de la ligne directrice OCDE 317 (bioaccumulation chez les oligochètes terrestres). Le principe de l'essai OCDE 317 consiste à mesurer l'accumulation d'une substance chez un organisme exposé, à travers le calcul de son facteur de bioconcentration (BCF). Le protocole décrit par cette ligne directrice considère une exposition à une substance seule, mélangée à un sol artificiel de référence (sol ISO). Le BCF se calcule en principe lorsque l'état stationnaire de la substance au sein du ver est atteint. L'essai OCDE 317 consiste généralement en deux phases et permet également de déterminer la vitesse d'adsorption (Ks) et d'élimination (Ke) de la substance testée.

Dans le cadre du programme TROPHé, l'objectif était de mesurer le transfert chez le ver de plusieurs substances présentes dans des sols prélevés sur le terrain et de calculer le BCF pour chacune des substances recherchées dans ces sols. Compte tenu des besoins analytiques (biomasse de ver nécessaire pour l'ensemble des analyses notamment), le design expérimental a été adapté. Ainsi, seule la phase d'adsorption, a été menée. Les vers ont été exposés pendant 28 jours avec un prélèvement intermédiaire réalisé à 14 jours (Figure 40). Deux séries d'essai ont été menées successivement afin de tester l'ensemble des quatre mailles (Série_1 : mailles P2 et P4 ; Série_2 : mailles P1 et P3)

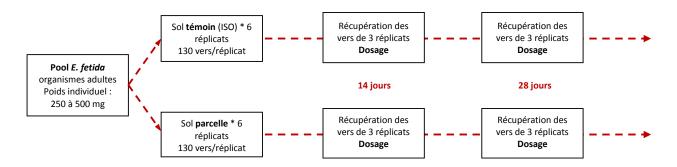


Figure 40 : schéma général de l'essai de bioaccumulation chez le ver E. fetida

2.2 <u>Matériel biologique</u>

Les oligochètes terrestres jouent un rôle important dans la structure et la fonction des sols. De par leur mode de vie dans le sol et partiellement à sa surface, ils sont exposés aux substances potentiellement présentes dans les couches superficielles des sols. D'autre part, leur rôle dans la bioturbation du sol et leur fonction de proies confèrent à ces animaux une influence sur la biodisponibilité et le transfert des substances pour d'autres organismes comme les prédateurs invertébrés ou vertébrés. Les essais de bioaccumulation des POPs ont été menés sur le ver *Eisenia fetida*. Ce ver, de la famille des *Lumbricidae* est un modèle classiquement utilisé en écotoxicologie et recommandé par les différentes lignes directrices de l'OCDE employant les oligochètes terrestres.

2.3 Préparation des organismes d'essai

Des vers adultes (clitellum visible) et calibrés en poids (entre 300 et 500 mg) ont été utilisés pour cette étude. Pour les besoins analytiques, une quantité minimale de 60 g (biomasse fraîche) de vers par réplicat, était nécessaire.

Deux jours avant le début de la phase d'exposition, environ 2 000 vers (quantité nécessaire pour la réalisation des essais sur 2 mailles) ont été sélectionnés au hasard. Afin de les acclimater aux conditions d'essai, les vers ont été placés dans du sol de référence (sol artificiel OCDE) et dans la pièce d'essai. Le jour du début de l'essai (J0), les vers sont collectés manuellement par groupe de 130, brièvement rincés à l'eau du robinet puis pesés dans leur totalité. Ils sont ensuite déposés à la surface du récipient d'essai correspondant.

2.4 Préparation des sols

Les sols étudiés ont été stockés à température ambiante avant la réalisation des essais de bioaccumulation. Deux jours avant les essais, les sols ont été débarrassés des cailloux et débris végétaux puis tamisés à 4 mm et enfin caractérisés pour leur pH et leur capacité de rétention d'eau (CRE). La veille de l'exposition les sols ont été hydratés à hauteur de 60% de leur CRE respective, puis placés dans les récipients d'essai.

2.5 Conditions d'essai

Pour chacun des réplicats, environ 6,5 kg de sol (équivalent poids sec) ont été placés dans des récipients en verre de type cristallisoir (hauteur = 20 cm; $\emptyset = 24 \text{ cm}$) (Figure 41).

Une fois les vers déposés en surface, les cristallisoirs ont été recouverts d'un film alimentaire préalablement percé pour faciliter les échanges gazeux. L'ensemble des récipients d'essais ont été placés dans une pièce thermostatée à 20°C (± 2°C). Un cycle jour/nuit (16h/8h) a été appliqué. L'intensité lumineuse du cycle jour était de 400-800 lux à la surface des récipients.

Les vers ont été nourris une fois par semaine avec de la bouse de vache préalablement séchée et broyée. Pour chaque nourrissage, une quantité de 35 à 40 mg de bouse séchée a été déposée en surface, puis mélangée à l'aide d'une spatule dans les 2 premiers centimètres du sol. Un arrosage hebdomadaire a été réalisé à l'eau potable préalablement déchlorée, à raison de 300 ml d'eau par récipient d'essai.

Figure 41 : illustrations de l'ajout des vers à J0 et des récipients d'essai sur les étagères d'exposition

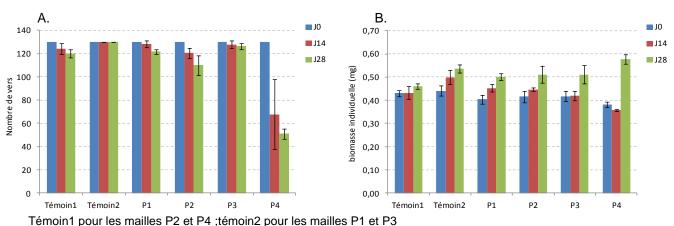
2.6 Collecte, purge et conservation des organismes exposés

A l'issue des phases d'exposition (après 14j et 28j), trois réplicats pris au hasard ont été récupérés. Les vers de ces réplicats ont été collectés, puis dénombrés. Ils ont ensuite été rincés à l'eau du robinet afin d'éliminer le sol présent en surface puis placés pendant 24 heures sur un papier absorbant préalablement humidifié afin qu'ils purgent leurs intestins (Figure 42). A l'issue de cette phase de purge, les vers ont été longuement rincés une dernière fois, l'excédent d'eau a été éliminé, puis la biomasse fraîche des vers a été déterminée.

Figure 42 : illustration de la récupération et de la purge des vers

Les vers ont finalement été déposés dans des sacs hermétiques, puis congelés à -20°C pendant moins d'un mois. Ils ont été envoyés sous 24h au laboratoire d'analyse dans de la carboglace.

2.7 Analyses


La détermination du taux de matière grasse des vers ainsi que les analyses chimiques visant à mesurer les concentrations en PCBi, PCB-dl et PCDD/F dans la chair des vers, dans le sol artificiel et dans la bouse de vache ayant servie au nourrissage au cours de l'essai ont été confiées à EUROFINS Expertises environnementales.

Concernant les vers, au total 42 séries d'analyses ont été réalisées permettant de rechercher pour chacune 35 substances (PCB, PCDD/F) dans la chair des organismes à T=0, T=14 et T=28 jours d'exposition aux sols des différentes mailles étudiées.

3. Résultats

Les chapitres suivants présentent les résultats obtenus concernant le suivi de l'expérience, les concentrations en POPs accumulées dans la chair des vers, ainsi que les BCF calculés pour chacun des congénères recherchés.

3.1 Mortalité et suivi de la biomasse

Terrioriti podr les mailles i 2 et i 4 ,terrioritz podr les mailles i 1 et i 3

Figure 43 : (A.) Survie des vers (moyenne des 3 réplicats ± ec-type) et (B.) biomasse individuelle (moyenne des 3 réplicats ± ec-type) après 14 et 28 jours d'exposition au sol de référence (ISO) et aux 4 mailles testées

Après 14 jours d'exposition, on ne note pas de mortalité significative (Δ/J0 <10%) que ce soit dans les récipients témoins et dans ceux correspondant aux mailles P1, P2 et P3 (Figure 43 A.). En revanche, une mortalité proche de 50% a été observée chez les vers exposés à la maille P4. Après 28 jours, une légère augmentation de la mortalité des vers, de l'ordre 15%, a été observée dans les récipients correspondant à la maille P2. L'augmentation de la mortalité observée après 14 jours dans la maille P4 s'est également confirmée après 28 jours avec 60% d'individus non retrouvés à cette date.

Concernant le suivi de la biomasse, quel que soit le sol testé, on note une augmentation de la biomasse individuelle des vers exposés après 28 jours de l'ordre de 20% par rapport à J0 (Figure 43 B.). D'autre part, les vers exposés à la maille P4 présentent une biomasse individuelle plus importante en fin d'essai en comparaison avec la biomasse individuelle mesurée chez les vers des autres mailles. Cette spécificité peut s'expliquer par la forte mortalité observée pour cette condition, laissant pour les organismes survivants une quantité de nourriture relativement plus importante en comparaison avec les autres conditions.

3.2 Concentration en POPs dans la chair des vers

La Figure 44 présente les teneurs en PCBi, PCB-dl, PCDD et PCDF mesurées dans la chair des vers exposés pendant 14 jours et 28 jours aux 4 mailles étudiées. Les concentrations pour chacun des congénères sont également disponibles sous forme de tableau présenté en Annexe 13.

PCBi et PCB-dl

Concernant les PCBi et PCB-dl, il est tout d'abord à noter la détection et la quantification de chacun des congénères dans la chair des vers provenant du sol artificiel de référence. Cependant, les concentrations mesurées sont restées systématiquement inférieures à celles mesurées chez les vers exposés aux sols des mailles P1, P2, P3 et P4 (exception faite des PCB28 et PCB52). D'autre part on n'observe pas d'évolution

significative des concentrations au cours du temps. La quantification de PCB dans les vers du groupe témoin peut être expliquée par la présence de PCB dans la bouse de vache ayant servi de nourriture pour l'essai. Les teneurs mesurées dans la bouse de vache et le sol artificiel sont présentées en Annexe 14.


Concernant les vers exposés aux sols des mailles étudiées, l'ensemble des PCBi recherché a été détecté et quantifié, à l'exception du PCB28 chez les vers exposés aux sols des mailles P1 et P3. Ce constat est en accord avec l'absence de détection de ce PCB dans ces sols. On note également une accumulation relative du PCB52 dont les teneurs ne dépassent pas celles mesurées dans les vers issus du sol de référence. Après 28 jours d'exposition, les concentrations en PCB28 et PCB52 se situent entre 66 et 76,6 pg/g de biomasse fraîche quelle que soit la condition considérée.

En revanche, pour les PCB101, 138, 153 et 180, on observe une augmentation significative des concentrations dans les vers exposés aux différentes mailles étudiées en comparaison avec les vers provenant du sol de référence et des teneurs mesurées dans le pool de vers à T=0 (Annexe 15).

Les concentrations en PCB les plus importantes ont été mesurées pour le congénère 153 dans les vers exposés à la maille P2 (17 933 [±723] pg/g de biomasse fraîche après 14 jours et 16 900 [±2 771] pg/g de biomasse fraîche après 28 jours). A titre de comparaison les concentrations mesurées dans la chair des vers exposés au sol de la maille P1 étaient de 2110 pg/g de biomasse fraîche après 14 jours d'exposition et de 2210 pg/g de biomasse fraîche après 28 jours d'exposition. D'autre part, pour les PCB101, 138, 153 et 180, les concentrations mesurées sont systématiquement plus importantes chez les vers exposés aux sols des mailles P2 et P4 en comparaison aux deux autres mailles. Les vers exposés au sol de la maille P1 présentent, au contraire, les teneurs en PCBi les plus faibles en comparaison aux vers issus des sols des autres mailles. Ce constat est à mettre en regard avec les teneurs en PCBi présentes dans chacun des sols.

Un constat similaire peut être fait pour la famille des PCB-dl. Ainsi, on observe une augmentation des teneurs des PCB de cette famille en comparaison avec les teneurs mesurées dans les vers témoins et celles mesurées à T=0. Les vers exposés aux sols des mailles P2, P3 et P4 présentent systématiquement des concentrations plus importantes en comparaison avec les vers exposés à la maille P1. Une fois de plus, ceci est à mettre directement en relation avec les différences de concentrations mesurées dans les sols (chapitre III).

Enfin, il n'est pas mis en évidence d'évolution significative des teneurs mesurées entre 14 jours et 28 jours, indiquant que l'état stationnaire a été atteint pour les congénères qui se sont accumulés dans la chair des vers.

Témoin1 pour les mailles P2 et P4 ; témoin2 pour les mailles P1 et P3

Figure 44 : Concentrations (moyenne des 3 réplicats) en PCBi, PCB-dl, PCDD et PCDF dans les vers après 14 jours et 28 jours d'exposition aux sols des 4 mailles.

PCDD et PCDF

De la même façon que pour les PCBi et PCB-dl, certains composés PCDD/F ont été mesurés dans la bouse de vache ayant servi de nourriture (Annexe 14). Cependant, ceci ne concerne ici que 3 composés (1,2,3,4,6,7,8-HpCDD, OCDD et 1,2,3,4,6,7,8-HpCDF) parmi les 17 recherchés. Deux de ces composés ont également été détectés et quantifiés dans la chair des vers témoins (1,2,3,4,6,7,8-HpCDD, OCDD), bien que les concentrations restent très faibles. Après 14 jours d'exposition, la concentration moyenne mesurée dans la chair des vers témoins est de 0,14 [±0,001] pg/g (biomasse fraîche) pour la 1,2,3,4,6,7,8-HpCDD et de 1,71 [±0,05] pg/g (biomasse fraîche) pour la OCDD. Après 28 jours, les teneurs mesurées sont de 0,14 [±0,005] pg/g (biomasse fraîche) et 2,42 [±0,54] pg/g (biomasse fraîche). Pour le reste des composés PCDD/F recherchés, aucun n'a été détecté dans la chair des vers témoins.

Quelle que soit la famille considérée (PCDD ou PCDF), les teneurs mesurées pour chacun des congénères après 14 jours d'exposition dans les sols des 4 mailles sont, pour la grande majorité, supérieures à celles mesurées dans la chair des vers exposés au sol de référence (sol artificiel) et à celles mesurées dans la chair des vers à T=0. De la même façon que pour les PCB, les vers exposés au sol de la maille P1 présentent des teneurs en PCDD et PCDF inférieures à celles mesurées dans la chair des vers exposés aux sols des mailles P2, P3 et P4. Dans certains cas, les teneurs mesurées ne se distinguent pas de celles mesurées dans la chair des vers témoin. C'est le cas des 2,3,7,8-TCDD; 1,2,3,4,7,8-HxCDD; 1,2,3,7,8,9-HxCDD et OCDD. En revanche, on note les teneurs en PCDD et PCDF les plus importantes mesurée dans la chair des vers exposés aux sols des mailles P3 et P4. Concernant les PCDF, il est important de constater que le congénère 1,2,3,7,8,9-HxCDF n'a jamais été détecté dans la chair des vers quel que soit le sol testé. Enfin, de la même façon que pour les PCB, nous n'avons pas mis en évidence d'évolution significative des teneurs mesurées entre 14 jours et 28jours, indiquant que l'état stationnaire a été atteint pour les congénères qui se sont accumulés dans la chair des vers.

3.3 Facteurs de bioaccumulation

Les valeurs de BCF présentées ici correspondent, pour chaque congénère, au rapport de la concentration dans les vers sur celle dans le sol, dès lors que la substance est quantifiée dans le ver <u>et</u> dans le sol. Le BCF n'est pas calculé si la substance n'est pas quantifiée dans le ver et/ou le sol. Celui-ci pourra être estimé si la substance est détectée dans au moins une des deux matrices. Dans ce cas, la LQ/2 (vers ou sol) est utilisée pour l'estimation.

D'autre part, il est à noter que les BCF présentés ici ont été calculés sur la base des concentrations mesurées dans les vers après 14 jours d'exposition. Comme discuté précédemment, les concentrations mesurées dans la chair des vers n'ont pas évolué de façon significative entre 14 et 28 jours, l'état stationnaire ayant été atteint. Une légère diminution des teneurs a parfois été observée à 28 jours, pouvant être expliquée en partie par la mortalité observée sur certaines mailles pour les vers ayant accumulé le plus et/ou une élimination/métabolisation des composés accumulés. Un comparatif des BCF calculés à 14 et 28 jours est cependant présenté en Annexe 16. D'autre part, le détail des BCF calculés ou estimés pour chacun des réplicats est présenté sous forme de tableau dans l'Annexe 17.

Enfin il est important de rappeler que le calcul du BCF proposé ici s'est fait sur la base des **teneurs en substances rapportées sur la biomasse fraîche des vers**, ceci afin de respecter le paramétrage du logiciel TERRASYS. Cependant, compte tenu des propriétés fortement lipophiles des PCB et PCDD/F, il semble pertinent de calculer le BCF en considérant les teneurs en substances rapportées au taux de matière sèche ou au taux de matière grasse des vers. Ainsi, en complément des BCF calculés sur la base des teneurs en biomasse fraîche de vers, les Annexes 18 et 19 présentent ces mêmes BCF exprimés en considérant les teneurs en substances rapportées au taux de matière grasse et au taux de matière sèche mesuré dans chacun des groupes de vers, respectivement.

PCBi et PCB-dl

La Figure 45 présente les BCF pour chacun des congénères (PCBi et PCB-dl) et pour chacune des mailles étudiées. A l'exception des congénères PCB28, PCB52, PCB81, PCB114 et PCB169 pour la maille P1 (substance non détectée dans le sol), des BCF ont pu être calculés pour chacune des substances recherchées.

Les BCF calculés pour les PCB des deux familles (PCBi et PCB-dl) sont variables en fonction de la maille considérée. Généralement, on note un BCF calculé plus important pour la maille P1 en comparaison

notamment avec la maille P4. C'est notamment le cas pour les PCB77, PCB101, PCB105 et PCB118. Ceci peut être expliqué par les teneurs plus importantes en PCB retrouvées dans la maille P4 et un phénomène de saturation dans la chair des vers exposés à cette maille. Le BCF moyen calculé (moyenne des BFC obtenus sur les différentes mailles) s'échelonne de 0,49 [±0,27] (PCB 169) à 1,79 [±1,61] (PCB 118). Parmi les congénères pour lesquels les BCF calculés sont les plus faibles, on retrouve les PCB81, PCB126 et PCB169. Ces congénères font partie des PCB coplanaires non ortho-substitués. Des conclusions similaires ont été formulées chez les végétaux.

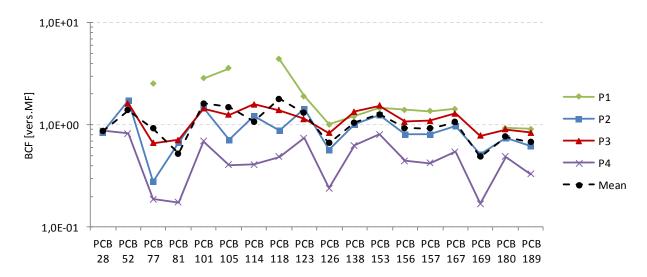


Figure 45 : BCF (moyenne sur la parcelle) calculés chez les vers exposés aux 4 mailles, pour chacun des PCB (PCBi et PCB-dl). La moyenne des BCF obtenue sur chacune des parcelles est représentée par les points noirs.

PCDD et PCDF

Les Figure 46 et Figure 47 présentent les BCF calculés pour les PCCD et les PCDF. Concernant la maille P1, seuls les BCF des congénères HpCDD et OCDD ont pu être calculés, les autres congénères n'ayant pas été détectés ni dans les sols, ni dans la chair des vers. Sur l'ensemble des mailles, le BCF moyen calculé s'échelonne de 0,028 [±0,019] (OCDD) à 0,21 [±0,14] (2,3,7,8-TCDD). D'une façon générale, on note une diminution du BCF moyen avec l'augmentation du nombre de chlore. Cette tendance a également été observée pour les végétaux.

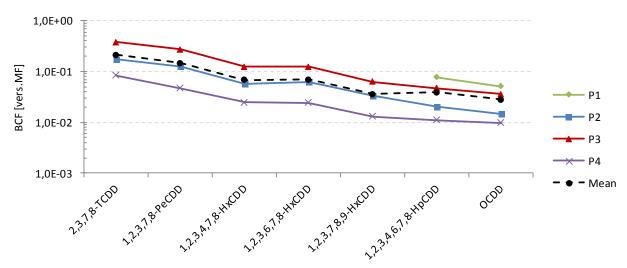


Figure 46 : BCF (moyenne sur la parcelle) calculés chez les vers exposés aux 4 mailles, pour chacune des dioxines. La moyenne des BCF obtenue sur chacune des parcelles est représentée par les points noirs.

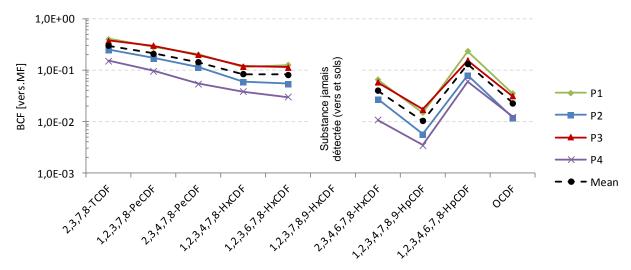


Figure 47 : BCF (moyenne sur la parcelle) calculés chez les vers exposés aux 4 mailles, pour chacune des furannes. La moyenne des BCF obtenue sur chacune des parcelles est représentée par les points noirs.

Concernant les PCDF, les BCF calculés sont du même ordre de grandeur que ceux calculés pour les PCDD. Ils s'échelonnent de 0,01 [±0,006] (1,2,3,4,7,8,9-HpCDF) à 0,29 [±0,11] (2,3,7,8-TCDF). On observe également une diminution du BCF moyen en fonction du nombre de chlore. On note cependant une différence d'un facteur 10 entre le BCF moyen calculé pour le 1,2,3,4,7,8,9-HpCDF (0,01) et le 1,2,3,4,6,7,8-HpCDF (0,132). Ce constat est similaire aux observations faites sur les végétaux pour ces congénères.

Bilan concernant l'accumulation des POPs chez les invertébrés 3.4 du sol

A l'issue de ces travaux, il résulte :

- un transfert de la majorité des PCB et PCDD/F dans la chair des vers exposés aux sols des quatre mailles étudiées :
- que ce transfert est fonction des teneurs retrouvées dans les sols testés (accumulation moins importante dans les vers exposés au sol de la maille P1 en comparaison avec ceux exposés au sol de la maille P4);
- que les BCF ont pu être calculés pour les 35 substances recherchées ;
- que les BCF calculés sur la base des concentrations rapportées à la biomasse fraîche sont plus important pour les PCB que pour les PCDD/F d'un facteur 10;
- que ces BCF sont relativement faibles, notamment en ce qui concerne les PCDD/F (BCF<1)
- que contrairement aux végétaux, il n'est pas observé de relation ou de tendance des valeurs de BCF en fonction du nombre de chlore pour les PCB;
- que le BCF calculé pour les PCDD/F tend, quant à lui, à diminuer en fonction du nombre de chlore:
- que de la même façon que pour les végétaux, on retrouve une différence marquée entre le BCF calculé pour le 1,2,3,4,7,8,9-HpCDF et le 1,2,3,4,6,7,8,HpCDF.

Le Tableau 22 résume les BCF moyen calculés (ou estimés) pour chacune des substances et sur chacune des mailles.

Tableau 22 : récapitulatif des BCF [vers.MF] calculés et estimés à l'aide des résultats expérimentaux obtenus pour chacune des mailles

Substance	P1	P2	P3	P4	Moyenne	Ecart-type
PCB 28	NE	0,69	NE	0,87	0,78	0,13
PCB 52	6,28	1,72	1,62	0,82	2,61	2,48
PCB 77	2,54	0,28	0,67	0,19	0,92	1,10
PCB 81	2,42	0,68	0,71	0,17	1,00	0,98
PCB 101	2,86	1,47	1,45	0,69	1,62	0,90
PCB 105	3,59	0,72	1,25	0,40	1,49	1,44
PCB 114	16,66	1,21	1,59	0,41	4,97	7,81
PCB 118	4,40	0,88	1,39	0,49	1,79	1,78
PCB 123	1,91	1,45	1,15	0,74	1,31	0,49
PCB 126	1,01	0,57	0,83	0,24	0,66	0,34
PCB 138	1,21	1,01	1,35	0,63	1,05	0,31
PCB 153	1,46	1,26	1,55	0,80	1,27	0,33
PCB 156	1,41	0,81	1,08	0,44	0,93	0,41
PCB 157	1,36	0,82	1,10	0,42	0,92	0,40
PCB 167	1,43	0,97	1,29	0,54	1,06	0,39
PCB 169	1,01	0,51	0,78	0,17	0,62	0,36
PCB 180	0,93	0,74	0,90	0,48	0,77	0,20
PCB 189	0,91	0,62	0,84	0,33	0,67	0,26
2,3,7,8-TCDD	0,21	0,18	0,38	0,08	0,21	0,12
1,2,3,7,8-PeCDD	0,40	0,12	0,27	0,05	0,21	0,16
1,2,3,4,7,8-HxCDD	0,11	0,06	0,12	0,02	0,08	0,05
1,2,3,6,7,8-HxCDD	0,29	0,06	0,12	0,02	0,13	0,12
1,2,3,7,8,9-HxCDD	NE	0,03	0,06	0,01	0,04	0,02
1,2,3,4,6,7,8-HpCDD	0,08	0,02	0,05	0,01	0,04	0,03
OCDD	0,05	0,01	0,04	0,01	0,03	0,02
2,3,7,8-TCDF	0,41	0,25	0,37	0,15	0,29	0,12
1,2,3,7,8-PeCDF	0,28	0,17	0,29	0,10	0,21	0,09
2,3,4,7,8-PeCDF	0,20	0,12	0,20	0,05	0,14	0,07
1,2,3,4,7,8-HxCDF	0,12	0,06	0,12	0,04	0,08	0,04
1,2,3,6,7,8-HxCDF	0,13	0,05	0,11	0,03	0,08	0,05
1,2,3,7,8,9-HxCDF	NE	NE	NE	NE	NE	-
2,3,4,6,7,8-HxCDF	0,06	0,03	0,06	0,01	0,04	0,03
1,2,3,4,7,8,9-HpCDF	0,02	0,01	0,02	0,00	0,01	0,01
1,2,3,4,6,7,8-HpCDF	0,23	0,08	0,16	0,06	0,13	0,08
OCDF	0,04	0,01	0,03	0,01	0,02	0,01

^{*} valeur moyenne des trois réplicats expérimentaux ; NE : non calculé et non estimé (substance non détectée dans les sols et la chair des vers) ; en rouge : valeur estimée sur la base des limites en considérant la valeur de LOQ/2

VII Conclusions et perspectives de travaux

Proposition des facteurs de transfert pour les végétaux et les invertébrés

Les facteurs de bioconcentration obtenus pour les végétaux et les invertébrés à l'issue des expérimentations décrites dans les chapitres précédents sont synthétisés dans le Tableau 23.

Pour chaque matrice, ils correspondent à la moyenne des BCF **mesurés ou estimés**, sur les 4 mailles (tous réplicats confondus). Outre les valeurs moyennes proposées, il est recommandé de considérer la gamme BCFmin-BCFmax en raison de la variabilité des valeurs obtenues sur les 4 mailles testées.

Il est également rappelé pour les végétaux que ces valeurs sont des **facteurs de transfert globaux**, considérant à la fois l'accumulation par transfert racinaire mais aussi par échange gazeux et dépôts directs pour les végétaux prélevés sur le site atelier. Concernant les invertébrés, les BCF ont été calculés en accord avec les besoins du logiciel TERRASYS en rapportant les concentrations en POPs sur la biomasse fraîche totale des vers.

Ces valeurs BCF ont été obtenues dans le cadre d'une contamination multiple des sols, à la fois par des PCB et des PCDD/F; les phénomènes de compétition entre les substances ne peuvent être exclus.

Les **gammes de concentration dans les sols** pour lesquelles les BCF ont été obtenus sont précisées – en dehors de ces gammes, les valeurs de BCF ne peuvent être extrapolées sans études expérimentales complémentaires.

La comparaison des BCF entre les matrices végétales et animales testées permet de mettre en évidence les tendances suivantes :

Similitude entre les matrices biologiques testées :

- un transfert des PCB et PCDD/F dans les organismes vivants au contact avec les sols (vers de compost mais aussi tubercules et légumes-racines) permettant le calcul de plus de 30 valeurs de BCF;
- une diminution des valeurs BCF en fonction du degré de chloration pour les PCDD/F à la fois pour les matrices végétales et animales;
- un transfert plus faible dans les matrices pour les PCB coplanaires non ortho-susbtitués par rapport aux congénères de même degré de chloration ;

Divergence entre les matrices biologiques testées :

- une diminution des valeurs BCF en fonction du degré de chloration pour les PCB pour les végétaux aériens non observée chez les vers de compost, ni dans les pommes de terre notamment ;
- une gamme restreinte de valeurs de BCFmoyen pour les PCB et les PCDD/F pour les vers de compost (< 1 ordre de grandeur) alors que la gamme de valeurs chez les végétaux peut atteindre 2 ordres de grandeur entre le BCFmin et BCFmax pour une même espèce végétale cultivée sur les 4 mailles.

Tableau 23: Récapitulation des BCF proposés pour les végétaux et les invertébrés

BCFmoyen avec considération de valeurs LQ/2	Gamme de concentration dans les sols	GRA in situ 2014	GRA labo 2015	PDT	CA entier	CA épluché	COU	НА	LAI2014	Vers de compost
uc valcuis Lay L	(ng/kg MS)	(n=4)	(n=12)	(n=12)	(n=11)	(n=12)	(n=11)	(n=8)	(n=12)	(n=12)
PCB 28	92 - 170	2,7E+00	4,0E+00	2,7E-01	8,6E-01	5,0E-01	1,4E+01	8,4E-01	2,4E+00	7,8E-01
PCB 52	74 - 338	1,2E+00	6,8E+00	1,5E-01	5,9E-01	7,0E-01	1,5E+01	1,0E+00	1,3E+01	2,6E+00
PCB 77	10 - 253	1,5E+00	8,2E-01	2,9E-02	1,4E-01	2,2E-01	3,8E-01	1,4E-02	3,7E-01	9,2E-01
PCB 81	3 - 35	6,3E-01	8,4E-02	3,7E-02	1,0E-01	1,7E-02	1,4E-01	3,7E-02	9,5E-02	1,0E+00
PCB 101	200 - 2369	7,3E-01	3,7E+00	7,5E-02	6,0E-01	2,3E-01	3,9E+00	7,4E-02	1,9E+00	1,6E+00
PCB 105	62 - 924	6,4E-01	1,9E+00	6,2E-02	1,2E-01	1,0E-01	1,7E+00	1,7E-01	1,0E+00	1,5E+00
PCB 114	1 - 44	2,0E+00	4,2E+00	5,0E-02	1,2E-01	3,8E-02	2,6E+00	9,0E-02	1,9E+00	5,0E+00
PCB 118	132 - 2296	9,0E-01	2,6E+00	6,6E-02	1,4E-01	8,9E-02	1,8E+00	2,9E-01	1,5E+00	1,8E+00
PCB 123	3 - 72	3,3E-01	7,4E-01	1,1E-01	1,6E-01	6,6E-02	1,8E+00	7,5E-02	1,1E+00	1,3E+00
PCB 126	11 - 254	3,5E-01	6,3E-02	5,6E-02	7,7E-02	1,0E-02	8,0E-02	1,1E-02	1,4E-02	6,6E-01
PCB 138	1072 - 12126	4,5E-01	2,9E-01	9,4E-02	1,8E-01	2,8E-02	1,9E+00	2,4E-02	1,8E-01	1,0E+00
PCB 153	1327 - 14256	5,5E-01	3,2E-01	1,1E-01	2,1E-01	4,9E-02	2,3E+00	2,1E-02	1,9E-01	1,3E+00
PCB 156	73 - 936	2,5E-01	1,7E-01	5,8E-02	1,1E-01	2,0E-02	1,4E+00	5,4E-03	1,4E-01	9,3E-01
PCB 157	15 - 215	2,4E-01	1,3E-01	7,1E-02	1,1E-01	1,7E-02	1,3E+00	4,5E-03	1,8E-01	9,2E-01
PCB 167	50 - 669	2,3E-01	1,4E-01	7,3E-02	1,2E-01	1,8E-02	1,2E+00	5,9E-03	1,1E-01	1,1E+00
PCB 169	13 - 51	1,7E-01	3,9E-02	3,8E-02	2,8E-01	9,1E-02	2,3E-01	4,9E-02	2,2E-01	6,2E-01
PCB 180	751 - 9540	4,3E-01	7,5E-02	5,7E-02	1,5E-01	2,8E-02	1,2E+00	4,0E-02	1,3E-01	7,7E-01
PCB 189	15 - 228	1,3E-01	1,9E-02	4,8E-02	7,5E-02	9,7E-03	4,8E-01	8,2E-03	3,1E-02	6,7E-01
2,3,7,8-TCDD	0 - 4	1,8E-02	1,6E-02	1,5E-02	2,5E-02	4,0E-03	1,1E-01	1,8E-02	6,5E-02	2,1E-01
2,3,7,8-TCDF	3 - 258	2,7E-02	9,5E-02	3,6E-02	9,4E-02	3,3E-02	2,7E-01	2,7E-03	9,2E-03	2,9E-01
1,2,3,7,8-PeCDD	1 - 16	2,8E-02	1,2E-02	1,8E-02	4,9E-02	4,9E-03	3,5E-01	6,4E-03	2,6E-02	2,1E-01
1,2,3,7,8-PeCDF	2 - 234	3,3E-02	5,4E-02	2,7E-02	6,7E-02	2,1E-02	2,7E-01	9,8E-04	2,1E-02	2,1E-01
2,3,4,7,8-PeCDF	2 - 232	3,2E-02	3,1E-02	2,5E-02	5,6E-02	6,6E-03	2,4E-01	7,7E-03	2,4E-02	1,4E-01
1,2,3,4,7,8-HxCDD	2 - 21	7,5E-03	1,0E-02	1,5E-02	3,9E-02	4,8E-03	3,4E-01	7,9E-03	2,7E-02	7,3E-02
1,2,3,4,7,8-HxCDF	3 - 384	6,0E-03	2,0E-02	1,8E-02	3,7E-02	4,9E-03	2,4E-01	5,3E-03	3,5E-03	8,3E-02
1,2,3,6,7,8-HxCDD	4 - 46	2,1E-02	5,1E-03	1,6E-02	3,8E-02	4,8E-03	2,1E-01	4,6E-03	1,9E-02	1,3E-01
1,2,3,6,7,8-HxCDF	1 - 217	6,8E-03	2,3E-02	1,4E-02	3,9E-02	5,6E-03	1,3E-01	1,1E-02	1,2E-03	8,1E-02
1,2,3,7,8,9-HxCDD	2 - 28	6,7E-03	8,6E-03	7,4E-03	3,3E-02	3,3E-03	2,1E-02	7,3E-03	2,7E-02	3,6E-02
2,3,4,6,7,8-HxCDF	1 - 273	5,7E-03	1,1E-02	1,1E-02	3,2E-02	4,4E-03	9,0E-02	9,8E-03	9,7E-04	4,0E-02
1,2,3,4,6,7,8-HpCDD	4 - 382	2,8E-02	1,5E-02	8,0E-03	2,0E-02	3,5E-03	5,6E-02	5,1E-03	2,2E-03	3,9E-02
1,2,3,4,6,7,8-HpCDF	6 - 1204	8,1E-03	4,0E-02	3,7E-02	8,2E-02	1,1E-02	2,3E-01	8,0E-03	5,0E-03	1,3E-01
1,2,3,4,7,8,9-HpCDF	2 - 275	1,0E-02	1,9E-03	1,5E-03	5,2E-03	9,6E-04	9,7E-03	1,7E-03	1,6E-04	1,0E-02
OCDD	15 - 802	6,3E-03	5,9E-03	4,1E-03	1,4E-02	2,8E-03	1,4E-02	9,7E-03	2,0E-02	2,8E-02
OCDF	9 - 1336	4,2E-03	5,9E-03	3,9E-03	1,3E-02	2,3E-03	1,1E-02	2,9E-03	5,1E-04	2,3E-02

 $\underline{l\acute{e}gende} \ \ n: nombre \ d'\acute{e}chantillons \ v\acute{e}g\acute{e}taux \ exploitables \ par \ esp\`{e}ce \ test\'{e}e \ (\Sigma mailles \ x \ r\acute{e}plicats)$

en gras : BCFmoyen calculé sur la totalité des échantillons

en normal: moyenne des valeurs BCF sur un nombre d'échantillons <n

rapport BCFmax/BCFmin est inférieur à 10 (tous sols et réplicats confondus)
rapport BCFmax/BCFmin est compris entre 10 et 100 (tous sols et réplicats confondus)
rapport BCFmax/BCFmin est compris entre 100 et 200 (tous sols et réplicats confondus)
rapport BCFmax/BCFmin est compris entre 200 et 300 (tous sols et réplicats confondus)

en gras : BCF estimé en considérant les limites de quantification LQ/2 pour les substances non quantifiées dans les sols ou les végétaux en italique : valeur BCF estimé jugée peu pertinente au vu des autres valeurs obtenues expérimentalement

2. Poursuite des travaux

Les travaux expérimentaux menés dans le cadre de ce projet mettent en évidence la nécessité de poursuivre l'acquisition de connaissances en vue :

- de différencier la contribution de l'absorption gazeuse par rapport au transfert racinaire pour d'autres légumes-feuilles cultivés classiquement dans les jardins potagers français (blette, épinard, mâche, poireau, ciboulette et autres herbes aromatiques,...). Cette différenciation permettrait de disposer de valeurs de BCFsol-plante et BCFair-plante, pouvant être exploitées dans les outils de modélisation multi-compartiment utilisés dans l'évaluation des risques sanitaires pour l'Homme. Des mesures de POPs dans l'air ambiant au droit des mailles sélectionnées pourraient être envisagées à l'aide d'appareils comme les chambres à flux pour compléter ce qui a été observé en enceinte de culture ;
- d'évaluer le rôle du lavage, de l'épluchage des végétaux et de leur mode de cuisson dans l'exposition du consommateur final ;
- d'évaluer la bioaccessibilité et la biodisponibilité des POPs dans les sols et les végétaux à l'aide de protocoles in vitro robustes, afin d'affiner les expositions lors de l'évaluation des risques sanitaires;
- d'appréhender les mécanismes de transfert et de métabolisation des POPs dans les plantes et les invertébrés – seules les substances mères ont été suivies dans la présente étude;
- de confirmer les tendances observées concernant la variation des valeurs de BCF en fonction du degré de chloration et de leur configuration pour les PCB et PCDD/F, à travers l'étude du transfert de molécules choisies lors d'exposition mono-substances;
- de préconiser l'analyse des polluants organiques dans la fraction granulométrique la plus fine (<250 µm) lorsque des évaluations de risque sanitaires pour l'Homme sont programmées.

3. Perspectives

A l'issue de ce projet, d'autres perspectives de travaux émergent :

- évaluer le rôle des rotations de cultures dans un jardin potager sur la mobilisation des POPs dans le sol et leur potentiel transfert dans les végétaux (évolution du transfert de POPs dans des espèces végétales cultivées simultanément ou successivement à des cucurbitacées);
- évaluer la contribution des micro-organismes dans l'absorption racinaire des POPs par les végétaux, et également le rôle des exsudats racinaires dans la captation des POPs par les légumes appartenant à la famille des cucurbitacées (courgette, courge, concombre,...).

VIII Références

AFSSA, 2009, Avis de l'Agence française de sécurité sanitaire des aliments relatif à la contamination de sols en dioxines et PCB de type dioxine et à l'utilisation possible de ces sols en lien avec d'éventuelles répercussions sur la qualité sanitaire de certains produits agricoles, saisine n°2009-SA-0087 https://www.anses.fr/fr/system/files/RCCP2009sa0087.pdf

Budinsky R.A., Rowlands J.C., Casteel S., Fent G., Cushing C.A., Newsted J., Giesy J.P., Ruby M.V, Aylward L.L. (2008), A pilot study of oral bioavailability of dioxins and furans from contaminated soils: Impact of differential hepatic enzyme activity and species differences. Chemosphere, 70, 1774-1786

Edwards C. (1975), Factors that affect the persistence of pesticides in plants and soil. Pure Appl Chem, 42(12), 39-56.

Finley B. Fehling K., Warmerdam J., E.J. Morinello (2009), Oral bioavailability of polychlorinated dibenzo-p-dioxins/dibenzofurans in industriel soils. Human and Ecological Risk Assessment, 15: 1146-1167

Hori T., Nakagawa R., Tobiishi K., Lida T., Tsutsumi T., Sasaki K., Toyoda M. (2001), Effects of cooking on concentrations of PCDD and related compounds in green leafy vegetable Komatsuna. Shokuhin Eiseigaku Zasshi, 42 (5), 339-342

InVS/INERIS (2012), Quantités de terre et poussières ingérées par un enfant de moins de 6 ans et bioaccessibilité des polluants : état des connaissances et propositions (guide pratique)

Matthieu Delannoy (2014). Évaluation du risque sanitaire lié à l'ingestion involontaire de sol - Étude des propriétés du sol sur la biodisponibilité relative des PCB. Thèse soutenue le 3 décembre 2014, Université de Lorraine, ENSAIA – UR AFPA

Pu X., Lee L.S., Galinsky R.E., Carlson G.P. (2006) Bioavailability of 2,3',4,4',5-pentachlorobiphenyl (PCB 118) and 2,2',5,5'-tetrachlorobiphenyl (PC52) from soils using a rat model and a physiologically based extraction test', Toxicology .217 (1), 14 - 21.

Safe, S. (1992). Toxicology, Structure-Function Relationship, and Human and Environmental Health Impacts of Polychlorinated Biphenyls: Progress and Problems. Environmental Health Perspectives, 100: 259–68.

URS, rapport final d'Interprétation de l'état des milieux et étude hydrogéologique - Ancien site Bourgier-Vitale – Saint Cyprien (42), 10 octobre 2013, LYO-RAP-13-04049B

Wittsiepe J. Erlenkâmper B., Welge P., Hack A., Wilhelm M. (2007) Bioavailability of PCDD/F from contaminated soil in young Goettingen minipigs. Chemosphere 67, 5355-5364.

Zhao X., Zheng M., Zhang B., Zhang Q., Liu W. (2006) Evidence for the transfer of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans from soil into biota. Science of the Total Environment 368, 744–752

Bobovnikovaa Ts.I., Alekseevaa L.B., Dibtsevaa A.V., Chernika G.V., Orlinsky D.B., Priputinab I.V., Pleskachevskayac G.A. (2000) The influence of a capacitor plant in Serpukhov on vegetable contamination by polychlorinated biphenyls. The Science of the Total Environment 246, 51-60 -

IX Annexes

Annexe	Libellé
1	AFSSA – SAISINE N°2009-SA-0087
2	DEGRE DE CHLORATION DES POPS
3	FACTEURS EQUIVALENTS TOXIQUES (OMS, 2005)
4	CONCENTRATIONS DES POLLUANTS DANS LES SOLS ET CARACTERISTIQUES AGRONOMIQUES
5	COMPOSITION DE LA SOLUTION HYDROPONIQUE (CULTURE DES LAITUES)
6	PLANCHE DE DEVELOPPEMENT DES VEGETAUX POTAGERS ET DES GRAMINEES (2014-2015)
7	CONCENTRATIONS DES POPS DANS L'AIR AMBIANT DE L'ENCEINTE DE CUIMATIQUE (CAMPAGNES 2015 ET 2016)
8	CONCENTRATIONS DES POPS DANS LES GRAMINEES ET VALEURS DE BCF
9	CONCENTRATIONS DES POPS DANS LES VEGETAUX POTAGERS ET VALEURS DE BCF
10	PLANCHE DES CONCENTRATIONS EXPRIMEES EN MATIERE FRAICHE DANS LES VEGETAUX SELON LES MAILLES TESTEES
11	TABLEAU RECAPITULATIF DES GAMMES DE VALEURS BCF POUR LES VEGETAUX
12	PLANCHE DES VALEURS BCF POUR LES VEGETAUX SELON LES MAILLES TESTEES
13	CONCENTRATIONS DES POPS DANS LES VERS DE COMPOST
14	CONCENTRATIONS DES POPS DANS LE SOL OCDE ET LA BOUSE DE VACHE
15	PLANCHE DES VALEURS BCF POUR VERS DE COMPOST SELON LE TEMPS D'EXPOSITION ET LES MAILLES TESTEES
16	VALEURS BCF CALCULEES POUR LES VERS DE COMPOST POUR CHACUN DES CONGENERES SELON LES MAILLES TESTEES
17	VALEURS BCF CALCULEES ET ESTIMEES POUR LES VERS DE COMPOST AUX DEUX TEMPS D'EXPOSITION
18	VALEURS BCF CALCULEES ET ESTIMEES, EXPRIMEES EN TAUX DE MATIERE GRASSE, POUR LES VERS DE COMPOST
19	VALEURS BCF CALCULEES ET ESTIMEES, EXPRIMEES EN TAUX DE MATIERE SECHE, POUR LES VERS DE COMPOST

Annexe 1 : AFSSA – saisine n°2009-SA-07

Maisons-Alfort, le 27 juillet 2009

Avis

de l'Agence française de sécurité sanitaire des aliments relatif à la contamination de sols en dioxines et PCB de type dioxine et à l'utilisation possible de ces sols en lien avec d'éventuelles répercussions sur la qualité sanitaire de certains produits agricoles

LA DIRECTRICE GÉNÉRALE

1- RAPPEL DE LA SAISINE ET QUESTIONS POSEES

L'Agence française de sécurité sanitaire des aliments (Afssa) a été saisie le 2 avril 2009 par la Direction Générale de l'Alimentation d'une demande d'avis relative à la contamination de sols en dioxine et PCB¹ de type dioxine et à l'utilisation possible de ces sols en lien avec d'éventuelles répercussions sur la qualité sanitaire des produits agricoles.

Le 21 août 2008, un incendie survenu dans l'installation de recyclage de palettes de bois de la société Vitale Recyclage à Saint Cyprien (42) a généré l'émission de fumées pendant 3 mois environ ; des analyses réalisées dans un rayon de 5 km autour de la parcelle sinistrée, ont mis en évidence la contamination en dioxines et PCB de type dioxine (PCB-DL ou Dioxine-like) de l'air, du sol, des cultures et des ensilages, ainsi que du lait et des animaux sur pied. Par ailleurs une contamination historique de la parcelle sinistrée par les Hydrocarbures Aromatiques Polycycliques (HAP), les métaux lourds et les PCB est très vraisemblable.

Dans ce contexte des mesures de gestion incluant :

- l'interdiction de mouvements pour les lots d'animaux contaminés à des niveaux supérieurs aux teneurs maximales autorisées en dioxines et PCB-DL,
- > l'interdiction de la collecte et la commercialisation de lait issu de ces lots.
- l'interdiction d'affouragement des animaux à partir des végétaux produits dans un rayon de 5 km autour de la parcelle sinistrée,
- > la destruction des reliquats de foins et d'ensilages produits après l'incendie,
- l'enfouissement par labour des végétaux encore en place à la fin de l'hiver,

ont été prises, notamment pour la dizaine d'exploitations situées dans un rayon de 1km autour de l'installation incendiée et dans lesquelles des niveaux supérieurs aux limites réglementaires autorisées en dioxines et PCB-DL ont été observés dans le lait et la viande.

Avant d'envisager la remise à l'herbe de troupeaux de bovins sur la commune de St Cyprien, il est demandé à l'Afssa d'étudier :

- le risque de contamination de la chaîne alimentaire à partir d'activités agricoles conduites sur sols contaminés, qu'il s'agisse de pâturages ou de cultures utilisées pour l'affouragement des animaux,
- 2. l'influence des pratiques agricoles (pratiques culturales ou d'élevage) sur le risque de contamination de la chaîne alimentaire à partir du sol.

Après analyse des données bibliographiques disponibles et des résultats d'analyses issus de prélèvements effectués sur les animaux, les fourrages, le lait et les sols dans la zone sinistrée, les Comités d'Experts Spécialisés « Résidus et contaminants chimiques et physiques » et « Alimentation animale » réunis respectivement les 2 et 7 juillet 2009 émettent l'avis ci-après.

R E P U B L I Q U E F R A N Ç A I S E

27-31, avenue

du Général Leclerc 9 4 7 0 1 Maisons-Alfort cedex Tel 01 49 77 13 50 Fax 01 49 77 26 13 www.afssa.fr

¹ PCB : on désigne par le terme PCB les polychlorobiphényles qui sont des composés aromatiques chlorés appartenant à une famille de 209 composés ou congénères

2 RESULTATS DES ANALYSES EFFECTUEES DANS LA ZONE « SINISTREE »

2.1 Résultats des prélèvements de sol et de végétaux à proximité de l'incendie

Les premiers résultats d'analyses disponibles sur la zone sinistrée et communiqués à l'Afssa entre le 8 avril et le 16 juin 2009, montrent :

- des niveaux de contamination en dioxines et PCB-DL dans les sols très nettement supérieurs à ceux habituellement mesurés (bruit de fond), avec des valeurs maximales pouvant atteindre 9600 pg TEQ/g de sol sec au niveau de l'incendie (Tableau 1) et des niveaux de contamination de l'herbe et des végétaux (fourrages) différents selon la distance du prélèvement par rapport à la zone incendiée,
- et ne permettent pas d'exclure l'existence d'une pollution historique (antérieure à l'incendie) par les PCB et d'autres polluants organiques persistants.

Tableau 1 : Concentrations relevées dans les sols dans un rayon de 5 km autour de la zone incendiée (pg TEQ/g de sol sec)

Site de prélèvement	TEQ PCDD/F	TEQ PCB-DL	TEQ total
Parcelle incendiée	7000	2600	9600
Parcelle 2bis	50	30	80
Parcelle 2	8	6	14
Parcelle E1	7,3	4,3	11,6
Parcelle E3	11	3,5	14,5
Parcelle E5	6,2	0,7	6,9
Parcelle E6	4,7	5,4	10,1
Parcelle E7	1,8	0,8	2,6
Parcelle E9	2,6	1,1	3,7
Parcelle b	7	2,3	9,3
Parcelle d	6,4	1,1	7,5
Parcelle n	2,4	0,6	3,0
Parcelle Q	2,7	0,7	3,4
Parcelle V	1	0,3	1,3

Résultats communiqués par l'INERIS

2.2 Résultats des prélèvements effectués sur les animaux à proximité de l'incendie

Les quelques prélèvements de tissu adipeux et de lait effectués sur les animaux dans les exploitations situées dans un rayon de 5 km aux alentours de St Cyprien mettent en évidence :

- des niveaux de contamination en dioxines et PCB-DL dans les graisses 2 à 50 fois supérieures aux limites réglementaires en vigueur², chez tous les ovins et les bovins analysés. Les niveaux de contamination les plus élevés ont été observés chez les vaches allaitantes.
- une contamination hétérogène des échantillons de lait (n=12) avec 7 échantillons prélevés non conformes aux limites réglementaires.

La généralisation de ces résultats à l'ensemble de la zone concernée ne peut être envisagée compte tenu du faible nombre d'analyses et de répétitions pour chaque modalité.

3. SYNTHESE DES DONNEES BIBLIOGRAPHIQUES DISPONIBLES

Les études expérimentales et les études d'observations actuellement disponibles dans la littérature montrent que :

² Limite fixée à 6 pg TEQ/g de matière grasse pour le lait et 4,5 pg TEQ/g de matière grasse pour la viande des bovins et des ovins ; Règlement CE 1881/2006) de la Commission du 19 décembre 2006 portant fixation des teneurs maximales pour certains contaminants dans les denrées alimentaires (JOUE du 20.12.2006, L364)

- les dioxines et les PCB-DL peuvent se déposer sous forme particulaire au voisinage des sources d'émission mais aussi à distance (jusqu'à plusieurs kilomètres) du site d'émission.
- de nombreux facteurs (conditions environnementales, caractéristiques du végétal, propriétés physico-chimiques, ...) peuvent influencer le niveau de contamination des végétaux par les dioxines et les PCB-DL,
- l'ingestion involontaire de terre par des herbivores au pâturage représente en général moins de 10% de la matière sèche ingérée par les ovins et moins de 2% de celle ingérée par les bovins (Annexe 1) et s'explique par la présence possible de terre sur les fourrages ou l'ingestion de plantes avec les parties racinaires (touffes arrachées). Le risque d'ingestion involontaire de terre par les herbivores est donc d'autant plus élevé que :
 - la préhension alimentaire (arrachement) des espèces et leur capacité à prélever l'herbe très près du sol, les prédisposent à l'ingestion de terre (ce phénomène intéressant davantage les ovins que les bovins),
 - la végétation est basse (pâturage hivernal, période de sécheresse),
 - les animaux ont de forts besoins alimentaires et recherchent l'herbe même quand elle est basse,
 - la densité d'animaux au parc est élevée (risque de surpâturage).
- le transfert sol plante (graminées et légumineuses de prairie) est en général limité (Collins et al., 2006) ce qui indique, dans le cas de l'incendie de Saint Cyprien, que le niveau de contamination de la nouvelle pousse d'herbe au printemps 2009 et d'une façon plus générale des fourrages produits après l'arrêt de l'émission de dioxines et PCB-DL serait faible. Néanmoins, une contamination des fourrages par redéposition de poussières de terre contaminée située à proximité ne peut être totalement exclue,
- compte tenu de la demi-vie particulièrement élevée des PCB-DL et des dioxines qui peut atteindre 100 ans dans certains sols selon l'Agence américaine de l'environnement (US EPA, 1997), l'enfouissement des végétaux dans les sols après l'incendie ne présente pas d'intérêt pour la protection de la chaîne alimentaire. En effet, la décomposition des végétaux dans les sols est susceptible de libérer ces polluants de la plante vers le sol et d'augmenter ainsi la concentration de polluants dans le sol superficiel,
- ➤ les teneurs moyennes en dioxines mesurées dans les sols de différentes régions françaises font état de valeurs de référence comprises entre 0,02 et 1 pg TEQ /g de sol sec en zones rurales, 0,2 et 17 pg TEQ /g de sol sec en zones urbaines et 20 et 60 pg TEQ /g de sol sec en zones industrielles (Inserm, 2000).

4. ESTIMATION DU RISQUE DE CONTAMINATION DE LA CHAINE ALIMENTAIRE A PARTIR D'ACTIVITES CONDUITES SUR SOLS CONTAMINES

A ce jour, il n'existe pas en France de restriction réglementaire d'usage des sols contaminés en dioxines ou PCB-DL. Des niveaux «tolérables » de contamination des sols en dioxines et PCB-DL au regard de certaines activités ont toutefois été proposés dans certains pays d'Europe :

➤ En Allemagne (Bundesrats-Drucksache, 1992), des valeurs de classification basées sur les niveaux de contamination des sols en dioxines ont en effet été proposées pour aider à la mise en œuvre de mesures de gestion. Il est ainsi recommandé, en cas de concentrations en dioxines dans les sols comprises entre 5 et 40 pg I-TEQ/g³ de sol sec, d'effectuer un contrôle systématique des produits alimentaires. Au-delà de 40 pg I-TEQ/g de sol sec, une restriction des cultures doit être envisagée,

³ Unité I-TEQ définie en 1989 par l'OTAN, modifiée par l'OMS ultérieurement

➤ En France l'Afssa a également proposé, en 1999, une grille indicative d'usage des sols en fonction de leur niveau de contamination en dioxines (Tableau 2).

<u>Tableau 2 :</u> <u>Grille indicative d'utilisation des sols contaminés par les dioxines – Afssa 1999⁴</u>

Valeurs cibles indicatives #	Dioxines en pg TEQ/g de sol sec
Sol contaminé	>5
Arrêt du pâturage des animaux	>40
Arrêt de l'utilisation des sols pour tous usages agricoles	>100
Sol à décontaminer	>1000

[#] Ces valeurs indicatives ne prennent pas en considération les niveaux de contamination en PCB notamment de type non dioxine-like (PCB-NDL).

Afin d'estimer, dans le cas particulier de l'incendie de St Cyprien, le niveau de concentration en dioxines et PCB-DL qui ne doit pas être dépassé dans le sol (en pg TEQ /g de sol sec) pour permettre la remise en toute sécurité au pâturage d'animaux « non contaminés », recrutés alors hors de la zone, différentes simulations et hypothèses d'exposition ont été proposées ci-après. Un niveau de contamination initial de 1 pg TEQ/g de matière grasse (bruit de fond) a été retenue pour ces animaux.

Le sol a notamment été considéré comme le seul réservoir de contamination significatif pour les dioxines et PCB-DL, les fourrages ayant été considérés comme non contaminés (en l'absence d'éléments suffisants permettant de quantifier la volatilisation des PCB-DL du sol et leur adsorption à la face inférieure des feuilles).

Les simulations ont été réalisées en retenant la limite règlementaire, pour la somme des dioxines et PCB-DL, de 6 pg TEQ/g de matière grasse pour le lait et de 4,5 pg TEQ/g de matière grasse pour la viande des bovins et des ovins (Règlement CE 1881/2006).

L'estimation de la quantité de sol ingérée par l'animal à la pâture a été adaptée en fonction de l'espèce considérée, sur la base des données disponibles dans la littérature (**Annexe 1**).

Le coefficient de transfert des dioxines et PCB-DL vers la matière grasse n'est pas connu pour tous les animaux et varie selon la nature des congénères de dioxines ou PCB-DL considérés. Chez la vache laitière, des données de la littérature suggèrent que le coefficient de transfert vers la matière grasse du lait des congénères les plus représentés à St Cyprien serait de l'ordre de 40 % (Annexe 2). Toutefois, par mesure conservatoire et en l'absence de données suffisante pour l'ensemble des animaux, un coefficient de transfert de 100 % a été retenu.

4.1 Estimation des niveaux de contamination en dioxines et PCB-DL dans les sols permettant d'éviter une non-conformité de la viande chez les brebis entrant au pâturage pour une période de 6 mois

Sur la base des hypothèses suivantes :

- brebis de 60 kg de poids vif dont 9 kg de tissu adipeux (15% du poids corporel),
- ingestion quotidienne de sol de 75 g ou 150 g correspondant à 5 ou 10% de la matière sèche ingérée (1,5 kg/jour),
- prise en considération d'un modèle à deux compartiments (élimination possible par le lait et accumulation dans le tissu adipeux),
- biodisponibilité de 100%,

⁴ Compte rendu de la réunion du 02 août 1999, contamination de kaolin par de la dioxine, Afssa, 11 août 1999.

- animaux recrutés hors zone : contamination initiale du tissu adipeux d'environ 1 pg TEQ /g de matière grasse d'où une charge initiale de 9 000 pg TEQ,
- durée de lactation de 90 j,
- production de 1 kg de lait /j soit 60 g de matière grasse excrétée par jour,
- niveau de contamination dans la matière grasse laitière identique à la concentration dans le tissu adipeux.

Les valeurs limites en dioxines et PCB-DL acceptables dans les sols pour éviter toute non conformité de la viande des brebis entrant au pâturage ont été estimées respectivement à 4 et 8 TEQ/g de sol sec selon l'hypothèse d'ingestion de sol contaminé (5 ou 10% de matière sèche ingérée).

4.2 Estimation des niveaux de contamination en dioxines et PCB-DL dans les sols permettant d'éviter une non-conformité de la viande chez le jeune bovin entrant au pâturage pour une période de 6 mois

Sur la base des hypothèses suivantes :

- jeune bovin de 300 kg de poids vif dont 44 kg de tissu adipeux, importé de l'extérieur de la zone concernée,
- contamination initiale du tissu adipeux d'environ 1 pg TEQ /g de matière grasse d'où la limite maximale de 44 000 pg TEQ,
- croissance quotidienne de 1000 g /j à la pâture soit un poids vif de sortie de 480 kg (dont 95 kg de tissu adipeux),
- ingestion quotidienne de sol de 160 g ou 320 g, soit 2% ou 4% de 8 kg de matière sèche ingérée.

Les valeurs limites en dioxines et PCB-DL acceptables dans les sols pour éviter toute non conformité de la viande des jeunes bovins entrant au pâturage a été estimée respectivement à 13 et 7 pg TEQ/g de sol sec selon l'hypothèse d'ingestion de sol contaminé (2 ou 4% de matière sèche ingérée).

4.3 Estimation des niveaux de contamination en dioxines et PCB-DL dans les sols permettant d'éviter, chez la vache laitière une non-conformité du lait

Sur la base des hypothèses suivantes :

- production journalière de 25 kg ou 35 kg de lait à 4% de matière grasse et 6 pg TEQ/g de matière grasse, soit la limite maximale règlementaire,
- vache laitière issue d'une zone non contaminée,
- ingestion quotidienne de 16 kg de matière sèche d'herbe, correspondant à 320 g ou 640 g de sol dans l'hypothèse d'une ingestion de sol de 2 ou 4%
- la ration quotidienne des animaux est complétée par des quantités variables d'aliment concentré (non contaminé) en fonction de leur niveau de production,
- prise en compte d'un coefficient de transfert de 100% ou de 40 % (établi sur la base des données bibliographiques disponibles pour la vache laitière **Annexe 2**).

Les concentrations limites en dioxines et PCB-DL acceptables dans les sols pour éviter toute non-conformité du lait ont été estimées entre 9 et 68 pg TEQ/g de sol sec selon les hypothèses retenues (Tableau 3).

<u>Tableau 3 : Niveaux de contamination tolérables dans les sols (pg TEQ/g de sol sec) pour</u> éviter toute non conformité de la matière grasse du lait (MG) chez la vache laitière

	Concentrations dans le sol (pg TEQ/g de sol sec)				
		sfert dans le lait de %	Coefficient de transfert dans le lait de 100%		
Ingestion quotidienne	Hypothèse de production laitière Faible Forte		Hypothèse de p Faible	roduction laitière Forte	
de sol	25 kg à 4% de MG	35 kg à 4% de MG	25 kg à 4% de MG	35 kg à 4% de MG	
320 g	47	68	18	26	
640 g	24	34	9	13	

4.4 Estimation des niveaux de contamination en dioxines et PCB-DL dans les sols permettant d'éviter, chez la vache de race à viande allaitante, une non-conformité de la viande

Sur la base des hypothèses suivantes :

- vache de race à viande allaitante de 900 kg de poids vif dont 120 kg de tissu adipeux,
- vache de race à viande allaitante issue d'une zone non contaminée,
- ingestion quotidienne de sol de 260 g ou 520 g, soit 2% ou 4% de 13 kg de matière sèche ingérée⁵,
- durée de pâturage pendant la lactation estimée à 180 jours,
- production journalière de 7 kg de lait par jour soit 280 g de matière grasse contenant une valeur limite de 4,5 pg TEQ/g de matière grasse,
- niveau de concentration des polluants (dioxines et PCB-DL) dans la matière grasse laitière identique à celle du tissu adipeux,
- prise en considération d'un modèle à deux compartiments (élimination possible par le lait et accumulation dans le tissu adipeux),
- biodisponibilité des polluants de 100 %.

Les valeurs limites en dioxines et PCB-DL acceptables dans les sols pour éviter une non conformité du lait et de la viande des vaches allaitantes ont été estimées respectivement à 6 et 11,5 pg TEQ/g de sol sec selon l'hypothèse d'ingestion de sol contaminé (2 ou 4% de matière sèche ingérée).

Si la vache allaitante continue à ingérer 2% de sol à 11,5 pg TEQ/g de sol sec après son tarissement, les concentrations en dioxines et PCB-DL dans le lait et le tissu adipeux sont susceptibles de dépasser la teneur maximale règlementaire de 4,5 pg TEQ/g de matière grasse au moment de la mise bas suivante compte tenu de la bioaccumulation dans le tissu adipeux en l'absence d'excrétion lactée des contaminants chez la vache n'allaitant plus.

4.5 Niveaux de contamination en dioxines et PCB-DL chez le broutard sevré à 6 mois, Sur la base des hypothèses suivantes :

 broutard consommant quotidiennement 7 kg de lait issu de vaches provenant d'une zone non contaminée et pâturant sur des sols contaminés à 11,5 pg TEQ/g de sol sec,

⁵ Les besoins de la vache de race à viande allaitante en matière sèche ingérée sont inférieurs à ceux de la vache laitière en raison d'une moindre production de lait

- durée de l'allaitement de 180 jours,
- contamination initiale du lait de la mère à 1 pg TEQ/g de matière grasse, puis enrichissement et contamination progressive jusqu'à un taux de 4,5 pg TEQ/g de matière grasse au bout de 180 jours⁶,
- broutard de 300 kg de poids vif dont 44 kg de tissu adipeux à l'âge de 6 mois,
- ingestion de 4 kg de matière sèche d'herbe lors des trois derniers mois sous la mère,
- ingestion de sol (contaminé à 11,5 pg TEQ/g de sol sec) à raison de 2% de la quantité d'herbe ingérée, soit 900 pg TEQ/j pendant les trois derniers mois sous la mère

Au bout de 6 mois, les concentrations en dioxines et PCB-DL dans le tissu adipeux du broutard pourraient être supérieures ou égales à la limite réglementaire de 4,5 pg TEQ/g de matière grasse ce qui impliquerait une impossibilité de commercialisation et de consommation de ces animaux à ce stade. Cependant, si les broutards sont mis en pâture sur une zone dont le sol est non contaminé ou engraissés en hors sol (taurillon), ce niveau de contamination devrait diminuer.

5. Conclusions et Recommandations

Considérant,

- la complexité des modalités de transfert des polluants organiques persistants dans la chaîne alimentaire,
- la difficulté à exploiter les résultats d'analyse de sols en raison des biais d'interprétation possibles en lien avec l'historique du site et le remaniement des sols,
- ➤ le caractère partiel des données actuellement disponibles à St Cyprien concernant les niveaux quantitatifs de la contamination et la distribution spatiale,
- un coefficient de transfert des dioxines et des PCB-DL vers la matière grasse de 100% en l'absence de données bibliographiques disponibles pour toutes les espèces envisagées,

l'Afssa estime que les valeurs de contamination tolérables dans les sols pour éviter un risque de non conformité de la viande et/ou du lait issus des animaux ayant pâturé dans la zone « sinistrée » sont comprises entre 4 et 20 pg TEQ/g de sol sec selon les différentes catégories d'animaux étudiés (Tableau 4).

⁶ Valeur limite retenue pour la vache allaitante, pour la viande et le lait dans l'hypothèse d'un niveau de concentration des polluants (dioxines et PCB-DL) identique dans la matière grasse laitière et le tissu adipeux

Tableau 4: Estimation des concentrations dans le sol en dioxines et PCB-DL pouvant entraîner un dépassement des limites maximales réglementaires dans les produits animaux consommés (lait, viande) en l'absence de toute autre source de contamination (en pg TEQ/g de sol sec)

Espèces		C _{sol} en fonction de la quantité de sol ingérée (en % de matière sèche ingérée)*		
		Forte	faible	
Vache	Faible productrice	9	18	
laitière	Forte productrice complémentée	13	26	
Vache allaitante		6	11,5	
Jeune bovin		7	13	
Brebis		4	8	

^{* %} de Matière Sèche Ingérée par le bovin : Forte =4%, faible =2%, % de Matière Sèche Ingérée par l'ovin : Forte =10%, faible =5%

Sur la base de ces estimations, la valeur limite de 5 pg TEQ/g de sol sec peut être considérée comme une valeur d'alerte nécessitant la mise en œuvre de mesures complémentaires consistant à :

- i) confirmer la représentativité spatiale de la contamination de la zone par la mise en œuvre d'analyses complémentaires des sols,
- ii) appliquer les recommandations de pratiques de pâturage telles que décrites en **Annexe 3** lorsque la confirmation de la valeur moyenne de contamination du sol est : i) supérieure à 10 pg TEQ/g de sol sec pour les bovins ou ii) supérieure à 5 pg TEQ/g de sol sec pour les ovins, du fait de leur comportement spécifique d'ingestion,
- iii) mettre en application un plan de surveillance des produits animaux destinés à l'alimentation humaine (lait, viandes et abats) ainsi que des sols et des végétaux de la zone.

L'Afssa indique également que ces recommandations ne peuvent en aucun cas être généralisées à des sites soumis à une pollution atmosphérique encore en « cours », le postulat initial de ces simulations étant que le sol constitue le seul vecteur de contamination des animaux qui proviennent de l'extérieur de la zone concernée.

La Directrice Générale Adjointe Valérie BADUEL

6 Références bibliographiques

- Collins C., Fryer M., Grosso A. 2006. Plant Uptake of Non-Ionic Organic Chemicals. *Environm. Sci. Technol. 40, 45-52*
- **US EPA 1997**. Test methods for evaluating solid wastes. SW-846. Final Update 3. Office of solid waste and emergency response. Washington D.C.
- **Abrahams P.W., Steigmajer J. 2003.** Soil ingestion by sheep grazing the metal enriched floodplain soils of Mid-Wales. *Environm. Geochemistry and Health* 25, 17-24
- Beyer N., Connor E.E., Gerould S., 1994. Estimates of soil ingestion by wildlife. *J. Wildl. Manage.* 58, 375-382.
- Bundesrats-Drucksache 24/92 (1992): Bericht der Bundesregierung zur Entschließung des Bundesrates zur Aufstellung einheitlicher Bewertungskriterien für Umweltbelastungen mit Dioxinen und Furanen (Bundesrats-Drucksache 140/90), Bonn 8.1.92
- Collins C., Fryer M., Grosso A. 2006. Plant Uptake of Non-Ionic Organic Chemicals. *Environ. Sci. Technol.* 40, 45-52
- Costera A., Feidt C., Marchand Ph., Le Bizec B., Rychen G. 2006. PCDD/F and PCB transfer to milk in goats exposed to a long-term intake of contaminated hay. *Chemosphere 64, 650-657*
- Field AC, Purves D 1964. The intake of soil by grazing sheep. Proc. Nutrit. Soc. 23, 24
- Firestone D., Clower M. Jr, Borsetti A.P., Teske R.H., Long P.E., 1979. Polychlorodibenzo-p-dioxin and pentachlorophenol residues in milk and blood of cows fed technical pentachlorophenol. *J. Agric. Food Chem.* 27, 1171-1177.
- Fries G.F., Marrow G.S., 1982. Soil ingestion by dairy cattle. J. Dairy Sci. 65, 611-618.
- Fries G.F., Paustenbach D.J., Mather D.B., Luksemburg W.J., 1999. A congener specific evaluation of transfer of chlorinated dibenzo-p-dioxins and dibenzofurans to milk of cows following ingestion of pentachlorophenol-treated wood. *Envir. Sci. Technol.* 33, 1165-1170.
- Fries G.F., Paustenbach D.J., Luksemburg W.J., 2002. Complete mass-balance of dietary polychlorinated dibenzo-para-dioxins and dibenzofurans in dairy cattle and characterization of the apaprent synthesis of hepta- and octachlorodioxins. *J. Agric. Food Chem.* 50, 4226-4231.
- Fürst P., Krause G.H.M., Hein D., Delschen T., Wilmers K., 1993. PCDD/PCDF in cow's milk in relation to their levels in grass and soil. *Chemosphere* 27, 1349-1357.
- Healy W.B., 1968. Ingestion of soil by dairy cows. NZ. J. Agric. Res. 11, 487-499.
- **Healy W.B. et Ludwig T.G., 1965**. Wear of sheep's teeth. I. The role of ingested soil. *N.Z.J. Agric.* Res. 8, 737-752.
- **Healy W.B., Drew K.R., 1970.** Ingestion of soil by hoggets grazing swedes. *N.Z.J. Agric. Res.* 13, 940-944
- INSERM, Dioxines dans l'environnement Quels risques pour la santé? Expertise collective 2000
- **Kirby D.R., Stuth J.W., 1980**. Soil-ingestionh rates of steers following brush mangement in central Texas. *J. Range Manage*. 33, 207-209.
- **Kreulen DA, Jager T. 1984.** The significance of soil ingestion in the utilization of arid rangelands by large herbivores, with special reference to natural licks on the Kalahari pans. *In: Herbivore nutrition in the Subtropics and Tropics. Ed. Gilchrist FMC & Mackie RI, Science Press Johannesburg, 204-221*
- Mayland H.F., Florence A.R., Rosenau R.C., Lazar V.A., Turner H.A., 1975. Soil ingestion by cattle on semiarid range as reflected by titanium analysis of feces. *J. Range Managm. 28,* 448-452
- McGrath D., Poole D.B.R., Fleming G.A., Sinnott J., 1982. Soil ingestion by grazing sheep. *Ir. J. Agric. Res. 21, 135-145.*
- McKay D., Fraser A., 2000. Bioaccumulation of persistent organic chemicals: mechanisms and models. *Environ. Pollut. 110, 375-391*.
- **McLachlan M.S., 1994**. Model of the fate of hydrophobic contaminants in cows. *Environ. Sci. Technol. 2, 2407-2414*.

- **McLachlan M.S., 1995**. Accumulation of PCDD/F in an agricultural food chain. *Organohalogen Compounds 26, 105-108*.
- McLachlan M.S., Thoma H., Reissinger M., Hutzinger O., 1990. PCDD/F in an agricultural food chain. Part I: PCDD/F mass balance of a lactating cow. *Chemosphere 20, 1013-1020*.
- Olling M., Derks H.J., Berende P.L., Liem A.K., Jong A.P., 1991. Toxicokinetics of eight ¹³C-labelled polychlorinated dibenzo-p-dioxins and -furans in lactating cows. *Chemosphere 23,* 1377-1385.
- Robert JC, Casteille 1990. INRA Prod. Anim. 3, 243-252
- Sample B.E., Suter G.W. II, 1994. Estimating exposure of terrestrial wildlife. *Draft. ES/ER/TM-125.*
- Sample, B.E., Aplin M.S., Efroymson R.A., Suter G.W. II, 1997. Methods and Tools for estimation of the exposure of terrestrial wildlife to contaminants. *Environmental Science Division Publications* n°4650. ORNL/TM-13391, October 1997
- **Slob W., Olling M., Derks H.J., de Jong A.P., 1995**. Congener-specific bioavailability of PCDD/Fs and coplanar PCBs in cows: laboratory and field measurements. *Chemosphere* 31, 3827-3838.
- **Sweetman A.J., Thomas G.O., Jones K.C., 1999.** Modelling the fate and behaviour of lipophilic organic contaminants in lactating dairy cows. *Environ. Pollut. 104, 261-270.*
- **Thomas G.O., Sweetman A.J., Jones K.C., 1999**. Metabolism and body-burden of PCBs in lactating dairy cows. *Chemosphere* 39, 1533-1544.
- **Thornton I., Abrahams P., 1983.** Soil ingestion a major pathway of heavy metals into livestock grazing contaminated land. *The Science of the Total Environment 28, 287-294*
- Tuinstra L.G., Roos A.H., Berende P.L., van Rhijn J.A., Traag W.A., Mengelers M.J., 1992. Excretion of polychlorinated dibenzo-p-dioxins and -furans in milk of cows fed on dioxins in the dry period. *J. Agric. Food Chem.* 40, 1772-1776

Mots clefs: Dioxines, PCB-DL, sols, alimentation animale, contamination, bovins

Annexe 1

Ingestion du sol par des ruminants au pâturage - synthèse bibliographique

Le tableau ci-après propose une synthèse de la littérature sur l'ingestion du sol par les ruminants au pâturage.

La majorité de ces travaux concerne les ovins chez lesquels l'ingestion de sol peut atteindre 15% (Abrahams & Steigmeier, 2003) mais reste en général en deçà de 10% de la matière sèche ingérée (Field & Purves, 1964) même si des niveaux d'ingestion atteignant 35% ont pu être rapportés dans des conditions extrêmes de pâturage hivernal (Healy & Drew, 1970).

Les études menées sur les bovins sont moins nombreuses et montrent que l'ingestion involontaire de sol par les bovins n'excède pas 4% de la matière sèche ingérée en respectant de bonnes conditions de pâturage, et reste en général inférieur à 2% (Fries et al., 1982).

Des valeurs extrêmes de 16% de la matière sèche (Kirby & Stuth, 1970) ou de 2,4 kg de sol (Thornton & Abrahams, 1983) ont été rapportées en conditions très défavorables de pâturage sans que cela semble toutefois généralisable.

Espèce	Pays	Saison	Présence d'autres nourritures	Sol ingéré (g/jour)		Prise (g/kg PV)	Prise (g/g d'aliment)	Références		
				Moyenne	Max	Min		,		
	NZ	Hivers	Non	60	150	5	1,2	0,060	Healy et Ludwig (1965)	
	NZ	Automne	Non	4	10	0	0,1	0,005	Healy et Ludwig (1965)	
Ovins	NZ	04/10	Non	63	108	1	1,2	0,060	Healy et al. (1967)	
	NZ	07/08	Oui	>1	>1	-	-	-	Healy et al. (1967)	
	NZ	08/10	Non	90	-	-	1,8	0,090	Healy et al. (1967)	
	NZ	08/10	Oui	35	-	-	0,7	0,035	Healy et al. (1967)	
	NZ	Hivers	Non	83	125	43	1,7	0,085	Healy et Drew (1970)	
	NZ	Hivers	Oui	48	68	26	1,0	0,050	Healy et Drew (1970)	
	NZ	Hivers	Non	30	41	21	0,6	0,030	Healy et Drew (1970)	
Bovin	NZ	Toute l'année	Non ?	770	2070	260	1,9	0,063	Healy (1968)	
	GB	04/08	?	310	2400	27	0,7	0,022	Thornton et Abrahams (1983)	
	USA	07/11	Non	400	1500	100	1,1	0,055	Mayland et al. (1975)	
	USA	05/11	Oui	113	146	83	0,4	0,019	Fries et al. (1982a)	
	USA	été					0,3 à 0,84		Kirby et Stuth (1980)	

Annexe 2
Données bibliographiques permettant d'estimer le coefficient de transfert (Carry-Over Rates : COR)
vers la matière grasse du lait chez la vache laitière

Pour les congénères de type dioxines et furanes, les valeurs sélectionnées sont issues de références bibliographiques établies à partir de distribution de fourrage contaminé en conditions expérimentales ou de conditions de terrain.

Tableau 1: Taux de transfert des PCDD/Fs de l'aliment vers le lait- Synthèse des données de la littérature pour les dioxines

	Firestone	McLachlan et	Olling et al.	Tuinstra	Fürst et al.	Slob et al.	Fries et	Costera
Congénères	et al. (1979)	al. (1990)	(1991)	et al.	(1993)	(1995)	al.	et al.
				(1992)			(1999)	(2006)
Lait (kg/jour)	14	28	-	23	-	28	26	2,2
TB (kg/jour)	0,5	1,4	-	1,2	-	1,0	1,1	
2,3,7,8-TCDD		35	30	34	9,3	15	35	38,8
1,2,3,7,8-PeCDD		33	28	55	6,5	10	28	34,3
1,2,3,4,7,8-HxCDD		17		28	3,0	5,6	18	24,1
1,2,3,6,7,8-HxCDD	16	14	27	37	5,3	6,4	16	22,7
1,2,3,7,8,9-HxCDD		18		12	1,5	3,1	12	14,1
1,2,3,4,6,7,8-HpCDD	1,7	3	1,6	2,5	2,0	0,6	1,8	5,0
OCDD	0,3	4		0,6	0,3	0,1	0,3	1,5
2,3,7,8-TCDF					0,6			8,2
1,2,3,7,8-PeCDF					0,3			14,3
2,3,4,7,8-PeCDF		25	36	24	5,1	12	18	28,1
1,2,3,4,7,8-HxCDF			18	26	3,7	4,3	5,7	22,0
1,2,3,6,7,8-HxCDF		16		30	2,7	3,6	11	17,8
1,2,3,7,8,9-HxCDF								4,4
2,3,4,6,7,8-HxCDF		14		25	3,5	4,2	8,4	13,0
1,2,3,4,6,7,8-HpCDF		3	1,7	1,9	0,7	0,4	1,4	2,9
1,2,3,4,7,8,9-HpCDF		8				0,5		3,1
OCDF	0,1	1		0,0	0,2	0,0	0,1	0,9

Tableau 2 : Moyenne des taux de transfert (COR) vers le lait estimée pour les dioxines sur la base des études Firestone et al. (1979), McLachlan et al. (1990), Olling et al. (1991), Tuinstra et al. (1992), Fries et al. (1999) et Costera et al. (2006).

	005	, , , , , oop	COR retenu (moy +1,96 ET)
Congénère	COR moyen	écart-type COR	10.7
2,3,7,8-TCDD	34,6	3	40,7
1,2,3,7,8-PeCDD	35,7	11	57,6
1,2,3,4,7,8-HxCDD	21,8	5	32,0
1,2,3,6,7,8-HxCDD	23,3	9	41,5
1,2,3,7,8,9-HxCDD	14,0	3	19,6
1,2,3,4,6,7,8-HpCDD	2,8	1	5,4
OCDD	1,6	2	4,9
2,3,7,8-TCDF	8,2		8,2
1,2,3,7,8-PeCDF	14,3		14,3
2,3,4,7,8-PeCDF	26,2	7	39,1
1,2,3,4,7,8-HxCDF	17,9	9	35,1
1,2,3,6,7,8-HxCDF	18,7	8	34,5
1,2,3,7,8,9-HxCDF	4,4		4,4
2,3,4,6,7,8-HxCDF	15,1	7	28,9
1,2,3,4,6,7,8-HpCDF	2,2	1	3,6
1,2,3,4,7,8,9-HpCDF	5,6	3	12,3

Tableau 3: Coefficient de transfert (COR) vers le lait estimée pour les les PCB-DL

Pour les PCB-DL, la disponibilité de données publiées est beaucoup plus restreinte. Les valeurs utilisées sont issues de communications personnelles (Ounnas et al., 2009, sous presse) et du retraitement de données issues de Costera *et al.* (2006).

PCB	COR retenu (%)
PCB 77	8
PCB 81	83
PCB 105	67
PCB 114	50
PCB 118	68
PCB 123	30
PCB 126	62
PCB 156	73
PCB 157	72
PCB 167	57
PCB 169	71
PCB 189	49

Annexe 3

Bonnes Pratiques de pâturage :

Pour réduire au minimum le niveau d'ingestion de sol au pâturage, il est recommandé de :

- i) mettre à pâturer les animaux dans une parcelle dont la hauteur d'herbe moyenne à l'entrée est supérieure ou égale à 10 cm,
- sortir les animaux de la pâture lorsque l'herbe de la parcelle atteint une hauteur moyenne de 5-6 cm, hors zones de refus,
- iii) ne pas faire surpâturer une parcelle par les animaux,
- iv) éviter les pâturages d'automne prolongés et proscrire le pâturage hivernal,
- v) remonter la hauteur de coupe pour l'ensilage d'herbe,
- vi) éviter d'apporter des aliments ou compléments alimentaires directement sur le sol

Annexe 2 : Degré de chloration des POPs

Annexe &: Structure chimique, nombre d'atomes de chlore et famille des PCB et PCDD/F.

Nombre de Chlore	PCB	Structure	Nombre de Chlore	Dioxines/Furannes
3 CI	PCB 28*	Coplanaire/PCB-ndl	4 CI	2,3,7,8-TCDD
	PCB 52*	Non-coplanaire/PCB-ndl	4 0	2,3,7,8-TCDF
4 CI	PCB 77	Coplanaire/PCB-dl		1,2,3,7,8-PeCDD
	PCB 81	Coplanaire/PCB-dl	5 CI	1,2,3,7,8-PeCDF
	PCB 101*	Non-coplanaire/PCB-ndl		2,3,4,7,8-PeCDF
	PCB 105*	Coplanaire/PCB-dl		1,2,3,4,7,8-HxCDD
5 CI	PCB 114	Coplanaire/PCB-dl		1,2,3,6,7,8-HxCDD
5 CI	PCB 118*	Coplanaire/PCB-dl		1,2,3,7,8,9-HxCDD
	PCB 123	Coplanaire/PCB-dl	6 CI	1,2,3,4,7,8-HxCDF
	PCB 126	Coplanaire/PCB-dl		1,2,3,6,7,8-HxCDF
	PCB 138	Non-coplanaire/PCB-ndl		1,2,3,7,8,9-HxCDF
	PCB 153	Non-coplanaire/PCB-ndl		2,3,4,6,7,8-HxCDF
6.01	PCB 156	Coplanaire/PCB-dl		1,2,3,4,6,7,8-HpCDD
6 CI	PCB 157	Coplanaire/PCB-dl	7CI	1,2,3,4,7,8,9-HpCDF
	PCB 167	Coplanaire/PCB-dl		1,2,3,4,6,7,8-HpCDF
	PCB 169	Coplanaire /PCB-dl	9CI	OCDD
7 CI	PCB 180	Non-coplanaire/PCB-ndl	8CI	OCDF
, OI	PCB 189	Coplanaire/PCB-dl		<u> </u>

^{*}Détecté et/ou quantifié dans l'air ambiant de l'enceinte de culture (mesure de juillet 2015 pendant la culture des végétaux)

PCB: PCB indicateur (PCB-ndl)

PCB : coplanaire non-ortho

Annexe 3:

Facteurs Equivalents Toxiques (OMS, 2005)

Facteur d'équivalent toxique (FET ou TEF)

Sur la base des valeurs proposées par l'Organisation Mondiale de la Santé (2005)

Extrait de COMMISSION REGULATION (EU) No 1259/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxin-like PCBs and non dioxin-like PCBs in foodstuffs

Congener	TEF value	Congener	TEF value
Dibenzo-p-dioxins ('PCDDs')		"Dioxin-like" PCBs Non-ortho PCBs + Mono-ortho PCBs	
2,3,7,8-TCDD	1		
1,2,3,7,8-PeCDD	1	Non-ortho PCBs	
1,2,3,4,7,8-HxCDD	0,1	PCB 77	0,0001
1,2,3,6,7,8-HxCDD	0,1	PCB 81	0,0003
1,2,3,7,8,9-HxCDD	0,1	PCB 126	0,1
1,2,3,4,6,7,8-HpCDD	0,01	PCB 169	0,03
OCDD	0,0003		
Dibenzofurans ('PCDFs')		Mono-ortho PCBs	
2,3,7,8-TCDF	0,1	PCB 105	0,00003
1,2,3,7,8-PeCDF	0,03	PCB 114	0,00003
2,3,4,7,8-PeCDF	0,3	PCB 118	0,00003
1,2,3,4,7,8-HxCDF	0,1	PCB 123	0,00003
1,2,3,6,7,8-HxCDF	0,1	PCB 156	0,00003
1,2,3,7,8,9-HxCDF	0,1	PCB 157	0,00003
2,3,4,6,7,8-HxCDF	0,1	PCB 167	0,00003
1,2,3,4,6,7,8-HpCDF	0,01	PCB 189	0,00003
1,2,3,4,7,8,9-HpCDF	0,01		
OCDF	0,0003		

Abbreviations used: "T'' = tetra; "Pe'' = penta; "Hx'' = hexa; "Hp'' = hepta; "O'' = octa; "CDD'' = chlorodibenzodioxin; "CDF'' = chlorodibenzofuran; "CB'' = chlorobiphenyl."

Annexe 4:

Concentrations des polluants dans les sols et caractéristiques agronomiques

Annexe 4 a Concentrations des PCBs et PCDD/Fs dans les 4 mailles testées

sol P1 - maille 131-2			14G003326-032 14	G003326-03 <u>3</u>	4G003326-034 _. 4G	6003326-035 <u>.</u> 40	3003326-036 _. 4	G003326-037_4	G003326-038 _. 40	.40 3003326-039	G003326-040 _. 40	G003326-041 _. 40	600332 <u>6</u> -04 <u>2</u> .	4G0033 <u>2</u> 6-0 <u>4</u> 3	Moyenne	Min	Max	Ecart type
Paramètres	Unités	N° CAS	P1-L1	P1-L2	P1-L3	P1-COU1	P1-COU2	P1-COU3	P1-CA1	P1-CA2	P1-CA3	P1-PDT1	P1-PDT2	P1-PDT3				
matière sèche	%		88,4	88,6	88,3	88,6	88,4	88,4	89	88	88,6	88,8	88,4	88,4	88,5	88,0	89,0	0,3
PCB-dl / 12 WHO																		
PCB 77	ng/kg dw	32598-13-3	9,58	10,6	10,5	10,5	11,8	9,9	10,9	10,2	9,55	9,22	9,04	8,43	10,0	8,4	11,8	0,9
PCB 81	ng/kg dw	70362-50-4																
PCB 105	ng/kg dw	32598-14-4	57,9	64,3	63,3	63,3	66,2	60,5	64,8	61,3	62,4	89,1	54,3	54,5	63,5	54,3	89,1	
PCB 114	ng/kg dw	74472-37-0			1,22		1,25		1,11	1,04					1,2	1,0	1,3	
PCB 118	ng/kg dw	31508-00-6	121	127	132	133	133	119	138	126	133	180	123	118	131,9	118,0	180,0	
PCB 123	ng/kg dw	65510-44-3	2,88	5,41	2,67	3	2,9	4,81	2,91	2,61	3,16	4,61	3,25	2,56	3,4	2,6	5,4	
PCB 126	ng/kg dw	57465-28-8	8,7	6,11	12,6	13,3	13	8,81	13,2	12,8	11,9	7,88	9,09	9,95	10,6	6,1	13,3	
PCB 156	ng/kg dw	38380-08-4	72,8	73,8	75,7	78	74,6	70,9	77,1	75,5	72,6	75,5	65,9	69,1	73,5	65,9	78,0	
PCB 157	ng/kg dw	69782-90-7	14,7	7,56	16,5	16,4	16,6	15	17,5	16,5	15,7	13,9	11,1	14	14,6	7,6	17,5	,
PCB 167 PCB 169	ng/kg dw	52663-72-6 32774-16-6	48,1	54,7	50,8	52,1	51,2	51,8	53,7	49,4	46,8	49,9	48,7	46,9	50,3	46,8	54,7	2,5
	ng/kg dw		12.0	12.4	46.0	47.2	47.2	12.1	47	46.5	45.0	44.0	12.4	12.6	440	44.0	47.0	2.2
PCB 189	ng/kg dw	39635-31-9	13,9	12,4	16,9	17,3	17,3	12,1	17	16,5	15,9	11,9	12,4	13,6	14,8	11,9	17,3	· ·
Σ PCB-dl			350	362	382	387	388	353	396	372	371	442	337	337	373	337	442	
co-PCBs TEQ (OMS 1998) sans LQ	ng/kg dw		0,935	0,675	1,33	1,4	1,37	0,945	1,39	1,35	1,26	0,862	0,968	1,06	1,1	0,7	1,4	0,2
PCB-dl (OMS 1998 -TEQ) avec LQ	ng/kg dw		0,96	0,703	1,36	1,42	1,39	0,973	1,42	1,38	1,28	0,889	0,994	1,08	1,2	0,7	1,4	
PCB-dl (OMS 2005 -TEQ) sans LOQ	ng/kg dw		0,881	0,623	1,28	1,34	1,31	0,892	1,33	1,29	1,2	0,801	0,919	1,01	1,1	0,6	1,3	
PCB-dl (OMS 2005 -TEQ) avec LOQ	ng/kg dw		0,954	0,705	1,35	1,41	1,38	0,971	1,41	1,37	1,27	0,881	0,994	1,09	1,1	0,7	1,4	0,2
PCB - 7 Indicateurs																		
PCB 28	ng/kg dw	7012-37-5																
PCB 52	ng/kg dw	35693-99-3																
PCB 101	ng/kg dw	37680-73-2	203	195	194	193	202	192	204	187	198	265	189	178	200	178	265	
PCB 118	ng/kg dw	31508-00-6	121	127	132	133	133	119	138	126	133	180	123	118	132	118	180	
PCB 138	ng/kg dw	35065-28-2	1160	1360	939	946	889	1280	923	890	862	1300	1220	1100	1072	862	1360	
PCB 153	ng/kg dw	35065-27-1	1400	1460	1250	1300	1240	1450	1300	1210	1170	1420	1320	1400	1327	1170	1460	
PCB 180	ng/kg dw	35065-29-3	806	818	742	776	742	773	761	712	697	732	711	741	751	697	818	
7 PCBi excl. LOQ - manuelle	ng/kg dw		3690	3960	3257	3348	3206	3814	3326	3125	3060	3897	3563	3537	3482	3060	3960	
7 PCBi excl. LOQ - labo	ng/kg dw		3680	3960	3260	3340	3200	3810	3330	3130	3060	3900	3570	3530	3481	3060	3960	
7 PCBi incl. LOQ	ng/kg dw		3830	4120	3410	3490	3340	3970	3470	3270	3200	4060	3720	3690	3631	3200	4120	314
Dioxines - PCDD/F (17)																		
2,3,7,8-TCDD	ng/kg dw	1746-01-6																
1,2,3,7,8-PeCDD	ng/kg dw	40321-76-4																
1,2,3,4,7,8-HxCDD	ng/kg dw	39227-28-6																
1,2,3,6,7,8-HxCDD	ng/kg dw	57653-85-7																
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	ng/kg dw	19408-74-3 35822-46-9	3,64	4,64	4	3,93	4,13	3,5	3,86	4,39	3,76	3,52	4,07	3,64	3,9	3,5	4,6	0.2
OCDD	ng/kg dw ng/kg dw	3268-87-9	12,6	19	13,9	13,9	16	12,9	14,1	16,9	12,6	15,5	19,2	3,04 14	15,1	12,6	19,2	,
somme dioxines	ng/kg uw	3200-07-9	16.2	23.6	17.9	17,8	20.1	16.4	18.0	21.3	16.4	19.0	23.3	17,6	19,0	16.2	23.6	
2,3,7,8-TCDF	ng/kg dw	51207-31-9	2,75	3,11	2,69	2,58	2,66	2,41	2,72	21,3	2,44	2,46	23,3	2,56	2,6	2,4	3,1	, -
1,2,3,7,8-PeCDF	ng/kg dw	57117-41-6	1,49	1,89	1,56	1,63	1,55	1,58	1,73	1,66	1,5	1,4	1,54	1,79	1,6	1,4	1,9	
2,3,4,7,8-PeCDF	ng/kg dw	57117-41-0	1,41	1,82	1,65	1,69	1,64	1,35	1,64	1,69	1,51	1,38	1,57	1,35	1,6	1,4	1,8	
1,2,3,4,7,8-HxCDF	ng/kg dw	70648-26-9	2,61	3,6	2,81	2,83	2,68	2,65	2,87	2,92	2,66	2,55	2,67	2,88	2,8	2,6	3,6	
1,2,3,6,7,8-HxCDF	ng/kg dw	57117-44-9	1,25	1,59	1,14	1,31	1,14	1,13	1,11	1,21	1,15	1,09	1,16	1,11	1,2	1,1	1,6	,
1,2,3,7,8,9-HxCDF	ng/kg dw	72918-21-9	1,23	1,55	1,17	1,51	1,17	1,13	1,11	1,61	1,13	1,03	1,10	1,11	1,2	1,1	1,0	0,1
2,3,4,6,7,8-HxCDF	ng/kg dw	60851-34-5	1,02	1,37	1,04	1,05	1,09	1,01	1,07	1,1	1,05	1,01	0,98	0,93	1,1	0,9	1,4	0,1
1,2,3,4,6,7,8-HpCDF	ng/kg dw	67562-39-4	5,54	6.96	6,1	6,11	5.8	5,6	6,14	6,23	5,43	5,11	5,44	5,42	5,8	5,1	7,0	
1,2,3,4,7,8,9-HpCDF	ng/kg dw	55673-89-7	1,54	2,07	1,56	1,63	1,53	1,42	1,63	1,72	1,55	1,46	1,56	1,51	1,6	1,4	2,1	
OCDF	ng/kg dw	39001-02-0	9.7	11.4	9.47	9.6	8,72	8.8	9.04	9.42	8,33	8,56	8,56	8,43	9,2	8,3	11,4	
somme furanes			27,3	33,8	28,0	28,4	26,8	26,0	28,0	28,6	25,6	25,0	25,9	26,0	27,4	25,0	33,8	
Σ PCDD/F		i e	44	57	46	46	47	42	46	50	42	44	49	44	46	42	57	+
PCDD/F TEQ (OMS 1998) sans LQ	na/ka d:··	1	1,65	2,11	1,79	1,82	1,77	1,58	1,8	1,84		1,57	1,7	1,62	_		2,1	
PCDD/F TEQ (OMS 1998) sans LQ PCDD/F TEQ (OMS 1998) avec LQ	ng/kg dw	1	2,26		2,43	2,44	2,36	2,24	2,43	2,45	1,67 2,28	2,24	2,33	2,29	1,7 2,4	1,6 2,2	2,1	,
PCDD/F (EQ (OMS 1998) avec LQ PCDD/F (OMS 2005 - TEQ) sans LQ	ng/kg dw	1	1,35	2,8 1,72	1,43	1,46	1,42		2,43 1,44	1,47	1,34	1,28	2,33 1,36	2,29 1,32		2,2 1,3	2,8 1,7	
PCDD/F (OMS 2005 - TEQ) sans LQ PCDD/F (OMS 2005 - TEQ) avec LQ	ng/kg dw ng/kg dw	1	1,35	2,4	2,07	2,07	2,01	1,28 1,94	2,07	2,08	1,34	1,28	1,36	1,32 1,99	1,4 2,0	1,3	2,4	
I-TEQ (NATO/CCMS)) sans LQ	ng/kg dw	1	1,95	2,4	1,81	1,84	1,79	1,94	1,82	1,86	1,95	1,94	1,99	1,99	1,8	1,9	2,4	
I-TEQ (NATO/CCMS)) sans LQ I-TEQ (NATO/CCMS) avec LQ	ng/kg dw	1	2,16	2,14	2,32	2,34	2,27	2,13	2,32	2,35	2,18	2,13	2,23	2,18	2,3	2,1	2,1	
1 124 (INATO) CCIVIS) avec LQ	iig/ kg uw	1	2,10	2,09	2,32	4,34	2,21	2,13	2,32	دد,2	2,10	2,13	2,23	2,18	Moyenne	۷,1	۷,7	0,2
somme PCDD-F + PCBdl	I-TEQ		2,23	2,34	2,71	2,80	2,73	2,17	2,77	2,76	2,54	2,08	2,28	2,33	2,5			
somme PCDD-F + PCBal somme PCB-i 7 cong	I-TEQ		2,23 3680	3960	2,71 3260	2,80 3340	2,73 3200	2,17 3810	3330	2,76 3130	2,54 3060	2,08 3900	2,28 3570	2,33 3530	2,5 3481			
rapport PCDD-F /PCBdl			1,5	2,8	1,1	1,1	1,1	1,4	1,1	1,1	1,1	1,6	1,5	1,3	1,4			
rapport PCBi / PCBdl			4177,1	6356,3	2546,9	2492,5	2442.7	4271,3	2503,8	2426,4	2550,0	4868,9	3884,7	3495,0	3501,3			
rapport rebi / rebui			41//,1	0550,5	2340,9	2432,3	2442,/	42/1,3	2303,8	2420,4	2330,0	4000,9	3004,/	3433,0	3301,3			

Légende: concentration < LQ

Annexe 3 : concentrations en POPs dans les sols - maille P2 utilisée pour les cultures de 2014

Sol P2 - maille 144-2			14G003 <u>326-001</u>	.4G0033 <u>26-002</u> .4	4G00332 <u>6-003_4</u>	G00332 <u>6-004</u> .4	4G003326-005 .4G	003326 <u>-006</u> _40	500332 <u>6-044</u> .4	G0033 <u>26-04</u> 5 .	4G0033 <u>26-046</u> .4	4G0033 <u>26-04</u> 7 .	4G0033 <u>26-048</u>	4G0033 <u>26-049</u>	Moyenne	Min	Max	Ecart type
Paramètres	Unités	N° CAS	P2-PDT1	P2-PDT2	P2-PDT3	P2-CA1	P2-COU2	P2-COU3	P2-L1	P2-L2	P2-L3	P2-COU1	P2-CA2	P2-CA3	•			
matière sèche	%		88	87,6	87,9	87,7	87,9	87,5	87,7	88,1	91	87,7	87,5	87,6	88,0	87,5	91,0	1,0
PCB-dl / 12 WHO																		
PCB 77	ng/kg dw	32598-13-3	85,3	85,5	76,6	78,2	80	76	91	96,9	85,4	93,5	94,5	85,9	85,7	76,0	96,9	7,1
PCB 81	ng/kg dw	70362-50-4	2,84	3,04	2,8	3,27	2,39	2,51		2,48	2,2	1,78			2,6	1,8	3,3	0,5
PCB 105	ng/kg dw	32598-14-4	766	543	496	516	489	513	575	685	632	636	664	585	591,7	489,0	766,0	86,5
PCB 114	ng/kg dw	74472-37-0	28,5	17,4	12	15	12,2	16		6,98	6,08	5,73	7,45	5,69	12,1	5,7	28,5	7,0
PCB 118	ng/kg dw	31508-00-6	2250	1610	1390	1480	1440	1480	1570	1800	1670	1650	1690	1600	1635,8	1390,0	2250,0	226,1
PCB 123	ng/kg dw	65510-44-3	37,7	33,2	19,8	29,3	21,5	25,4	27,9	36	36,6	29,9	55,5	46,9	33,3	19,8	55,5	10,3
PCB 126	ng/kg dw	57465-28-8	132	125	115	128	129	135	122	129	121	129	112	98,9	123,0	98,9	135,0	10,1
PCB 156	ng/kg dw	38380-08-4	873	804	718	693	725	712	846	916	852	845	895	871	812,5	693,0	916,0	79,4
PCB 157	ng/kg dw	69782-90-7	185	170	153	156	160	159	175	172	169	155	142	148	162,0	142,0	185,0	12,4
PCB 167	ng/kg dw	52663-72-6	562	507	456	492	497	503	585	655	613	625	686	655	569,7	456,0	686,0	77,4
PCB 169	ng/kg dw	32774-16-6	20,6	18,9	17,9	18,5	18,4	16,9	13,5	13,9	16,8	19,2	12,5	12,7	16,7	12,5	20,6	2,8
PCB 189	ng/kg dw	39635-31-9	203	198	176	183	186	187	192	206	186	193	171	171	187,7	171,0	206,0	11,5
Σ PCB-dl			5146	4115	3633	3792	3760	3826	4197	4719	4390	4383	4530	4280	4231	3633	5146	444
co-PCBs TEQ (OMS 1998) sans LQ	ng/kg dw		14,3	13,4	12,3	13,7	13,8	14,4	13,1	13,9	13	13,9	12,1	10,8	13,2	10,8	14,4	1,0
PCB-dl (OMS 1998 -TEQ) avec LQ	ng/kg dw		14,3	13,4	12,3	13,7	13,8	14,4	13,1	13,9	13	13,9	12,1	10,8	13,2	10,8	14,4	1,0
PCB-dl (OMS 2005 -TEQ) sans LOQ	ng/kg dw	1	14		12,1	13,5	13,6	14,1	12,7	13,5	12,7	13,7	11,7	10,4	12,9	10,4	14,1	1,1
PCB-dl (OMS 2005 -TEQ) avec LOQ	ng/kg dw		14		12,1	13,5	13,6	14,1	12,7	13,5	12,7	13,7	11,7	10,4	12,9	10,4	14,1	1,1
PCB - 7 Indicateurs																		
PCB 28	ng/kg dw	7012-37-5		81,6		82			89,4			188			110	82	188	52
PCB 52	ng/kg dw	35693-99-3	405	153	112	142	120	134	143	158	151	159	250	153	173	112	405	81
PCB 101	ng/kg dw	37680-73-2	2550	2020	1670	1750	1680	1720	1960	2290	2120	2190	2490	2200	2053	1670	2550	307
PCB 118	ng/kg dw	31508-00-6	2250	1610	1390	1480	1440	1480	1570	1800	1670	1650	1690	1600	1636	1390	2250	226
PCB 138	ng/kg dw	35065-28-2	9860	9230	7900	8570	8770	8710	11400	13300	12200	12400	13800	13800	10828	7900	13800	2223
PCB 153	ng/kg dw	35065-27-1	11900	11500	10300	9830	10200	10200	13300	13200	12600	12700	14000	13700	11953	9830	14000	1513
PCB 180	ng/kg dw	35065-29-3	8070	8050	7070	6460	6640	6680	8460	9910	9510	9510	9210	8990	8213	6460	9910	1249
7 PCBi excl. LOQ - manuelle	ng/kg dw		35035	32644,6	28442	28314	28850	28924	36922,4	40658	38251	38797	41440	40443	34893	28314	41440	5219
7 PCBi excl. LOQ - labo	ng/kg dw		35100	32700	28400	28300	28800	28900	36900	40600	38200	38800	41400	40400	34875	28300	41400	5213
7 PCBi incl. LOQ	ng/kg dw		35200	32700	28500	28300	28900	29000	36900	40700	38300	38800	41500	40500	34942	28300	41500	5219
Dioxines - PCDD/F (17)																		
2,3,7,8-TCDD	ng/kg dw	1746-01-6	0,39	0,29	0,33	0,27	0,29	0,33	0,3	0,32		0,4	0,34	0,28	0,3	0,3	0,4	
1,2,3,7,8-PeCDD	ng/kg dw	40321-76-4	1,38	1,26	1,2	1,27	1,29	1,32	1,5	1,48	1,37	1,42	1,45	1,5	1,4	1,2	1,5	0,1
1,2,3,4,7,8-HxCDD	ng/kg dw	39227-28-6	1,8		1,54	1,6	1,66	1,66	1,68	2,03	1,82	1,71	1,79	2,01	1,7	1,5	2,0	0,2
1,2,3,6,7,8-HxCDD	ng/kg dw	57653-85-7	3,98		3,39	3,61	3,75	3,51	3,59	3,83	3,47	3,53	3,74	4,05	3,7	3,4	4,1	0,2
1,2,3,7,8,9-HxCDD	ng/kg dw	19408-74-3	2,81	2,43	2,34	2,47	2,44	2,55	2,38	2,36	2,36	2,57	2,63	2,77	2,5	2,3	2,8	0,2
1,2,3,4,6,7,8-HpCDD	ng/kg dw	35822-46-9	43,1	43,6	37,7	39,7	39,2	40,3	40,1	41,9	37,7	43,6	43,6	50,3	41,7	37,7	50,3	3,5
OCDD	ng/kg dw	3268-87-9	140		127	130	129	133	142	141	129	134	139	173	147,5	127,0	253,0	35,4
somme dioxines			193,5	305,7	173,5	178,9	177,6	182,7	191,6	192,9	175,7	187,2	192,6	233,9	198,8	173,5	305,7	37,2
2,3,7,8-TCDF	ng/kg dw	51207-31-9	38,2	32	30,5	32,3	33	33,9	39,9	39	36,6	34,4	35,8	39,4	35,4	30,5	39,9	3,2
1,2,3,7,8-PeCDF	ng/kg dw	57117-41-6	28,6	25,3	23,9	25,4	25,6	25,5	27,6	27,4	26	24,8	25,5	27,3	26,1	23,9	28,6	1,4
2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF	ng/kg dw	57117-31-4 70648-26-9	23,5 52,1	20,2 44,7	19,8 42,1	20,4 45,9	21,6 46,3	21,8 48.6	25,6 50,3	23,7 47	22,8 47,3	23,9 47,2	24,2 49,9	26 56	22,8 48,1	19,8 42,1	26,0 56,0	2,1 3,6
	ng/kg dw		20,4	17,8			18,5	-,-		21,9		20,8	49,9 21,6	24				2,0
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ng/kg dw ng/kg dw	57117-44-9 72918-21-9	20,4	17,8	17,1	18,6	18,5	19	20,7	21,9	20	20,8	21,6	24	20,0	17,1	24,0	2,0
		60851-34-5	17.7	14,3	143	14,9	14,6	45.4	1.0	16,2	15,6	16,8	17,7	10 5	15,9	14,2	18,5	1.4
2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF	ng/kg dw ng/kg dw	67562-39-4	17,2 116	103	14,2 95,7	103	101	15,1 106	16 97,4	10,2	103	10,8	17,7	18,5 120	105,7	95,7	120,0	1,4 7,4
1,2,3,4,5,7,8-HPCDF 1,2,3,4,7,8,9-HpCDF	ng/kg dw ng/kg dw	55673-89-7	31,4	28,5	27,6	28,6	28,3	28,5	97,4 27	28,6	27,5	29,5	30,3	34,3	29,2	27,0	34,3	2,0
1,2,3,4,7,8,9-прсог	ng/kg dw	39001-02-0	164		140	150	148	155	167	173	158	29,5 164	190	34,3 191	163,3	140.0	191.0	15,5
	ng/kg aw	29001-02-0	491,4	445,8	410,9	439,1	436,9	453,4	471,5	481,8	456,8	465,4	509,0	536,5	466,5	410,9	536,5	34,4
somme furanes Σ PCDD/F	1	+													-			
		ļ	685	752	584	618	615	636	663	675	633	653	702	770	665	584	770	55
PCDD/F TEQ (OMS 1998) sans LQ	ng/kg dw	<u> </u>	30,5	26,4	25,4	26,7	27,4	28,1	31,1	30	28,5	29,5	30,4	32,9	28,9	25,4	32,9	2,2
PCDD/F TEQ (OMS 1998) avec LQ	ng/kg dw	<u> </u>	31	26,8	25,9	27,2	28,1	28,5	31,7	30,4	29	30,1	30,9	33,5	29,4	25,9	33,5	2,2
PCDD/F (OMS 2005 - TEQ) sans LQ	ng/kg dw	.	25,3	21,9	21	22,2	22,6	23,2	25,5	24,8	23,5	24,3	25,1	27,2	24	21	27	2
PCDD/F (OMS 2005 - TEQ) avec LQ	ng/kg dw	.	25,8	22,3	21,5	22,6	23,3	23,7	26,1	25,2	24	24,8	25,6	27,8	24,4	21,5	27,8	1,8
I-TEQ (NATO/CCMS)) sans LQ	ng/kg dw	ļ	30,1	26,1	25	26,3	27	27,7	30,6	29,6	28	29,1	30	32,5	28,5	25,0	32,5	2,2
I-TEQ (NATO/CCMS) avec LQ	ng/kg dw	I	30,6	26,6	25,6	26,8	27,7	28,1	31,2	30	28,6	29,6	30,5	33	29,0	25,6	33,0	2,2
															Moyenne			
somme PCDD-F + PCBdI			39,30		33,10	35,70	36,20	37,30	38,20	38,30	36,20	38,00	36,80	37,60	36,8			
somme PCB-i 7 cong			35100	32700	28400	28300	28800	28900	36900	40600	38200	38800	41400	40400	34875			

somme PCB-i 7 cong rapport PCDD-F /PCBdl 36900 2,0 2905,5 38200 1,9 3007,9 35100 1,9 2730,9 1,7 2117,6 1,8 2832,1 1,8 1,7 2477,3 1,6 1,6 1,8 3007,4 2,1 rapport PCBi / PCBdl 2507,1 2347,1 2096,3 2049,6 3538,5 3884,6 Légende:

concentration < LQ

Sol P3 - maille 100-5			14G003326-0 <u>071</u>	4G0033 <u>2</u> 6-00 <u>8</u> 1	4G003326-00 <u>9</u> 14	G003326-01 <u>0</u> 1	4G0033 <u>2</u> 6-01 <u>11</u>	4G003326-012 <u>14</u>	G003326-01 <u>31</u> 4	4G0033 <u>2</u> 6-0 <u>1</u> 41	14G003326-01514	G003326-01 <u>6</u> 14	G003326-01714	G003326-01 <u>8</u>	Moyenne	Min	Max	Ecart type
Paramètres	Unités	N° CAS	P3-CA1	P3-CA2	P3-CA3	P3-L1	P3-L2	P3-L3	P3-COU1	P3-COU2	P3-COU3	P3-PDT1	P3-PDT2	P3-PDT3				
matière sèche	%		90	89,9	89,9	89,8	90	90	89,7	89,8	89,9	89,9	89,7	89,9	89,9	89,7	90,0	0,1
PCB-dl / 12 WHO																		
PCB 77	ng/kg dw	32598-13-3	77,6	132	62,8	111	124	97,7	113	132	118	103	110	81,4	105,2	62,8	132,0	21,9
PCB 81	ng/kg dw	70362-50-4	7,28	13,2	5,22	11,6	12	9,11	4,93	16,5	14	11,5	11,5	9,64	10,5	4,9	16,5	3,5
PCB 105	ng/kg dw	32598-14-4	279	437	222	368	426	372	402	450	412	364	381	321	369,5	222,0	450,0	67,1
PCB 114	ng/kg dw	74472-37-0	17,5	26,6	13,6	23	26,5	20,1	20,4	23,1	23,4	19,8	22,6	18,2	21,2	13,6	26,6	3,8
PCB 118	ng/kg dw	31508-00-6	728	1140	590	977	1100	890	1040	1150	1040	939	985	823	950,2	590,0	1150,0	169,4
PCB 123	ng/kg dw	65510-44-3	11,3	15,5	8,46	14,4	15,3	13,6	20,8	25,5	16,3	15,3	14,9	12,5	15,3	8,5	25,5	4,4
PCB 126	ng/kg dw	57465-28-8	60,5	94,7	47	81,9	91,4	71,8	66,2	86,9	78,5	70,7	75,1	58,6	73,6	47,0	94,7	
PCB 156	ng/kg dw	38380-08-4	231	354	182	314	359	284	343	372	341	300	321	240	303,4	182,0	372,0	58,9
PCB 157	ng/kg dw	69782-90-7	64	96,4	49	82	93,3	76,1	70,6	93,8	86,1	75,7	77,9	63,1	77,3	49,0	96,4	14,2
PCB 167	ng/kg dw	52663-72-6	159	241	126	210	238	189	231	240	216	195	209	162	201,3	126,0	241,0	36,7
PCB 169	ng/kg dw	32774-16-6	11,2	16,8	8,81	14,4	17,7	14,2	10,9	17,4	15,1	14,3	14,3	11,8	13,9	8,8	17,7	2,8
PCB 189	ng/kg dw	39635-31-9	59,2	93,5	46,5	79,6	87,9	67,6	67,6	88,7	84,1	76,8	81,1	60,2	74,4	46,5	93,5	14,2
Σ PCB-dl			1706	2661	1361	2287	2591	2105	2390	2696	2445	2185	2303	1861	2216	1361	2696	404
co-PCBs TEQ (OMS 1998) sans LQ	na/lea des	1	6,43	10,1	5	8,7	9,74					7,56	8,03				10,1	
	ng/kg dw				-			7,66	7,11	9,3	8,4			6,27	7,9	5,0		
PCB-dl (OMS 1998 -TEQ) avec LQ	ng/kg dw	 	6,43	10,1	5	8,7	9,74	7,66	7,11	9,3	8,4	7,56	8,03	6,27	7,9	5,0	10,1	
PCB-dl (OMS 2005 -TEQ) sans LOQ		 	6,44	10,1	5,01	8,7	9,76	7,68	7,03	9,31	8,39	7,57	8,02	6,28	7,9	5,0	10,1	
PCB-dl (OMS 2005 -TEQ) avec LOC	ng/kg dw		6,44	10,1	5,01	8,7	9,76	7,68	7,03	9,31	8,39	7,57	8,02	6,28	7,9	5,0	10,1	1,5
PCB - 7 Indicateurs	na/lic dir.	7012 27 5																
PCB 28	ng/kg dw	7012-37-5		70.5				5.0	20.1	20 -	70.5						0-	
PCB 52	ng/kg dw	35693-99-3	***	72,2	275	66,3	80,7	64,9	88,4	80,7	70,5		68,7		74	65	88	
PCB 101	ng/kg dw	37680-73-2	493	715	375	607	711	574	751	740	700	624	658	524	623	375	751	
PCB 118	ng/kg dw	31508-00-6	728	1140	590	977	1100	890	1040	1150	1040	939	985	823	950	590	1150	
PCB 138	ng/kg dw	35065-28-2	2550	3890	2020	3290	3690	2710	4240	3690	3740	3630	3180	3510	3345	2020	4240	
PCB 153	ng/kg dw	35065-27-1	2780	4260	2260	3670	4100	3600	4460	4600	4790	4560	3730	4460	3939	2260	4790	
PCB 180	ng/kg dw	35065-29-3	1290	2070	1020	1690	1970	1680	2010	2170	2110	1920	2080	1550	1797	1020	2170	
7 PCBi excl. LOQ - manuelle	ng/kg dw		7841	12147,2	6265	10300,3	11651,7	9518,9	12589,4	12430,7	12450,5	11673	10701,7	10867	10703	6265	12589	
7 PCBi excl. LOQ - labo	ng/kg dw		7840	12200	6260	10300	11600	9510	12600	12400	12500	11700	10700	10900	10709	6260	12600	
7 PCBi incl. LOQ	ng/kg dw		7980	12200	6410	10400	11700	9590	12700	12500	12500	11800	10800	11000	10798	6410	12700	1955
Dioxines - PCDD/F (17)																		
2,3,7,8-TCDD	ng/kg dw	1746-01-6	0,71	1,25	0,68	1,02	1,2	0,99	1,07	1,21	1,03	1,03	1,01	0,92	1,0	0,7	1,3	
1,2,3,7,8-PeCDD	ng/kg dw	40321-76-4	2,48	4,16	1,83	3,36	3,71	3,01	3,72	4,43	3,58	3,27	3,62	2,81	3,3	1,8	4,4	
1,2,3,4,7,8-HxCDD	ng/kg dw	39227-28-6	3,23	5,11	2,48	4,37	5,04	4,09	4,29	5,67	4,73	4	4,86	3,51	4,3	2,5	5,7	
1,2,3,6,7,8-HxCDD	ng/kg dw	57653-85-7	6,45	10,2	4,45	7,98	9,71	7,48	8,39	10,6	8,73	7,83	8,79	6,52	8,1	4,5	10,6	
1,2,3,7,8,9-HxCDD	ng/kg dw	19408-74-3	4,58	7,34	3,1	5,71	6,71	5,32	5,39	7,31	6,31	5,53	6,06	4,61	5,7	3,1	7,3	
1,2,3,4,6,7,8-HpCDD	ng/kg dw	35822-46-9	58,8	92,2	40,9	82	91,4	75,9	79,2	93,9	84,8	75,2	82	63,1	76,6	40,9	93,9	-
OCDD	ng/kg dw	3268-87-9	124	195	87,5	162	186	154	159	192	182	156	163	132	157,7	87,5	195,0	
somme dioxines			200,3	315,3	140,9	266,4	303,8	250,8	261,1	315,1	291,2	252,9	269,3	213,5	256,7	140,9	315,3	51,4
2,3,7,8-TCDF	ng/kg dw	51207-31-9	91,1	152	72,6	128	140	116	129	141	138	123	134	107				
1,2,3,7,8-PeCDF	ng/kg dw	57117-41-6	70,5												122,6	72,6	152,0	
2,3,4,7,8-PeCDF				115	52,3	97,2	109	88,3	95,3	106	105	92,6	106	78,7	93,0	72,6 52,3	152,0 115,0	18,2
	ng/kg dw	57117-31-4	51,1	82,4	38	97,2 70,1	109 81,6	88,3 63,7	95,3 72,6	106 77,3	105 76,4	92,6 66,6	106 83,8	78,7 56,6	93,0 68,4	72,6 52,3 38,0	152,0 115,0 83,8	18,2 14,0
1,2,3,4,7,8-HxCDF	ng/kg dw ng/kg dw	57117-31-4 70648-26-9			38 76,7	97,2 70,1 137	109	88,3 63,7 129	95,3 72,6 136	106	105	92,6	106	78,7 56,6 114	93,0 68,4 134,9	72,6 52,3	152,0 115,0	18,2 14,0
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	ng/kg dw ng/kg dw	70648-26-9 57117-44-9	51,1	82,4	38	97,2 70,1	109 81,6	88,3 63,7	95,3 72,6	106 77,3	105 76,4	92,6 66,6	106 83,8	78,7 56,6	93,0 68,4	72,6 52,3 38,0	152,0 115,0 83,8	18,2 14,0 26,3
	ng/kg dw	70648-26-9	51,1 108	82,4 172	38 76,7	97,2 70,1 137	109 81,6 159	88,3 63,7 129	95,3 72,6 136	106 77,3 153	105 76,4 151	92,6 66,6 128	106 83,8 155	78,7 56,6 114	93,0 68,4 134,9	72,6 52,3 38,0 76,7	152,0 115,0 83,8 172,0	18,2 14,0 26,3
1,2,3,6,7,8-HxCDF	ng/kg dw ng/kg dw	70648-26-9 57117-44-9	51,1 108	82,4 172	38 76,7	97,2 70,1 137	109 81,6 159	88,3 63,7 129	95,3 72,6 136	106 77,3 153	105 76,4 151	92,6 66,6 128	106 83,8 155	78,7 56,6 114 43,7	93,0 68,4 134,9	72,6 52,3 38,0 76,7	152,0 115,0 83,8 172,0	18,2 14,0 26,3 11,7
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ng/kg dw ng/kg dw ng/kg dw	70648-26-9 57117-44-9 72918-21-9	51,1 108 41	82,4 172 69,6	38 76,7 29,4 23,7 143	97,2 70,1 137 55,5	109 81,6 159 64,6	88,3 63,7 129 50	95,3 72,6 136 56,4	106 77,3 153 64,9	105 76,4 151 61,6	92,6 66,6 128 52,6	106 83,8 155 62,7	78,7 56,6 114 43,7 36 214	93,0 68,4 134,9 54,3	72,6 52,3 38,0 76,7 29,4	152,0 115,0 83,8 172,0 69,6	18,2 14,0 26,3 11,7
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	ng/kg dw ng/kg dw ng/kg dw ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5	51,1 108 41 32,7	82,4 172 69,6 53,7	38 76,7 29,4 23,7	97,2 70,1 137 55,5 46,3	109 81,6 159 64,6	88,3 63,7 129 50	95,3 72,6 136 56,4	106 77,3 153 64,9 47,5	105 76,4 151 61,6	92,6 66,6 128 52,6 40,8	106 83,8 155 62,7 49,7	78,7 56,6 114 43,7	93,0 68,4 134,9 54,3	72,6 52,3 38,0 76,7 29,4	152,0 115,0 83,8 172,0 69,6	18,2 14,0 26,3 11,7 8,6 48,4
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF	ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4	51,1 108 41 32,7 198	82,4 172 69,6 53,7 308	38 76,7 29,4 23,7 143	97,2 70,1 137 55,5 46,3 265	109 81,6 159 64,6 50,9 295	88,3 63,7 129 50 41,4 243	95,3 72,6 136 56,4 42 259	106 77,3 153 64,9 47,5 299	105 76,4 151 61,6 47,6 279	92,6 66,6 128 52,6 40,8 241	106 83,8 155 62,7 49,7 286	78,7 56,6 114 43,7 36 214	93,0 68,4 134,9 54,3 42,7 252,5	72,6 52,3 38,0 76,7 29,4 23,7 143,0	152,0 115,0 83,8 172,0 69,6 53,7 308,0	18,2 14,0 26,3 11,7 8,6 48,4 16,6
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66	82,4 172 69,6 53,7 308 105	38 76,7 29,4 23,7 143 44,3	97,2 70,1 137 55,5 46,3 265 82,5	109 81,6 159 64,6 50,9 295 96,7	88,3 63,7 129 50 41,4 243 77,6	95,3 72,6 136 56,4 42 259 82,7	106 77,3 153 64,9 47,5 299 96,2	105 76,4 151 61,6 47,6 279 90,9	92,6 66,6 128 52,6 40,8 241 78,3	106 83,8 155 62,7 49,7 286 88,6	78,7 56,6 114 43,7 36 214 65,4	93,0 68,4 134,9 54,3 42,7 252,5 81,2	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0	18,2 14,0 26,3 11,7 8,6 48,4 16,6 74,1
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF somme furanes	ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4	82,4 172 69,6 53,7 308 105 465	38 76,7 29,4 23,7 143 44,3 225 705,0	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6	109 81,6 159 64,6 50,9 295 96,7 463 1459,8	88,3 63,7 129 50 41,4 243 77,6 380 1189,0	95,3 72,6 136 56,4 42 259 82,7 380 1253,0	106 77,3 153 64,9 47,5 299 96,2 441 1425,9	105 76,4 151 61,6 47,6 279 90,9 451 1400,5	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9	106 83,8 155 62,7 49,7 286 88,6 433 1398,8	78,7 56,6 114 43,7 36 214 65,4 327 1042,4	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7	18,2 14,0 26,3 11,7 8,6 48,4 16,6 74,1 239,1
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF somme furanes	ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4 1152	82,4 172 69,6 53,7 308 105 465 1522,7	38 76,7 29,4 23,7 143 44,3 225 705,0 846	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6	109 81,6 159 64,6 50,9 295 96,7 463 1459,8	88,3 63,7 129 50 41,4 243 77,6 380 1189,0	95,3 72,6 136 56,4 42 259 82,7 380 1253,0 1514	106 77,3 153 64,9 47,5 299 96,2 441 1425,9	105 76,4 151 61,6 47,6 279 90,9 451 1400,5	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9	106 83,8 155 62,7 49,7 286 88,6 433 1398,8 1668	78,7 56,6 114 43,7 36 214 65,4 327 1042,4 1256	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7	18,2 14,0 26,3 11,7 8,6 48,4 16,6 74,1 239,1
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF somme furanes ∑ PCDD/F PCDD/F TEQ (OMS 1998) sans LQ	ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4 1152 64,2	82,4 172 69,6 53,7 308 105 465 1522,7 1838	38 76,7 29,4 23,7 143 44,3 225 705,0 846 47,7	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6 1562	109 81,6 159 64,6 50,9 295 96,7 463 1459,8 1764	88,3 63,7 129 50 41,4 243 77,6 380 1189,0 1440	95,3 72,6 136 56,4 42 259 82,7 380 1253,0 1514 88,2	106 77,3 153 64,9 47,5 299 96,2 441 1425,9 1741	105 76,4 151 61,6 47,6 279 90,9 451 1400,5 1692	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9 1462 82,3	106 83,8 155 62,7 49,7 286 88,6 433 1398,8 1668 98,6	78,7 56,6 114 43,7 36 214 65,4 327 1042,4 1256	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8 1494 84,6	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0 846 47,7	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7 1838	18,2 14,0 26,3 11,7 8,6 48,4 16,6 74,1 239,1 290
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF somme furanes ∑ PCDD/F PCDD/F TEQ (OMS 1998) sans LQ PCDD/F TEQ (OMS 1998) avec LQ	ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4 1152 64,2 65,7	82,4 172 69,6 53,7 308 105 465 1522,7 1838 104	38 76,7 29,4 23,7 143 44,3 225 705,0 846 47,7 48,3	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6 1562 87,2 88,3	109 81,6 159 64,6 50,9 295 96,7 463 1459,8 1764 99,7	88,3 63,7 129 50 41,4 243 77,6 380 1189,0 1440 149,6 80,6	95,3 72,6 136 56,4 42 259 82,7 380 1253,0 1514 88,2 89,4	106 77,3 153 64,9 47,5 299 96,2 441 1425,9 1741 97,6	105 76,4 151 61,6 279 90,9 451 1400,5 1692 94,5	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9 1462 82,3 83,7	106 83,8 155 62,7 49,7 286 88,6 433 1398,8 1668 98,6	78,7 56,6 114 43,7 36 214 65,4 327 1042,4 1256 71 72,8	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8 1494 84,6 85,9	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0 846 47,7	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7 1838 104,0	18,2 14,0 26,3 11,7 8,6 48,4 16,6 74,1 239,1 290 16,7 16,9
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF somme furanes ∑ PCDD/F PCDD/F TEQ (OMS 1998) sans LQ PCDD/F TEQ (OMS 1998) avec LQ PCDD/F (OMS 2005 - TEQ) sans LQ	ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4 1152 64,2 65,7 52,7	82,4 172 69,6 53,7 308 105 465 1522,7 1838 104 106 85,8	38 76,7 29,4 23,7 143 44,3 225 705,0 846 47,7 48,3 39,1	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6 1562 87,2 88,3 71,3	109 81,6 159 64,6 50,9 295 96,7 463 1459,8 1764 99,7 101	88,3 63,7 129 50 41,4 243 77,6 380 1189,0 1440 79,6 80,6 65,2	95,3 72,6 136 56,4 42 259 82,7 380 1253,0 1514 88,2 89,4 71,9	106 77,3 153 64,9 47,5 299 96,2 441 1425,9 1741 97,6 99	105 76,4 151 61,6 47,6 279 90,9 451 1400,5 1692 94,5 96 77,3	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9 1462 82,3 83,7 67,3	106 83,8 155 62,7 49,7 286 88,6 433 1398,8 1668 98,6 100	78,7 56,6 114 43,7 36 214 65,4 327 1042,4 1256 71 72,8 58,2	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8 1494 84,6 85,9	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0 846 47,7 48,3	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7 1838 104,0 106,0	18,2 14,0 26,3 11,7 8,6 48,4 16,6 74,1 239,1 16,7 16,5
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF somme furanes ∑ PCDD/F PCDD/F TEQ (OMS 1998) sans LQ PCDD/F TEQ (OMS 1998) avec LQ PCDD/F (OMS 2005 - TEQ) sans LQ PCDD/F (OMS 2005 - TEQ) avec LQ	ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4 1152 64,2 65,7 52,7 54,2	82,4 172 69,6 53,7 308 105 465 1522,7 1838 104 106 85,8 87,5	38 76,7 29,4 23,7 143 44,3 225 705,0 846 47,7 48,3 39,1	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6 1562 87,2 88,3 71,3	109 81,6 159 64,6 50,9 295 96,7 463 1459,8 1764 99,7 101 81,3 82,9	88,3 63,7 129 50 41,4 243 77,6 380 1189,0 1440 79,6 80,6 65,2 66,2	95,3 72,6 136 56,4 42 259 82,7 380 1253,0 1514 88,2 89,4 71,9	106 77,3 153 64,9 47,5 299 96,2 441 1425,9 1741 97,6 99 80,1 81,6	105 76,4 151 61,6 47,6 279 90,9 451 1400,5 1692 94,5 96 77,3 78,8	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9 1462 82,3 83,7 67,3 68,6	106 83,8 155 62,7 49,7 286 88,6 433 1398,8 1668 98,6 100 79,8	78,7 56,6 114 43,7 36 214 65,4 327 1042,4 1256 71 72,8 58,2 60	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8 1494 84,6 85,9 69	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0 846 47,7 48,3 39	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7 1838 104,0 106,0 86	18,2 14,6 26,3 11,7 8,6 48,4 16,6 74,1 239,1 16,7 16,5 14,1
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF somme furanes ∑ PCDD/F PCDD/F TEQ (OMS 1998) sans LQ PCDD/F TEQ (OMS 1998) as son LQ PCDD/F (OMS 2005 - TEQ) sans LQ PCDD/F (OMS 2005 - TEQ) avec LC I-TEQ (NATO/CCMS)) sans LQ	ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4 1152 64,2 65,7 52,7 54,2 63,4	82,4 172 69,6 53,7 308 105 465 1522,7 1838 104 106 85,8 87,5	38 76,7 29,4 23,7 143 44,3 225 705,0 846 47,7 48,3 39,1 39,7 47,1	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6 1562 87,2 88,3 71,3 72,5	109 81,6 159 64,6 50,9 295 96,7 463 1459,8 1764 99,7 101 81,3 82,9 98,4	88,3 63,7 129 50 41,4 243 77,6 380 1189,0 1440 79,6 80,6 65,2 66,2 78,5	95,3 72,6 136 56,4 42 259 82,7 380 1253,0 1514 88,2 89,4 71,9 73,1 86,9	106 77,3 153 64,9 47,5 299 96,2 441 1425,9 1741 97,6 99 80,1 81,6	105 76,4 151 61,6 47,6 279 90,9 451 1400,5 1692 94,5 96 77,3 78,8 93,3	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9 1462 82,3 83,7 67,3 68,6 81,2	106 83,8 155 62,7 49,7 286 88,6 433 1398,8 1668 98,6 100 79,8 81,4	78,7 56,6 114 43,7 36 214 65,4 327 1042,4 1256 71 72,8 58,2 60 70	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8 1494 84,6 85,9 69 70,5 83,4	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0 8446 47,7 48,3 39 39,7	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7 1838 104,0 106,0 86 87,5	18,2 14,6 26,3 11,7 8,6 48,4 16,6 74,1 239,1 16,5 16,5 11,1 13,5 16,5
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF somme furanes ∑ PCDD/F PCDD/F TEQ (OMS 1998) sans LQ PCDD/F TEQ (OMS 1998) avec LQ PCDD/F (OMS 2005 - TEQ) sans LQ PCDD/F (OMS 2005 - TEQ) avec LQ	ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4 1152 64,2 65,7 52,7 54,2	82,4 172 69,6 53,7 308 105 465 1522,7 1838 104 106 85,8 87,5	38 76,7 29,4 23,7 143 44,3 225 705,0 846 47,7 48,3 39,1	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6 1562 87,2 88,3 71,3	109 81,6 159 64,6 50,9 295 96,7 463 1459,8 1764 99,7 101 81,3 82,9	88,3 63,7 129 50 41,4 243 77,6 380 1189,0 1440 79,6 80,6 65,2 66,2	95,3 72,6 136 56,4 42 259 82,7 380 1253,0 1514 88,2 89,4 71,9	106 77,3 153 64,9 47,5 299 96,2 441 1425,9 1741 97,6 99 80,1 81,6	105 76,4 151 61,6 47,6 279 90,9 451 1400,5 1692 94,5 96 77,3 78,8	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9 1462 82,3 83,7 67,3 68,6	106 83,8 155 62,7 49,7 286 88,6 433 1398,8 1668 98,6 100 79,8	78,7 56,6 114 43,7 36 214 65,4 327 1042,4 1256 71 72,8 58,2 60	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8 1494 84,6 85,9 69 70,5 83,4	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0 846 47,7 48,3 39	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7 1838 104,0 106,0 86	18,2 14,6 26,3 11,7 8,6 48,4 15,6 74,1 239,1 16,7 16,5 14,1 13,5 16,5
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF somme furanes ∑ PCDD/F PCDD/F TEQ (OMS 1998) sans LQ PCDD/F TEQ (OMS 1998) avec LQ PCDD/F (OMS 2005 - TEQ) avec LC I-TEQ (NATO/CCMS)) sans LQ I-TEQ (NATO/CCMS) avec LQ	ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4 1152 64,2 65,7 52,7 54,2 63,4 64,8	82,4 172 69,6 53,7 308 105 465 1522,7 1838 104 106 85,8 87,5 103	38 76,7 29,4 23,7 143 44,3 225 705,0 846 47,7 48,3 39,1 39,7 47,1	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6 1562 87,2 88,3 71,3 72,5 86	109 81,6 159 64,6 50,9 295 96,7 463 1459,8 1764 99,7 101 81,3 82,9 98,4	88,3 63,7 129 50 41,4 243 77,6 380 1189,0 1440 79,6 80,6 65,2 66,2 78,5	95,3 72,6 136 56,4 42 259 82,7 380 1253,0 1514 88,2 89,4 71,9 73,1 86,9 88	106 77,3 153 64,9 47,5 299 96,2 441 1425,9 1741 97,6 99 80,1 81,6 95,9 97,4	105 76,4 151 61,6 47,6 279 90,9 451 1400,5 1692 94,5 96 77,3 78,8 93,3 94,8	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9 1462 82,3 83,7 67,3 68,6 81,2 82,5	106 83,8 155 62,7 49,7 286 88,6 433 1398,8 1668 98,6 100 79,8 81,4 97,3 98,9	78,7 56,6 114 43,7 36 214 65,4 327 1042,4 1256 71 72,8 58,2 60 70 71,8	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8 1494 84,6 85,9 69 70,5 83,4 84,8	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0 8446 47,7 48,3 39 39,7	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7 1838 104,0 106,0 86 87,5	18,2 14,0 26,3 11,7 8,6 48,4 16,6 74,1 239,1 16,7 16,9 14,1 13,9 16,5
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF somme furanes ∑ PCDD/F PCDD/F TEQ (OMS 1998) sans LQ PCDD/F TEQ (OMS 1998) avec LQ PCDD/F (OMS 2005 - TEQ) avec LQ I-TEQ (NATO/CCMS)) sans LQ I-TEQ (NATO/CCMS) avec LQ somme PCDD-F + PCBdI	ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4 1152 64,2 65,7 52,7 54,2 63,4 64,8	82,4 172 69,6 53,7 308 105 465 1522,7 1838 104 106 85,8 87,5 103 105	38 76,7 29,4 23,7 143 44,3 225 705,0 846 47,7 48,3 39,1 39,7 47,1 47,7	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6 1562 87,2 88,3 71,3 72,5 86 87,1	109 81,6 159 64,6 50,9 295 96,7 463 1459,8 1764 99,7 101 81,3 82,9 98,4 100	88,3 63,7 129 50 41,4 243 77,6 380 1189,0 1440 79,6 80,6 65,2 66,2 78,5 79,6	95,3 72,6 136 56,4 42 259 82,7 380 1253,0 1514 88,2 89,4 71,9 73,1 86,9 88	106 77,3 153 64,9 47,5 299 96,2 441 1425,9 1741 97,6 99 80,1 81,6 95,9 97,4	105 76,4 151 61,6 47,6 279 90,9 451 1400,5 1692 94,5 96 77,3 78,8 93,3 94,8	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9 1462 82,3 83,7 67,3 68,6 81,2 82,5	106 83,8 155 62,7 49,7 286 88,6 433 1398,8 1668 98,6 100 79,8 81,4 97,3 98,9	78,7 56,6 114 43,7 36 214 65,4 327 1042,4 1256 71 72,8 58,2 60 70 71,8	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8 1494 84,6 69 70,5 83,4 84,8 Moyenne 77,0	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0 8446 47,7 48,3 39 39,7	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7 1838 104,0 106,0 86 87,5	18,2 14,0 26,3 11,7 8,6 48,4 16,6 74,1 239,1 16,7 16,9 14,1 13,9 16,5
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF somme furanes	ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4 1152 64,2 65,7 52,7 54,2 63,4 64,8	82,4 172 69,6 53,7 308 105 465 1522,7 1838 104 106 85,8 87,5 103 105	38 76,7 29,4 23,7 143 44,3 225 705,0 846 47,7 48,3 39,1 39,7 47,1 47,7	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6 1562 87,2 88,3 71,3 72,5 86 87,1	109 81,6 159 64,6 50,9 295 96,7 463 1459,8 1764 99,7 101 81,3 82,9 98,4 100	88,3 63,7 129 50 41,4 243 77,6 380 1189,0 1440 79,6 80,6 65,2 66,2 78,5 79,6	95,3 72,6 136 56,4 42 259 82,7 380 1253,0 1514 88,2 89,4 71,9 73,1 86,9 88	106 77,3 153 64,9 47,5 299 96,2 441 1425,9 1741 97,6 99 80,1 81,6 95,9 97,4	105 76,4 151 61,6 47,6 279 90,9 451 1400,5 1692 94,5 96 77,3 78,8 93,3 94,8 85,69 12500	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9 1462 82,3 83,7 67,3 68,6 81,2 82,5	106 83,8 155 62,7 49,7 286 88,6 433 1398,8 1668 98,6 100 79,8 81,4 97,3 98,9	78,7 56,6 114 43,7 36 214 65,4 327 1042,4 1256 71 72,8 58,2 60 70 71,8 64,48 10900	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8 1494 84,6 85,9 69 70,5 83,4 84,8 Moyenne 77,0	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0 8446 47,7 48,3 39 39,7	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7 1838 104,0 106,0 86 87,5	18,2 14,0 26,3 11,7 8,6 48,4 16,6 74,1 239,1 16,7 16,9 14,1 13,9 16,5
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF somme furanes ∑ PCDD/F PCDD/F TEQ (OMS 1998) sans LQ PCDD/F TEQ (OMS 1998) avec LQ PCDD/F (OMS 2005 - TEQ) avec LQ I-TEQ (NATO/CCMS)) sans LQ I-TEQ (NATO/CCMS) avec LQ somme PCDD-F + PCBdI	ng/kg dw	70648-26-9 57117-44-9 72918-21-9 60851-34-5 67562-39-4 55673-89-7	51,1 108 41 32,7 198 66 293 951,4 1152 64,2 65,7 52,7 54,2 63,4 64,8	82,4 172 69,6 53,7 308 105 465 1522,7 1838 104 106 85,8 87,5 103 105	38 76,7 29,4 23,7 143 44,3 225 705,0 846 47,7 48,3 39,1 39,7 47,1 47,7	97,2 70,1 137 55,5 46,3 265 82,5 414 1295,6 1562 87,2 88,3 71,3 72,5 86 87,1	109 81,6 159 64,6 50,9 295 96,7 463 1459,8 1764 99,7 101 81,3 82,9 98,4 100	88,3 63,7 129 50 41,4 243 77,6 380 1189,0 1440 79,6 80,6 65,2 66,2 78,5 79,6	95,3 72,6 136 56,4 42 259 82,7 380 1253,0 1514 88,2 89,4 71,9 73,1 86,9 88	106 77,3 153 64,9 47,5 299 96,2 441 1425,9 1741 97,6 99 80,1 81,6 95,9 97,4	105 76,4 151 61,6 47,6 279 90,9 451 1400,5 1692 94,5 96 77,3 78,8 93,3 94,8	92,6 66,6 128 52,6 40,8 241 78,3 386 1208,9 1462 82,3 83,7 67,3 68,6 81,2 82,5	106 83,8 155 62,7 49,7 286 88,6 433 1398,8 1668 98,6 100 79,8 81,4 97,3 98,9	78,7 56,6 114 43,7 36 214 65,4 327 1042,4 1256 71 72,8 58,2 60 70 71,8	93,0 68,4 134,9 54,3 42,7 252,5 81,2 388,2 1237,8 1494 84,6 69 70,5 83,4 84,8 Moyenne 77,0	72,6 52,3 38,0 76,7 29,4 23,7 143,0 44,3 225,0 705,0 8446 47,7 48,3 39 39,7	152,0 115,0 83,8 172,0 69,6 53,7 308,0 105,0 465,0 1522,7 1838 104,0 106,0 86 87,5	18,2 14,0 26,3 11,7 8,6 48,4 16,6 74,1 239,1 16,7 16,9 14,1 13,9 16,5

Légende: concentration < LQ

Sol P4 - maille 102-3			14G003326-019140											Moyenne	Min	Max	Ecart type	
Paramètres	Unités	N° CAS	P4-L1	P4-L2	P4-L3	P4-COU1	P4-COU2	P4-COU3	P4-PDT1	P4-PDT2	P4-PDT3	P4-CA1	P4-CA2	P4-CA3				
matière sèche	%		85,1	85	85	86,8	86,2	85,2	85,3	84,8	85,4	87,4	84,5	85	85,5	84,5	87,4	(
PCB-dl / 12 WHO																		
PCB 77	ng/kg dw	32598-13-3	200	232	190	189	282	270	250	166	248	301	193	225	228,8	166,0	301,0	
PCB 81	ng/kg dw	70362-50-4	12,5	18,7	20,9	17,6	25,1	16,2	22,1	15,1	33,3	33,5	16,3	15,3	20,6	12,5	33,5	
PCB 105	ng/kg dw	32598-14-4	766	859	688	690	833	947	946	630	949	1060	680	842	824,2	630,0	1060,0	
PCB 114	ng/kg dw	74472-37-0	18	28,4	19,5	18,6	24,3	27,8	34,1	19,7	30,7	31,3	20,6	26,3	24,9	18,0	34,1	
PCB 118	ng/kg dw	31508-00-6	1800	2160	1750	1680	1870	2240	2330	1590	2210	2490	1570	1980	1972,5	1570,0	2490,0	
PCB 123	ng/kg dw	65510-44-3	56,4	57	57,3	48,8	66,2	75,2	39,7	28,6	45,4	45,6	26,3	34,9	48,5	26,3	75,2	
PCB 126	ng/kg dw	57465-28-8	179	195	174	166	373	239	222	142	224	263	161	198	211,3	142,0	373,0	
PCB 156	ng/kg dw	38380-08-4	733	783	681	670	832	869	912	599	838	946	565	747	764,6	565,0	946,0	
PCB 157	ng/kg dw	69782-90-7	154	163	147	140	182	171	226	155	213	245	143	190	177,4	140,0	245,0	
PCB 167	ng/kg dw	52663-72-6	542	571	525	491	602	651	591	407	571	649	371	514	540,4	371,0	651,0	
PCB 169	ng/kg dw	32774-16-6	40,8	36,1	34,5	31,9	131	40,5	55,6	34,7	49,5	58,1	36,9	45,2	49,6	31,9	131,0	
PCB 189	ng/kg dw	39635-31-9	176	184	161	161	288	205	250	162	211	249	144	198	199,1	144,0	288,0	
Σ PCB-dl			4678	5287	4448	4304	5509	5752	5879	3949	5623	6372	3927	5016	5062	3927	6372	80
co-PCBs TEQ (OMS 1998) sans LQ	ng/kg dw		19,1	20,7	18,4	17,6	39,5	25,2	23,7	15,2	23,8	27,9	17,1	21,1	22,4	15,2	39,5	6
PCB-dl (OMS 1998 -TEQ) avec LQ	ng/kg dw		19,1	20,7	18,4	17,6	39,5	25,2	23,7	15,2	23,8	27,9	17,1	21,1	22,4	15,2	39,5	6
PCB-dl (OMS 2005 -TEQ) sans LOQ	ng/kg dw		19,3	20,7	18,5	17,7	41,4	25,3	24,1	15,4	24,1	28,3	17,4	21,3	22,8	15,4	41,4	7
PCB-dl (OMS 2005 -TEQ) avec LOQ	ng/kg dw		19,3	20,7	18,5	17,7	41,4	25,3	24,1	15,4	24,1	28,3	17,4	21,3	22,8	15,4	41,4	
PCB - 7 Indicateurs																		
PCB 28	ng/kg dw	7012-37-5							109		84,6	155	331		170	85	331	1
PCB 52	ng/kg dw	35693-99-3	230	301	218	214	236	359	374	197	310	473	362	352	302	197	473	
PCB 101	ng/kg dw	37680-73-2	2010	2280	1890	1800	2070	2690	2870	1830	2410	3020	1940	2260	2256	1800	3020	4:
PCB 118	ng/kg dw	31508-00-6	1800	2160	1750	1680	1870	2240	2330	1590	2210	2490	1570	1980	1973	1570	2490	3
PCB 138	ng/kg dw	35065-28-2	9050	10400	8930	8330	9450	10800	10300	7140	9270	10700	6700	8970	9170	6700	10800	13
PCB 153	ng/kg dw	35065-27-1	8720	9800	9230	8310	9090	9200	12100	8400	11500	12800	7430	10200	9732	7430	12800	16
PCB 180	ng/kg dw	35065-29-3	7140	7500	6760	6640	7080	7760	8410	5690	7760	8570	5210	6890	7118	5210	8570	9!
7 PCBi excl. LOQ - manuelle	ng/kg dw		28950	32441	28778	26974	29796	33049	36493	24847	33544,6	38208	23543	30652	30606	23543	38208	440
7 PCBi excl. LOQ - labo	ng/kg dw		29000	32400	28800	27000	29800	33000	36500	24800	33600	38200	23500	30600	30600	23500	38200	44:
7 PCBi incl. LOQ	ng/kg dw		29000	32500	28900	27100	29900	33100	36500	24900	33600	38200	23500	30700	30658	23500	38200	439
Dioxines - PCDD/F (17)																		
2,3,7,8-TCDD	ng/kg dw	1746-01-6	2,4	2,65	2,74	1,98	2,72	3,47	3,33	2,93	3	10,1	2,15	4,16	3,5	2,0	10,1	2
1,2,3,7,8-PeCDD	ng/kg dw	40321-76-4	11,8	13,4	13,1	10,8	14,1	17,8	18,4	11,8	15,8	32,7	11,3	16,1	15,6	10,8	32,7	
1,2,3,4,7,8-HxCDD	ng/kg dw	39227-28-6	17,2	18,9	18,6	15,5	24,2	23,1	24,7	16,5	20,4	33,5	16,4	18,8	20,7	15,5	33,5	
1,2,3,6,7,8-HxCDD	ng/kg dw	57653-85-7	33,7	38,4	37,6	32,2	44,2	44,2	46,1	34,1	40,8	66,7	30,1	36,9	40,4	30,1	66,7	
1,2,3,7,8,9-HxCDD	ng/kg dw	19408-74-3	21,6	24,7	24,4	19,6	29,5	30,7	29	22,9	27	49	18,8	22,5	26,6	18,8	49,0	
1,2,3,4,6,7,8-HpCDD	ng/kg dw	35822-46-9	325	323	346	288	458	389	401	363	353	563	268	336	367,8	268,0	563,0	
OCDD	ng/kg dw	3268-87-9	627	592	616	540	1170	724	693	882	657	990	505	629	718,8	505,0	1170,0	
somme dioxines			1038,7	1013,1	1058,4	908,1	1742,7	1232,3	1215,5	1333,2	1117,0	1745,0	851,8	1063,5	1193,3	851,8	1745,0	
2,3,7,8-TCDF	ng/kg dw	51207-31-9	216	220	198	191	224	245	264	179	256	295	164	232	223,7	164,0	295,0	
1,2,3,7,8-PeCDF	ng/kg dw	57117-41-6	201	203	185	183	193	214	235	147	208	294	146	198	200,6	146,0	294,0	
2,3,4,7,8-PeCDF	ng/kg dw	57117-31-4	186	190	171	154	247	225	234	143	223	283	158	201	201,3	143,0	283,0	
1,2,3,4,7,8-HxCDF	ng/kg dw	70648-26-9	356	365	325	304	403	391	423	272	377	496	258	334	358,7	258,0	496,0	
1,2,3,6,7,8-HxCDF	ng/kg dw	57117-44-9	192	200	197	168	276	244	260	164	220	305	167	205	216,5	164,0	305,0	45
1,2,3,7,8,9-HxCDF	ng/kg dw	72918-21-9																
2,3,4,6,7,8-HxCDF	ng/kg dw	60851-34-5	216	218	206	179	487	268	273	204	242	341	208	232	256,2	179,0	487,0	
1,2,3,4,6,7,8-HpCDF	ng/kg dw	67562-39-4	1000	985	976	848	2370	1200	1410	1160	1100	1470	880	1050	1204,1	848,0	2370,0	
1,2,3,4,7,8,9-HpCDF	ng/kg dw	55673-89-7	235	230	245	213	301	285	281	199	253	369	185	238	252,8	185,0	369,0	
OCDF	ng/kg dw	39001-02-0	1250	1140	1220	1120	1940	1390	1330	1160	1200	1720	983	1180	1302,8	983,0	1940,0	
somme furanes			3852,0	3751,0	3723,0	3360,0	6441,0	4462,0	4710,0	3628,0	4079,0	5573,0	3149,0	3870,0	4216,5	3149,0	6441,0	
Σ PCDD/F			4891	4764	4781	4268	8184	5694	5926	4961	5196	7318	4001	4933	5410	4001	8184	
PCDD/F TEQ (OMS 1998) sans LQ	ng/kg dw		238	245	227	204	330	288	304	201	276	382	200	255	262,5	200,0	382,0	56
PCDD/F TEQ (OMS 1998) avec LQ	ng/kg dw		243	248	230	207	334	292	308	203	279	387	202	258	265,9	202,0	387,0	5
PCDD/F (OMS 2005 - TEQ) sans LQ	ng/kg dw		197	203	190	170	278	239	252	169	228	320	165	211	219	165	320	
PCDD/F (OMS 2005 - TEQ) avec LQ	ng/kg dw		203	207	192	172	282	243	257	172	231	325	168	215	222,3	168,0	325,0	
		 	234	240	222	200	326	281	296	197	270	368	195	249	256.5	195.0	368.0	
I-TEQ (NATO/CCMS)) sans LQ	ng/kg dw		2341	240	222	2001	320	201	230	13/1	2/0	300	193	243	230,3	193,01		
I-TEQ (NATO/CCMS)) sans LQ I-TEQ (NATO/CCMS) avec LQ	ng/kg dw ng/kg dw		239	243	225	203	330	285	300	199	273	373	198	252	260,0	198,0	373,0	

182,40 23500 232,30 30600 223,70 187,70 252,10 somme PCB-i 7 cong 29000 32400 28800 27000 29800 33000 36500 24800 33600 38200 30600 9,6 1525,4 9,4 1304,3 rapport PCDD-F /PCBdl 10,2 9,8 10,3 6,7 10,5 11,0 9,5 11,3 9,5 9,9 9,8 1502,6 1565,2 1556,8 719,8 1514,5 1610,4 1394,2 1349,8 1350,6 1436,6 1402,5 rapport PCBi / PCBdl

égende: concentration < LQ

Annexe : concentrations en POPs dans les sols - maille P1 utilisée pour les cultures de 2015

sol P1 - maille 131-2			15G003194-001			15G003194-013	3 15G003194-014	15G003194-015	15G003194-025	15G003194-026	15G003194-027	Moyenne	Min	Max	Ecart type
Paramètres	Unités	N° CAS	SP1-LAI-R1	SP1-LAI-R2	SP1-LAI-R3	SP1-HA-R1	SP1-HA-R2	SP1-HA-R3	SP1-GRA-R1	SP1-GRA-R2	SP1-GRA-R3				
matière sèche	%		90,7	90,8	90,7	95,8	95,5	93,7	94,1	90,5	90,2	92,4	90,2	95,8	2,3
PCB-dl / 12 WHO															
PCB 77	ng/kg dw	32598-13-3	9,98	9,72	9,5	6,9	9,82	7,88	9,24	11,4	12,1	9,6	6,9	12,1	1,6
PCB 81	ng/kg dw	70362-50-4	< 0.77	< 0.76	< 0.85	< 0.80	< 0.83	< 0.87	< 0.85	< 0.78	< 0.77				
PCB 105	ng/kg dw	32598-14-4	63,2	69	66,3	49	68,2	60,2	55,2	65,1	65,1	62,4	49,0	69,0	6,6
PCB 114	ng/kg dw	74472-37-0	< 0.92	< 0.92	< 1.0	< 0.96	< 1	< 1.1	< 1.09	1,2	1,15				
PCB 118	ng/kg dw	31508-00-6	149	143	139	104	151	119	129	142	145	135,7	104,0	151,0	15,5
PCB 123	ng/kg dw	65510-44-3	6,16	5,1	6,88	3,11	3,37	3,58	5,06	3,95	4	4,6	3,1	6,9	
PCB 126	ng/kg dw	57465-28-8	11,5	12,1	11,5	7,29	12,4	9,85	9,91	14	14,1	11,4	7,3	14,1	
PCB 156	ng/kg dw	38380-08-4	80,7	87,1	81,6	59,2	89,2	73,5	64,1	79,4	82,2	77,4	59,2	89,2	
PCB 157	ng/kg dw	69782-90-7	16,4	15,5	16,9	11,9	17,2	12,5	16,6	18,4	17,9	15,9	11,9	18,4	
PCB 167	ng/kg dw	52663-72-6	58,7	60,8	58,7	44,6	66,8	51,1	48,3	54,2	54,6	55,3	44,6	66,8	6,8
PCB 169	ng/kg dw	32774-16-6	< 2.4	< 2.3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.6	< 2.4	< 2.4				
PCB 189	ng/kg dw	39635-31-9	17	17	15,7	10,7	16	12,6	14	18,4	18,6	15,6	10,7	18,6	2,7
Σ PCB-dl			413	419	406	297	434	350	351	408	415	388	297	434	45
co-PCBs TEQ (OMS 1998) sans LQ	ng/kg dw		1,22	1,29	1,22	0,783	1,32	1,05	1,05	1,48	1,48	1,2	0,8	1,5	0,2
PCB-dl (OMS 1998 -TEQ) avec LQ	ng/kg dw		1,24	1,31	1,25	0,808	1,35	1,08	1,08	1,5	1,51	1,2	0,8	1,5	
PCB-dl (OMS 2005 -TEQ) sans LOQ	ng/kg dw		1,16	1,22	1,16	0,738	1,25	0,996	1	1,42	1,42	1,2	0,7	1,4	0,2
PCB-dl (OMS 2005 -TEQ) avec LOQ	ng/kg dw		1,23	1,3	1,24	0,812	1,33	1,08	1,08	1,49	1,49	1,2	0,8	1,5	0,2
PCB - 7 Indicateurs															
PCB 28	ng/kg dw	7012-37-5	< 81	< 80	< 89	< 84		< 92	< 90	< 82	< 80				
PCB 52	ng/kg dw	35693-99-3	< 60	< 59	< 66	< 62	< 65	< 68	< 67	< 61	< 60				
PCB 101	ng/kg dw	37680-73-2	211	212	223	173	229	219	153	188	190	200	153	229	25
PCB 118	ng/kg dw	31508-00-6	149	143	139	104	151	119	129	142	145	136	104	151	16
PCB 138	ng/kg dw	35065-28-2	1320	1390	1310	1110	1660	1120	1010	1090	1080	1232	1010	1660	
PCB 153	ng/kg dw	35065-27-1	1700	1760		1200		1450	1360	1430	1440	1516	1200	1760	
PCB 180	ng/kg dw	35065-29-3	916	1010		737	1060	785	702	847	869	870	702	1060	
7 PCBi excl. LOQ - manuelle	ng/kg dw		4296	4515		3324	4780	3693	3354	3697	3724	3954	3324	4780	
7 PCBi excl. LOQ - labo	ng/kg dw		4290	4520		3320	4780	3690	3350	3700	3730	3954	3320	4780	
7 PCBi incl. LOQ	ng/kg dw		4440	4660	4360	3470	4940	3850	3500	3840	3870	4103	3470	4940	517
Dioxines - PCDD/F (17)															
2,3,7,8-TCDD	ng/kg dw	1746-01-6	< 0.18	< 0.18	< 0.20	< 0.18	< 0.19	< 0.20	< 0.20	< 0.18	< 0.18				
1,2,3,7,8-PeCDD	ng/kg dw	40321-76-4	< 0.24	< 0.23	< 0.26	< 0.25	< 0.25	< 0.27			< 0.24				
1,2,3,4,7,8-HxCDD	ng/kg dw	39227-28-6	< 0.47	< 0.47	< 0.52	< 0.49		< 0.54	-,	< 0.48	< 0.47				
1,2,3,6,7,8-HxCDD	ng/kg dw	57653-85-7	< 0.47	< 0.47	< 0.52	< 0.49		< 0.54	,	< 0.48	< 0.47				
1,2,3,7,8,9-HxCDD	ng/kg dw	19408-74-3	< 0.47	< 0.47	< 0.52	< 0.49		< 0.54	1,51	< 0.48	< 0.47				
1,2,3,4,6,7,8-HpCDD	ng/kg dw	35822-46-9	3,97	6,54		3,13	4,39	3,79	79,4	4,13	4,33	12,6	3,1	79,4	
OCDD	ng/kg dw	3268-87-9	15,5	52		13,2	16,7	13,8	462	16	15,8	68,8	13,2	462,0	
somme dioxines	/ll	F4207 24 0	19,5	58,5		16,3		17,6	547,4	20,1	20,1	82,1	16,3	547,4	
2,3,7,8-TCDF	ng/kg dw	51207-31-9	2,99 1,51	3,1 1,67		2,32 1,36	2,93 1,83	2,8 1,65	2,76 1,55	2,96 1,66	2,87 1,85	2,9 1,6	2,3 1,4	3,1 1,9	
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	ng/kg dw ng/kg dw	57117-41-6 57117-31-4	1,51	1,67				1,65		1,55	1,85	1,8	1,4	2,0	
1,2,3,4,7,8-PeCDF	ng/kg dw	70648-26-9	2,85	2.89		2.02	,	2,51	3,02	2.78	3,17	2,8	2,0	3,2	
1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF	ng/kg dw	57117-44-9	1,27	1,28		0,942	1,41	1,22	1,78	1,24	1,37	1,3	0,9	1,8	
1,2,3,7,8,9-HxCDF	ng/kg dw	72918-21-9	< 0.39	< 0.39	< 0.43	< 0.41		< 0.45		< 0.40	< 0.39	1,5	0,9	1,0	0,2
2,3,4,6,7,8-HxCDF	ng/kg dw	60851-34-5	1,25	1,23		0,941	1,34	1,16	2,47	1,26	1,3	1,3	0,9	2,5	0,4
1,2,3,4,6,7,8-HpCDF	ng/kg dw	67562-39-4	5,72	6,74		4,13		5,33	66,4	7,03	7,15		4,1	66,4	
1,2,3,4,7,8,9-HpCDF	ng/kg dw	55673-89-7	1,62	1,77		1,34	1,79	1,67	2,96	1,53	1,81	1,8	1,3	3,0	
OCDF	ng/kg dw	39001-02-0	9,43	11,8		9,17	10,1	9,19	72,7	9,87	10,3	16,8	8,6	72,7	
somme furanes	₆ / Ng UW	23001 02 0	28,4	32,4		23,6	31,3	27,2	155,9	30,1	31,7	43,1	23,6	155,9	
Σ PCDD/F	1		48			40	52	45	703	50	52	125	40	703	217
· '	na/lia d:::		1,92	2,02			2,13	1,78	4,36		2,04		1,5	4,4	
PCDD/F TEQ (OMS 1998) sans LQ	ng/kg dw					1,47				1,9		2,2			
PCDD/F TEQ (OMS 1998) avec LQ	ng/kg dw		2,52	2,61			2,77	2,46	4,56	2,5	2,64		2,1	4,6	
PCDD/F (OMS 2005 - TEQ) sans LQ PCDD/F (OMS 2005 - TEQ) avec LQ	ng/kg dw		1,54 2,13	1,63 2,22				1,42 2,1		1,53 2,13	1,63 2,23	1,8 2,4	1,2 1,8	4,1 4,3	
I-TEQ (NATO/CCMS)) sans LQ	ng/kg dw ng/kg dw		1,94	2,22		1,79	2,33	1,8		2,13 1,92	2,23	2,4	1,8	4,3	
		1	1,94	. ∠,∪8	1,9/	1,49	2,15	1,8	4,7	1,92	2,07	۷,۷	1,5	4,/	
I-TEQ (NATO/CCMS)) sans EQ I-TEQ (NATO/CCMS) avec LQ	ng/kg dw		2,42	2,55	2,49	1,98	2,67	2,34	4,9	2,41	2,54	2,7	2,0	4,9	0,8

ng/kg dw I-TEQ ng/kg dw somme PCDD-F + PCBdl sans LOQ 3,0 3954 2,70 2,85 2,71 1,91 2,94 2,42 5,11 2,95 3,05 3724 4515 4200 3324 4780 somme PCB-i 7 cong 4296 3693 3354 3697 rapport PCDD-F /PCBdl 1,6 1,4 1,4 4,1 1,1 1,3 1,3 1,1 1,3 rapport PCBi / PCBdl 3698,3 3704,9 3629,3 4498,6 3824,0 3704,8 3350,0 2605,6 2626,8 3515,8

_égende: concentration < LQ

Sol P2 - maille 144-2			15G003194-004	15G003194-005	15G003194-006	15G003194-016	15G003194-017	15G003194-018	15G003194-028	15G003194-029	15G003194-030	Moyenne	Min	Max	Ecart type
Paramètres	Unités	N° CAS	SP2-LAI-R1	SP2-LAI-R2	SP2-LAI-R3	SP2-HA-R1	SP2-HA-R2	SP2-HA-R3	SP2-GRA-R1	SP2-GRA-R2	SP2-GRA-R3				
matière sèche	%		94	92,6	92,9	91,6	90,9	91	88,2	89,6	89,1	91,1	88,2	94,0	1,9
PCB-dl / 12 WHO															
PCB 77	ng/kg dw	32598-13-3	70,3	95,3	77,3	112	91,4	105	85,6	92,3	108	93,0	70,3	112,0	13,9
PCB 81	ng/kg dw	70362-50-4	3,04	2,93	2,75	1,97	2,2	3,36	3,3	3,87	3,99	3,0	2,0	4,0	0,7
PCB 105	ng/kg dw	32598-14-4	553	671	508	732	639	727	530	607	680	627,4	508,0	732,0	83,2
PCB 114	ng/kg dw	74472-37-0	10,7	11,7	7,87	8,81	6,36	7,81	12,5	15,9	18,1	11,1	6,4	18,1	3,9
PCB 118	ng/kg dw	31508-00-6	1420	1800	1370	1990	1810	2080	1510	1700	1920	1733,3	1370,0	2080,0	253,1
PCB 123	ng/kg dw	65510-44-3	68	81,8	67,1	42,6	43,8	44,4	32,2	30	37	49,7	30,0	81,8	18,2
PCB 126	ng/kg dw	57465-28-8	127	138	109	153	135	154	131	146	166	139,9	109,0	166,0	17,0
PCB 156	ng/kg dw	38380-08-4	846	991	796	1130	955	1070	816	879	939	935,8	796,0	1130,0	114,2
PCB 157	ng/kg dw	69782-90-7	161	197	164	210	171	196	176	183	208	185,1	161,0	210,0	18,4
PCB 167	ng/kg dw	52663-72-6	645	715	576	809	692	789	553	581	657	668,6	553,0	809,0	91,7
PCB 169	ng/kg dw	32774-16-6	14,7	18,8	14,3	17		19,3	19,9	21,4	20,1	17,6	13,0	21,4	3,0
PCB 189	ng/kg dw	39635-31-9	189	235	172	249	198	238	208	213	238	215,6	172,0	249,0	26,2
Σ PCB-dl			4108	4958	3864	5455	4757	5434	4078	4472	4995	4680	3864	5455	586
co-PCBs TEQ (OMS 1998) sans LQ	ng/kg dw		13,6	14,9	11,8	16,5	14,5	16,6	14	15,6	17,7	15,0	11,8	17,7	1,8
PCB-dl (OMS 1998 -TEQ) avec LQ	ng/kg dw		13,6	14,9	11,8	16,5	14,5	16,6	14	15,6	17,7	15,0	11,8	17,7	1,8
PCB-dl (OMS 2005 -TEQ) sans LOQ	ng/kg dw		13,3	14,5	11,5	16		16,2	13,8	15,3	17,3	14,7	11,5	17,3	1,7
PCB-dl (OMS 2005 -TEQ) avec LOQ	ng/kg dw		13,3	14,5	11,5	16	14,1	16,2	13,8	15,3	17,3	14,7	11,5	17,3	1,7
PCB - 7 Indicateurs															
PCB 28	ng/kg dw	7012-37-5	< 88	86,8 <		86,5	85,4		< 81	88,2	99,5	92	85	104	8
PCB 52	ng/kg dw	35693-99-3	103	187	118	224	154	201	160	185	220	172	103	224	42
PCB 101	ng/kg dw	37680-73-2	1710	2210	1710	2360	2020	2380	1800	1700	1980	1986	1700	2380	277
PCB 118	ng/kg dw	31508-00-6	1420	1800	1370	1990	1810	2080	1510	1700	1920	1733	1370	2080	253
PCB 138	ng/kg dw	35065-28-2	11300 12200	13300	10500	14800	13400	14500	9830 11800	10100	11400	12126	9830	14800	1905 2539
PCB 153 PCB 180	ng/kg dw	35065-27-1 35065-29-3	12200 8660	15100 10200	11600 8070	17300 11500	14300 10300	15800 11600	11800 8040	11900 8220	18300 9270	14256 9540	11600 8040	18300 11600	2539 1419
7 PCBi excl. LOQ - manuelle	ng/kg dw	35065-29-3	35393	42883,8	33368	48260,5	42069,4	46665	33140	33893,2	43189,5	39874	33140	48261	5967
7 PCBI excl. LOQ - manuelle 7 PCBi excl. LOQ - labo	ng/kg dw ng/kg dw		35393 35400	42883,8	33300	48260,5	42069,4	46700	33140	33893,2	43189,5	39874	33140	48261	5967
7 PCBi exci. LOQ - Iabo	ng/kg dw		35500	42900	33400	48200	42100	46700	33300	33800	43200	39900	33300	48200	5940
Dioxines - PCDD/F (17)	lig/kg uw		35300	42300	33400	48200	42100	40700	33300	33800	43200	39300	33300	48200	3340
2,3,7,8-TCDD	ng/kg dw	1746-01-6	0.349	0.354	0.334	0.398	0.354	0.396	0.345	0.394	0.422	0,4	0,3	0,4	0,0
1,2,3,7,8-PeCDD	ng/kg dw	40321-76-4	1,21	1,46	1,18	1,63	1,38	1,6	1,31	1,39	1,6	1,4	1,2	1,6	0,2
1,2,3,4,7,8-HxCDD	ng/kg dw	39227-28-6	1,48	1,84	1,43	1,81	1,8	2,03	1,73	1,84	2,14	1,8	1,4	2,1	0,2
1,2,3,6,7,8-HxCDD	ng/kg dw	57653-85-7	3,46	4,19	3,06	4,6	4,2	4,9	3,71	4,12	4,68	4,1	3,1	4,9	0,6
1,2,3,7,8,9-HxCDD	ng/kg dw	19408-74-3	1,93	2,52	1,95	2,76	2,36	3,02	2,25	2,48	2,87	2,5	1,9	3,0	0,4
1,2,3,4,6,7,8-HpCDD	ng/kg dw	35822-46-9	36,1	44,7	30,9	46,1	39,6	45,7	41,1	44,3	51	42,2	30,9	51,0	6,0
OCDD	ng/kg dw	3268-87-9	117	169	110	161	142	165	137	152	179	148,0	110,0	179,0	23,6
somme dioxines			161,5	224,1	148,9	218,3	191,7	222,6	187,4	206,5	241,7	200,3	148,9	241,7	30,7
2,3,7,8-TCDF	ng/kg dw	51207-31-9	31,6	37,3	27,4	40,2	37,5	41,5	37	39,1	43,5	37,2	27,4	43,5	5,0
1,2,3,7,8-PeCDF	ng/kg dw	57117-41-6	21,1	27,8	21,3	27,1	23,5	25,7	26,5	26,4	29,5	25,4	21,1	29,5	2,9
2,3,4,7,8-PeCDF	ng/kg dw	57117-31-4	21,5	25,6	20,7	28,4	25	28,6	23,9	26,5	29,3	25,5	20,7	29,3	3,1
1,2,3,4,7,8-HxCDF	ng/kg dw	70648-26-9	38,7	47	37	51,6	44	52	44,9	48,7	53,5	46,4	37,0	53,5	5,8
1,2,3,6,7,8-HxCDF	ng/kg dw	57117-44-9	18,8	22,4	17,1	24,7	20,9	23,7	19,6	21,8	24,7	21,5	17,1	24,7	2,7
1,2,3,7,8,9-HxCDF	ng/kg dw	72918-21-9	< 3.90		3.66	< 5.63	< 6.42	< 6.15	< 4.89	< 4.63	< 5.2				
2,3,4,6,7,8-HxCDF	ng/kg dw	60851-34-5	15,5	18,8	13,6	21,6	19,4	21,6	17	19,4	22	18,8	13,6	22,0	2,9
1,2,3,4,6,7,8-HpCDF	ng/kg dw	67562-39-4	74,6	101	78,9	101	87,7	97,5	102	102	116	95,6	74,6	116,0	13,0
1,2,3,4,7,8,9-HpCDF	ng/kg dw	55673-89-7	26,9	31,1	24	34,1	28,8	33,5	27,8	29,3	34,1	30,0	24,0	34,1	3,5
OCDF	ng/kg dw	39001-02-0	142	172	132	183	163	193	155	172	194	167,3	132,0	194,0	21,6
somme furanes			390,7	483,0	372,0	511,7	449,8	517,1	453,7	485,2	546,6	467,8	372,0	546,6	57,8
Σ PCDD/F			552	707	521	730	641	740	641	692	788	668	521	788	88
PCDD/F TEQ (OMS 1998) sans LQ	ng/kg dw		25,9	31,2	24,4	34,2	30	34,2	29,3	31,9	35,6	30,7	24,4	35,6	3,8
PCDD/F TEQ (OMS 1998) avec LQ	ng/kg dw		26,3	31,8	24,8	34,7	30,7	34,8	29,8	32,4	36,1	31,3	24,8	36,1	3,8
PCDD/F (OMS 2005 - TEQ) sans LQ	ng/kg dw		21,3	25,6	19,9	28		28,1	24	26,1	29,2	25	20	29	3
PCDD/F (OMS 2005 - TEQ) avec LQ	ng/kg dw		21,7	26,2	20,3	28,6	25,3	28,7	24,5	26,6	29,7	25,7	20,3	29,7	3,2
I-TEQ (NATO/CCMS)) sans LQ	ng/kg dw		25,6	30,8	24,1	33,6	29,6	33,8	28,9	31,5	35,1	30,3	24,1	35,1	3,7
I-TEQ (NATO/CCMS) avec LQ	ng/kg dw		26	31,3	24,4	34,2	30,3	34,4	29,4	32	35,6	30,8	24,4	35,6	3,8
												Moyenne			
somme PCDD-F + PCBdl	ng/kg dw	I-TEQ	34,60	40,10	31,40	44,00	38,70	44,30	37,80	41,40	46,50	39,9			

ng/kg dw I-TEQ 39,9 39874 1,7 2723,2 somme PCDD-F + PCBdl 34,60 40,10 44,00 38,70 44,30 37,80 41,40 somme PCB-i 7 cong ng/kg dw 35393 42884 33368 48261 42069 46665 33140 33893 43190 1,7 2882,7 rapport PCDD-F /PCBdl 1,6 1,8 1,7 1,8 1,7 1,7 1,7 rapport PCBi / PCBdl 2661,7 2958,6 2895,7 3012,5 2985,8 2405,8 2209,2 2497,1

concentration < LQ

Sol P3 - maille 100-5			15G003194-007			15G003194-019		15G003194-021				Moyenne	Min	Max	Ecart type
Paramètres	Unités	N° CAS	SP3-LAI-R1	. SP3-LAI-R2	SP3-LAI-R3	SP3-HA-R1	SP3-HA-R2	SP3-HA-R3	SP3-GRA-R1	. SP3-GRA-R2	SP3-GRA-R3				
matière sèche	%		95,6	92,6	93,9	91,3	91,2	90,1	96,2	90,2	96	93,0	90,1	96,2	2,
PCB-dl / 12 WHO															
PCB 77	ng/kg dw	32598-13-3	94,8		59,9	159	99,3	152	97		126	115,3	59,9	159,0	33,
PCB 81	ng/kg dw	70362-50-4	8,32	10,1	6,28	14,1	7,44	14,6	11		13,6	11,3	6,3	16,6	3,
PCB 105	ng/kg dw	32598-14-4	362	362	245	588	361	501	359		467	416,2	245,0	588,0	104,
PCB 114	ng/kg dw	74472-37-0	14,7	14,7	11,1	23,2	12,6	27,4	18,4	,	19	19,1	11,1	30,4	6,
PCB 118	ng/kg dw	31508-00-6	946		610	1530	932	1290	982	1340	1230	1074,9	610,0	1530,0	291,
PCB 123	ng/kg dw	65510-44-3	37,9	36,2	23,3	25,1	15,8	19,7	28,4		42,9	28,2	15,8	42,9	9,
PCB 126	ng/kg dw	57465-28-8	69,6		44	104	65,6	101	75,9		91,6	80,7	44,0	109,0	21,
PCB 156	ng/kg dw	38380-08-4	348		209	491	300	416	286		371	351,2	209,0	491,0	82,
PCB 157	ng/kg dw	69782-90-7	81,4		47,9	104	62	107	79		97,3	83,6	47,9	107,0	21,
PCB 167	ng/kg dw	52663-72-6	244		150	343	217	273	208		252	242,9	150,0	343,0	54,
PCB 169	ng/kg dw	32774-16-6	10,5	10	7,04	15,6	9,77	17,9	12,9	20,1	13	13,0	7,0	20,1	4,
PCB 189	ng/kg dw	39635-31-9	68,5	59	44,3	101	65,3	102	68,3	102	83,4	77,1	44,3	102,0	21,
Σ PCB-dl			2286	2089	1458	3498	2148	3022	2226	3089	2807	2514	1458	3498	633
co-PCBs TEQ (OMS 1998) sans LQ	ng/kg dw		7,44	. 7	4,71	11,1	7	10,8	8,07	11,6	9,73	8,6	4,7	11,6	2,
PCB-dl (OMS 1998 -TEQ) avec LQ	ng/kg dw		7,44		4,71	11,1	7	10,8	8,07	11,6	9,73	8,6	4,7	11,6	2,3
PCB-dl (OMS 2005 -TEQ) sans LOQ	ng/kg dw		7,35		4,66	11	6,93	10,8	8,05	11,6	9,64	8,6	4,7	11,6	2,
PCB-dl (OMS 2005 -TEQ) avec LOQ	ng/kg dw		7,35	6,92	4,66	11	6,93	10,8	8,05	11,6	9,64	8,6	4,7	11,6	2,
PCB - 7 Indicateurs															
PCB 28	ng/kg dw	7012-37-5	< 91	< 90	< 89	< 82	< 83	< 79	< 86	< 81	< 87				
PCB 52	ng/kg dw	35693-99-3	< 68	< 67	< 66	98	129	103	< 64	106	125	112	98	129	14
PCB 101	ng/kg dw	37680-73-2	643	619	402	990	588	800	565	753	781	682	402	990	170
PCB 118	ng/kg dw	31508-00-6	946	814	610	1530	932	1290	982	1340	1230	1075	610	1530	29:
PCB 138	ng/kg dw	35065-28-2	4010	3480	2870	5790	3660	4640	3320	4350	4220	4038	2870	5790	85
PCB 153	ng/kg dw	35065-27-1	4170	4110	2820	6380	4070	5090	4180	4800	5250	4541	2820	6380	99
PCB 180	ng/kg dw	35065-29-3	2060	1790	1390	3410	2060	2660	1940	2480	2270	2229	1390	3410	57
7 PCBi excl. LOQ - manuelle	ng/kg dw		11829	10813	8092	18198	11439	14583	10987	13829	13876	12627	8092	18198	288
7 PCBi excl. LOQ - labo	ng/kg dw		11800	10800	8090	18200	11400	14600	11000	13800	13900		8090	18200	288
7 PCBi incl. LOQ	ng/kg dw		12000	11000	8240	18300	11500	14700	11100	13900	14000		8240	18300	286
Dioxines - PCDD/F (17)															
2,3,7,8-TCDD	ng/kg dw	1746-01-6	0,932	0,855	0,631	1,46	0,879	1,5	1,15		1,42	1,1	0,6	1,5	0,3
1,2,3,7,8-PeCDD	ng/kg dw	40321-76-4	2,96		1,92	4,74	2,74	4,59	3,36		4,35	3,6	1,9	4,7	1,0
1,2,3,4,7,8-HxCDD	ng/kg dw	39227-28-6	3,52		2,3	5,97	3,47	5,72	3,67		4,74	4,3	2,3	6,0	1,3
1,2,3,6,7,8-HxCDD	ng/kg dw	57653-85-7	7,73		5,04	13,2	7,64	13,3	8,6		10,7	9,7	5,0	13,7	3,2
1,2,3,7,8,9-HxCDD	ng/kg dw	19408-74-3	5,09		3,25	7,89	4,41	7,81	5,43		6,3	5,9	3,3	7,9	1,7
1,2,3,4,6,7,8-HpCDD	ng/kg dw	35822-46-9	58,7	55,4	37,2	98	62,1	108	68,7	110	88,2	76,3	37,2	110,0	25,7
OCDD	ng/kg dw	3268-87-9	134	114	79,1	226	144	239	137		171	164,8	79,1	239,0	58,0
somme dioxines			212,9	188,6	129,4	357,3	225,2	379,9	227,9	382,7	286,7	265,6	129,4	382,7	90,8
2,3,7,8-TCDF	ng/kg dw	51207-31-9	108	,	72,7	175	107	170	138		169	135,8	72,7	184,0	40,
1,2,3,7,8-PeCDF	ng/kg dw	57117-41-6	69,1	69	43,2	112	72	126	88,6		111	90,2	43,2	126,0	28,
2,3,4,7,8-PeCDF	ng/kg dw	57117-31-4	59,4		38,5	97,7	62,7	105	72,6	105	86,4	76,2	38,5	105,0	23,
1,2,3,4,7,8-HxCDF	ng/kg dw	70648-26-9	98,4	99,4	64,7	168	109	192	120		142	130,1	64,7	192,0	42,
1,2,3,6,7,8-HxCDF	ng/kg dw	57117-44-9	45,4	44,5	29,5	75,2	51,2	89,3	52,8		66,1	59,1	29,5	89,3	19,
1,2,3,7,8,9-HxCDF	ng/kg dw	72918-21-9	< 10.7	< 13.9	< 7.65	< 22.3	< 17.8	< 30.6	< 14.8	< 19.2	< 17.1				
2,3,4,6,7,8-HxCDF	ng/kg dw	60851-34-5	37,6		22,8	65,6	41,6	69	42,3		52,5	48,2	22,8	69,0	16,
1,2,3,4,6,7,8-HpCDF	ng/kg dw	67562-39-4	185		110	289	185	322	213	330	268	229,7	110,0	330,0	76,:
1,2,3,4,7,8,9-HpCDF	ng/kg dw	55673-89-7	62,4	62,1	40,5	112	74,4	134	82,9	114	101	87,0	40,5	134,0	30,
OCDF	ng/kg dw	39001-02-0	303	277	188	523	349	604	368		472	403,9	188,0	604,0	140,
somme furanes			968,3	907,8	609,9	1617,5	1051,9	1811,3	1178,2	1727,9	1468,0	1260,1	609,9	1811,3	414,
Σ PCDD/F			1181	1096	739	1975	1277	2191	1406	2111	1755	1526	739	2191	505
PCDD/F TEQ (OMS 1998) sans LQ	ng/kg dw	İ	70,7	68,4	45,9	117	74,3	125	85,9	124	104	90,6	45,9	125,0	28,
PCDD/F TEQ (OMS 1998) avec LQ	ng/kg dw		71,7	69,8	46,7	119	76,1	128	87,4	126	106	92,3	46,7	128,0	28,
PCDD/F (OMS 2005 - TEQ) sans LQ			57,5	55,4	37,4	95,1	60,4	102	69,8	100	84,9	74	37	102	2
PCDD/F (OMS 2005 - TEQ) avec LQ		1	58,6	56,8	38,2	97,4	62,2	105	71,2		86,6	75,3	38,2	105,0	23,
I-TEQ (NATO/CCMS)) sans LQ	ng/kg dw	1	69,6		45,2	115	73,4	123	84,7		103	89,2	45,2	123,0	27,
I-TEQ (NATO/CCMS) avec LQ	ng/kg dw	1	70,7	68,7	45,9	117	75,2	127	86,2		104	91,0	45,9	127,0	28,
	, 5, 5						-,-					Moyenne	-,-	,-	-,
somme PCDD-F + PCBdl	ng/kg dw	I-TEQ	64,85	62,32	42.06	106,10	67,33	112.80	77,85	111,60	94,54	82,2			
somme PCB-i 7 cong	ng/kg dw		11829			, -	11439	,	,	,		12627			

12627 8,5 1505,7 ng/kg dw 11439 14583 10987 somme PCB-i 7 cong 7,8 1605,4 8,0 1560,7 8,0 1736,1 8,6 1654,5 8,7 1645,0 9,4 1351,9 8,7 1366,5 8,6 1189,7 8,8 1441,9 rapport PCDD-F /PCBdl rapport PCBi / PCBdl

Légende: concentration < LQ

Sol P4 - maille 102-3			15G003194-010	15G003194-011	15G003194-012	15G003194-022	15G003194-023	15G003194-024	15G003194-034	15G003194-035	15G003194-036	Moyenne	Min	Max	Ecart type
Paramètres	Unités	N° CAS	SP4-LAI-R1	SP4-LAI-R2	SP4-LAI-R3	SP4-HA-R1	SP4-HA-R2	SP4-HA-R3	SP4-GRA-R1	SP4-GRA-R2	SP4-GRA-R3				
matière sèche	%		91,2	88,3	88	93,3	94	93,2	93,4	85,9	85,4	90,3	85,4	94,0	3
PCB-dl / 12 WHO						·									
PCB 77	ng/kg dw	32598-13-3	164	257	309	260	301	230	236	246	270	252,6	164,0	309,0	42
PCB 81	ng/kg dw	70362-50-4	22,6	30,4	45,5	30,2	34,8	38,6	31	42,9	43,2	35,5	22,6	45,5	7
PCB 105	ng/kg dw	32598-14-4	713	946	1210	884	967	854	955	881	910	924,4	713,0	1210,0	131
PCB 114	ng/kg dw	74472-37-0	30,3	43	53,1	26,5	25,3	53,1	54,5	54,5	56,4	44,1	25,3	56,4	13
PCB 118	ng/kg dw	31508-00-6	1710	2420	2990	< 31	2310	2200	2320	2180	2240	2296,3	1710,0	2990,0	351
PCB 123	ng/kg dw	65510-44-3	70,2	124	126	59,9	59,3	37,7	77,1	45,1	50,8	72,2	37,7	126,0	32
PCB 126	ng/kg dw	57465-28-8	176	241	305	250	284	254	246	264	267	254,1	176,0	305,0	35
PCB 156	ng/kg dw	38380-08-4	675	881	1130	913	956	758	867	832	810	869,1	675,0	1130,0	128
PCB 157	ng/kg dw	69782-90-7	169	209	281	189	213	215	218	220	224	215,3	169,0	281,0	30
PCB 167	ng/kg dw	52663-72-6	515	607	783	645	692	532	612	532	554	608,0	515,0	783,0	88
PCB 169	ng/kg dw	32774-16-6	35,7	45,2	64	42,9	45,9	56,1	48	57,1	60,3	50,6	35,7	64,0	9
PCB 189	ng/kg dw	39635-31-9	173	231	294	212	220	227	224	229	238	227,6	173,0	294,0	31
Σ PCB-dl			4454	6035	7591	3513	6108	5456	5889	5584	5724	5595	3513	7591	112
co-PCBs TEQ (OMS 1998) sans LQ	ng/kg dw	 	18,6	25,5	32,4	26,1	29,8	26,9	26	27,9	28,3	26,8	18,6	32,4	3
PCB-dl (OMS 1998 -TEQ) avec LQ	ng/kg dw	 	18,6	25,5	32,4	26,1	29,8	26,9	26	27,9	28,3	26,8	18,6	32,4	3
PCB-dl (OMS 2005 -TEQ) sans LOQ	ng/kg dw	 	18,8	25,7	32,4	26,4	30	27,3	26,2	28,3	28,7	27,1	18,8	32,4 32,7	3
PCB-dl (OMS 2005 -TEQ) avec LOQ	ng/kg dw	 	18,8	25,7	32,7		30	27,3	26,2	28,3	28,7	27,1	18,8	32,7	3
PCB - 7 Indicateurs	ng/kg uw		10,0	25,7	32,7	20,4	30	27,3	20,2	20,3	20,7	27,1	10,0	32,7	3
PCB 28	ng/kg dw	7012-37-5	< 91	90,2	161	< 91	91,6	< 91	: 89	00.3	< 82	108	88	161	3
PCB 28 PCB 52	ng/kg dw	35693-99-3	214	324	445	369	407	299	340	321	324	338	214	445	
PCB 101	ng/kg dw	37680-73-2	1810	2260	2870	2680	3110	2060	2450	2050	2030	2369	1810	3110	43
PCB 118	ng/kg dw	31508-00-6	1710	2420	2990		2310	2200	2320	2180	2240	2296	1710	2990	35
PCB 138	ng/kg dw	35065-28-2	7980	9360	12200	9390	9910	8350	9910	8140	8390	9292	7980	12200	137
PCB 153	ng/kg dw	35065-27-1	8840	11400	14200	11700	11900	9820	12000	10300	10000	11129	8840	14200	158
PCB 180	ng/kg dw	35065-29-3	6530	7980	10500	8360	8550	7380	9340	7390	7450	8164	6530	10500	119
7 PCBi excl. LOQ - manuelle	ng/kg dw	33003-29-3	27084	33834,2	43366	32499	36278,6	30109	36360	30469,2	30434	33382	27084	43366	481
7 PCBi excl. LOQ - Ilaho	ng/kg dw		27100	33800	43400	32500	36300	30100	36300	30400,2	30500	33378	27100	43400	481
7 PCBi exci. LOQ - IBBO	ng/kg dw		27200	33800	43400	32700	36300	30200	36400	30400	30500	33433	27200	43400	479
Dioxines - PCDD/F (17)	iig/kg uw		27200	33800	43400	32700	30300	30200	30400	30400	30300	33433	27200	43400	47.
2,3,7,8-TCDD	ng/kg dw	1746-01-6	2,44	3,79	4,38	4,48	4,56	3,79	4,33	3,81	4,31	4,0	2,4	4,6	O
1,2,3,7,8-PeCDD	ng/kg dw	40321-76-4	10,8	14,6	19,4	17,3	16,9	15,6	16,3	16	17,7	16,1	10,8	19,4	2
1,2,3,4,7,8-HxCDD	ng/kg dw	39227-28-6	14,5	19,5	26,4	21	19,9	20,3	19,9	22	24	20,8	14,5	26,4	3
1,2,3,6,7,8-HxCDD	ng/kg dw	57653-85-7	31,9	44,5	58,1	45,2	47,1	45,4	44,8	45,5	53,6	46,2	31,9	58,1	7
1,2,3,7,8,9-HxCDD	ng/kg dw	19408-74-3	19,9	26,2	34,2	27,7	30,4	26,7	27,6	26,8	32,5	28,0	19,9	34,2	4
1,2,3,4,6,7,8-HpCDD	ng/kg dw	35822-46-9	250	345	520	351	391	379	402	363	436	381,9	250,0	520,0	72
OCDD	ng/kg dw	3268-87-9	541	674	1650	626	688	708	751	727	849	801,6	541,0	1650,0	329
somme dioxines	118/118 411	3200 07 3	870,5	1127,6	2312,5	1092,7	1197,9	1198,8	1265,9	1204,1	1417,1	1298,6	870,5	2312,5	407
2,3,7,8-TCDF	ng/kg dw	51207-31-9	177	220	283	269	266	267	292	262	285	257,9	177,0	292,0	36
1,2,3,7,8-PeCDF	ng/kg dw	57117-41-6	155	225	277	226	236	248	260	233	249	234,3	155,0	277,0	34
2,3,4,7,8-PeCDF	ng/kg dw	57117-31-4	148	211	276	254	237	230	231	241	263	232,3	148,0	276,0	37
1,2,3,4,7,8-HxCDF	ng/kg dw	70648-26-9	273	366	463	379	377	380	381	395	441	383.9	273,0	463.0	52
1,2,3,6,7,8-HxCDF	ng/kg dw	57117-44-9	146	203	248	< 0.44	213	226	210	209	232	210,9	146,0	248,0	30
1,2,3,7,8,9-HxCDF	ng/kg dw	72918-21-9		49.7	< 59.1		47.8		52.2	< 50.2	< 61.9	-,-	-,-	-,-	
2,3,4,6,7,8-HxCDF	ng/kg dw	60851-34-5	164	250	332	290	288	305	245	277	305	272,9	164,0	332,0	49
1,2,3,4,6,7,8-HpCDF	ng/kg dw	67562-39-4	732	1050	1330	983	1110	1290	1050	1170	1290	1111,7	732,0	1330,0	188
1,2,3,4,7,8,9-HpCDF	ng/kg dw	55673-89-7	190	262	328	271	282	279	288	272	303	275,0	190,0	328,0	37
OCDF	ng/kg dw	39001-02-0	982	1280	1640	1210	1330	1410	1390	1320	1460	1335,8	982,0	1640,0	180
somme furanes			2967,0	4067,0	5177,0	3882,0	4339,0	4635,0	4347,0	4379,0	4828,0	4291,2	2967,0	5177,0	630
Σ PCDD/F	<u> </u>	 	3838	5195	7489	4975	5537	5834	5613	5583	6245	5590	3838	7489	98
•	/	 													
PCDD/F TEQ (OMS 1998) sans LQ	ng/kg dw	1	190	265	342	280	294	294	289	294	324	285,8	190,0	342,0	42
PCDD/F TEQ (OMS 1998) avec LQ	ng/kg dw	1	194	270	348	285	299	299	294	299	330	290,9	194,0	348,0	43
PCDD/F (OMS 2005 - TEQ) sans LQ	ng/kg dw		157	219	282	225	242	243	238	242	267	235	157	282	
PCDD/F (OMS 2005 - TEQ) avec LQ	ng/kg dw		161	224	288	230	247	248	243	247	273	240,1	161,0	288,0	35
I-TEQ (NATO/CCMS)) sans LQ	ng/kg dw		186	260	335	273	287	288	283	288	317	279,7	186,0	335,0	41
I-TEQ (NATO/CCMS) avec LQ	ng/kg dw	<u> </u>	190	264	341	278	292	293	288	293	323	284,7	190,0	341,0	42
	_											Moyenne			
somme PCDD-F + PCBdl	ng/kg dw	I-TEQ	175,80	244,70	314,70		272,00		264,20		295,70	262,1			
somme PCB-i 7 cong	ng/kg dw		27084	33834	43366	32499	36279	30109	36360	30469	30434	33382			
rannort DCDD E /DCDdI			0.4	0.5	0.0	0.5	0.1	9.0	0.1	0.0	0.2	0.7			

 Somme PCDD-F + PCBdI
 ng/kg dw
 I-TEQ
 175,80
 244,70
 314,70
 251,40
 272,00
 270,30
 264,20
 270,30
 295,70
 262,1

 somme PCB-i 7 cong
 ng/kg dw
 27084
 33834
 43366
 32499
 36279
 30109
 36360
 30469
 30434

 rapport PCDD-F /PCBdI
 8,4
 8,5
 8,6
 8,5
 8,1
 8,9
 9,1
 8,6
 9,3
 8,7

 rapport PCBi / PCBdI
 1441,5
 1315,2
 1327,2
 1231,1
 1210,0
 1102,6
 1385,5
 1074,2
 1062,7
 1238,9

concentration < LQ

Annexe 4 b Concentrations des métaux et HAP dans les 4 mailles testées

Annexe: concentration des métaux et des HAP dans les sols (4 mailles P1 à P4)

				Référence EU	ROFINS :	15G001300-001	15G001300-002	15G001300-003	15G001300-004
				Référence	INERIS :	P1_postculture 2014	P2_postculture 2014	P3_postculture 2014	P4_postculture_2014
				Date prélè	vement :	23/02/2015	23/02/2015	23/02/2015	23/02/2015
Paramètres	Unités	N° CAS	Incertitude	Méthode d'analyse	LQ				
Matière sèche	% P.B.		5%	NF ISO 11465	0,1	99,2	97,6	98,9	98,3
Métaux et métalloïdes									
				NF EN ISO 11885 - NF EN 13346 (X 33-					
Arsenic (As)	mg/kg MS	7440-38-2	30%	010) Méthode B	1	7,35	6,7	6,44	5,47
				NF EN ISO 11885 - NF EN 13346 (X 33-					
Cadmium (Cd)	mg/kg MS	7440-43-9	15%	010) Méthode B	0,4	<0.40	<0.40	<0.40	0,95
				NF EN ISO 11885 - NF EN 13346 (X 33-					
Chrome (Cr)	mg/kg MS	7440-47-3	15%	010) Méthode B	5	24,1	25,4	21,6	17,4
				NF EN ISO 11885 - NF EN 13346 (X 33-					
Cuivre (Cu)	mg/kg MS	7440-50-8	20%	010) Méthode B	5	14,7	88,3	81,6	545
				NF EN 13346 (X 33-010) Méthode B -					
				NF ISO 16772 (X31-432) - Adaptée de					
Mercure (Hg)	mg/kg MS	7439-97-6	25%	NF ISO 16772 (Boue, Sédiments)	0,1	0,13	0,13	0,14	0,14
				NF EN ISO 11885 - NF EN 13346 (X 33-					
Nickel (Ni)	mg/kg MS	7440-02-0	10%	010) Méthode B	1	13,1	13	11,3	9,92
				NF EN ISO 11885 - NF EN 13346 (X 33-					
Plomb (Pb)	mg/kg MS	7439-92-1	15%	010) Méthode B	5	47,1	340	215	405
				NF EN ISO 11885 - NF EN 13346 (X 33-					
Zinc (Zn)	mg/kg MS	7440-66-6	15%	010) Méthode B	5	60,1	103	74,6	157
Hydrocarbures Aromatiqu			•						
Acénaphtène	mg/kg MS			XP X 33-012	0,05	<0.05	<0.05	<0.05	1,3
Acénaphthylène	mg/kg MS			XP X 33-012	0,05	<0.05	<0.05	<0.05	<0.05
Anthracène	mg/kg MS			XP X 33-012	0,05	<0.05	<0.05	<0.05	0,51
Benzo(a)anthracène		56-55-3		XP X 33-012	0,05	<0.05	<0.05	<0.05	6
Benzo(a)pyrène		50-32-8		XP X 33-012	0,05	<0.05	<0.05	<0.05	5,5
Benzo(b)fluoranthène	0. 0	205-99-2		XP X 33-012	0,05	0,061	<0.05	<0.05	8,8
Benzo(ghi)Pérylène	0. 0	191-24-2		XP X 33-012	0,05	<0.05	<0.05	<0.05	2,1
Benzo(k)fluoranthène	O, O	207-08-9		XP X 33-012	0,05	<0.05	<0.05	<0.05	2,7
Chrysène	mg/kg MS	218-01-9		XP X 33-012	0,05	<0.05	<0.05	<0.05	4,4
Dibenzo(a,h)anthracène	<u> </u>	53-70-3		XP X 33-012	0,05	<0.05	<0.05	<0.05	1
Fluoranthène	mg/kg MS			XP X 33-012	0,05	<0.05	<0.05	<0.05	8
Fluorène		86-73-7		XP X 33-012	0,05	<0.05	<0.05	<0.05	0,64
Indeno (1,2,3-cd) Pyrène	U. U	193-39-5		XP X 33-012	0,05	<0.05	<0.05	<0.05	3,2
Naphtalène		91-20-3		XP X 33-012	0,05	<0.05	<0.05	<0.05	0,29
Phénanthrène	O, O	85-01-8		XP X 33-012	0,05	<0.05	<0.05	<0.05	4,7
Pyrène	U, U	129-00-0	12%	XP X 33-012	0,05	<0.05	<0.05	<0.05	8
Somme des HAP	mg/kg MS			XP X 33-012	0,05	0.061 <x<0.811< td=""><td><0.8</td><td><0.8</td><td>57.14<x<57.19< td=""></x<57.19<></td></x<0.811<>	<0.8	<0.8	57.14 <x<57.19< td=""></x<57.19<>

Annexe 4 c Caractéristiques agronomiques des 4 mailles

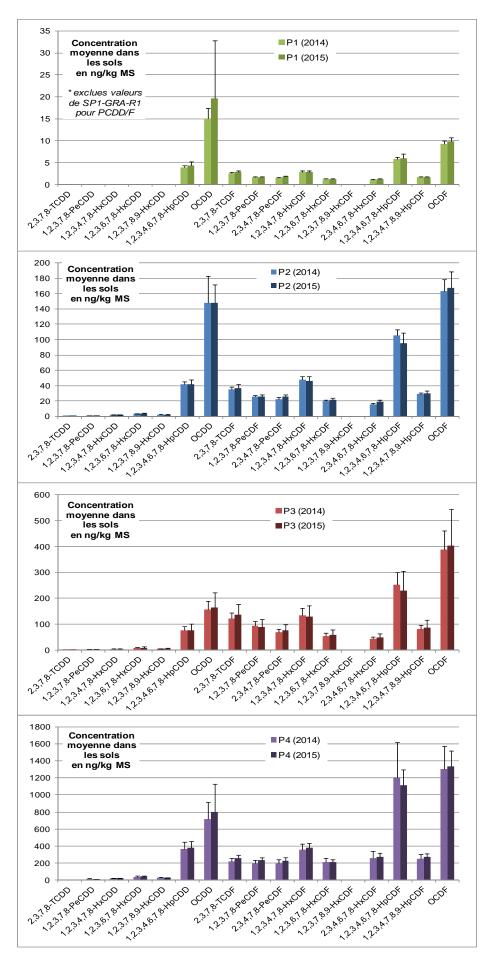
Annexe : Résultats Agronomiques (laboratoire GALYS) - sur les 6 pré-échantillons prélevés en mars 2014 soit 2kg de sol par maille

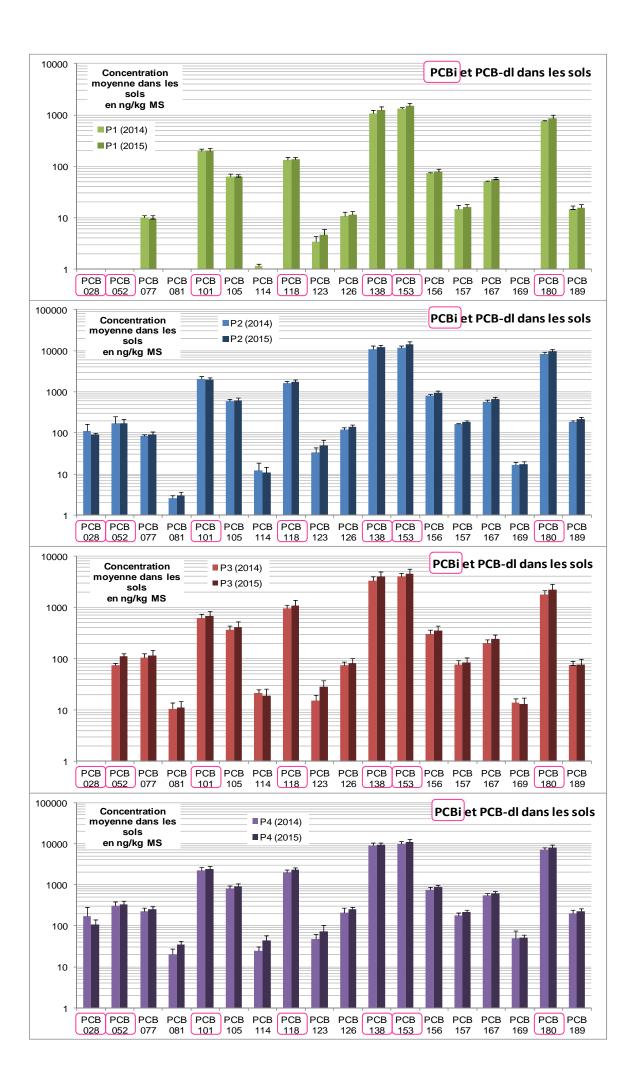
	Analyses		Granulométrie initiale					H Concentration en mg/kg						Autres	
		Sables (%)	Limons(%)	Argiles(%)	MO(%)	pHeau	NH4-N	NO3-N	K20	P2O5	Ca	MgO	Na2O	C/N	CEC (meq/kg)
P1	Parcelle 131-2	82,3	11	5,1	1,6	5,9	3,65	10,55	147	45	528	77	5	8,5	42,2
P2	Parcelle 144-2	79,4	12,8	6,3	1,5	6,2	4	9,25	93	47	575	57	8	9	35,3
P3	Parcelle 100-5	78,7	12,4	5,9	3,0	4,6	5,35	13,2	66	19	227	53	26	9,2	54,5
P4	Parcelle 102-3	83	8,8	5,3	2,9	5,9	4,2	11,8	99	17	749	124	5	10,9	63,3

		G	Granulométrie calculée sans MO										
		Sables (%)	bles (%) Limons(%) Argiles(%) total										
P1	Parcelle 131-2	83,6	11,2	5,2	100								
P2	Parcelle 144-2	80,6	13,0	6,4	100								
P3	Parcelle 100-5	81,1	12,8	6,1	100								
P4	Parcelle 102-3	79,0	13,1	7,9	100								

		Capacité au champ									
		Point de	Point de Capacité de Capacité de Capacité								
		flétrissement(rétention en	rétention en	rétention en						
		%)	eau à 2,7(%)	eau à 2,5(%)	eau à 3,0(%)						
P1	Parcelle 131-2	6,72	11,17	13,1	10,26						
P2	Parcelle 144-2										
P3	Parcelle 100-5	8,27	12,66	15,13	11,24						
P4	Parcelle 102-3										

Annexe 4 d


Concentrations des PCBs et PCDD/Fs dans le terreau et le sol agricole témoin


		15G003194-037	14G003326-031 Terreau jardinerie
		Sol agricole témoin	
		SOL	SOL
		06/05/2015	26/05/2014
Matière sèche	%/unité	94,9	41
PCB de type dioxine			
PCB 77	ng/kg	10,1	14,7
PCB 81	ng/kg	(not det,) < 0,83	< 0,84
PCB 105 PCB 114	ng/kg	85,7 2,47	98,9
	ng/kg		3,07 229
PCB 118 PCB 123	ng/kg ng/kg	189 7,11	1,81
PCB 126	ng/kg	2,97	2,77
PCB 156	ng/kg	43,8	46,7
PCB 157	ng/kg	18,6	8,63
PCB 167	ng/kg	32,9	24
PCB 169	ng/kg	(det,) < 2,5	< 2,58
PCB 189	ng/kg	8,71	5,68
co-PCBs TEQ (OMS 1998) sans LQ	ng/kg	0,36	
PCB de type dioxine (OMS 1998 PCB-TEQ) avec LQ	ng/kg	0,385	
PCB de type dioxine (OMS 2005 PCB-TEQ) sans LOQ	ng/kg	0,309	0,291
PCB de type dioxine (OMS 2005 PCB-TEQ) avec LOQ PCB Indicateurs	ng/kg	0,386	0,369
PCB 28	ng/kg	(not det,) < 87	102
PCB 52	ng/kg	(det,) < 65	148
PCB 101	ng/kg	252	375
PCB 118	ng/kg	189	229
PCB 138	ng/kg	802	582
PCB 153	ng/kg	669	588
PCB 180	ng/kg	530	406
Total 7 PCB indicateurs excl. LOQ	ng/kg	2440	2430
Total 7 PCB Indicateurs incl. LOQ Dioxines - PCDD/F	ng/kg	2590	2430
2,3,7,8-TCDD	ng/kg	(not det,) < 0,19	< 0,19
1,2,3,7,8-PeCDD	ng/kg	0,392	< 0,26
1,2,3,4,7,8-HxCDD	ng/kg	(det,) < 0,51	< 0,52
1,2,3,6,7,8-HxCDD	ng/kg	1,01	1,51
1,2,3,7,8,9-HxCDD	ng/kg	0,629	0,61
1,2,3,4,6,7,8-HpCDD	ng/kg	28,4	59,9
OCDD	ng/kg	153	552
2,3,7,8-TCDF	ng/kg	1,24	0,53
1,2,3,7,8-PeCDF	ng/kg	0,931	< 0,47
2,3,4,7,8-PeCDF	ng/kg	1,52	0,48
1,2,3,4,7,8-HxCDF	ng/kg	1,53	0,72
1,2,3,6,7,8-HxCDF	ng/kg	1,41	0,54
1,2,3,7,8,9-HxCDF	ng/kg	(not det,) < 0,42	< 0,43
2,3,4,6,7,8-HxCDF	ng/kg	1,26	0,45
1,2,3,4,6,7,8-HpCDF	ng/kg	6,69	8,15
1,2,3,4,7,8,9-HpCDF	ng/kg	1,05	0,86
OCDF	ng/kg	8,02	52,5
Dioxines et Furanes TEQ (OMS 1998) sans LQ	ng/kg	2,28	
Dioxines et Furanes TEQ (OMS 1998) avec LQ	ng/kg	2,56	
Somme des dioxines (OMS 2005 PCDD/F- TEQ) sans LQ	ng/kg	1,99	1,45
Somme des dioxines (OMS 2005 PCDD/F- TEQ) avec LQ	ng/kg	2,28	2,01
I-TEQ (NATO/CCMS)) sans LQ	ng/kg	2,23	2,01
IT I EW TIVA I OTOOTSIOTI SALIS EW	IIIA/VA	۷,۷۵	

Annexe 4 e

Profil des congénères PCBs et PCDD/Fs dans les 4 mailles testées

Annexe: Concentrations moyennes des PCDD/F et PCB dans les sols (cultures 2014 et 2015)

Annexe 5:

Composition de la solution hydroponique (culture des laitues)

Annexe : Composition de la solution nutritive pour les cultures en hydroponie

Préparation de 3 solutions mères composant la solution nutritive

Composé	Formule	Concentrations finales en	Masse (g) pour 500 mL d mère	le solution	Concentrations solution: mères er
Composé	Formule	Concen- trations inales en g/L	Pour 10L de	Pour 100L solution nutrit	Pour 10L tive	Concentrations solutions mères en
Calcium nitrate	Ca(NO ₃) ₂ .4H ₂ O	0,5190	5,19			10,380
Nitrate d'ammonium	NH4NO3	0,038	0,38			0,762
Nitrate de potassium	KNO₃	0,4	4,43			8,852
Phosphate de mono potassium	KH₂PO₄	0,1	1,36			2,725
Sulfate de magnésium	MgSO₄.7H₂O	0,2	2,46			4,926
Fer-EDTA	C ₁₀ H ₁₂ FeN ₂ NaO ₈	0,01005			0,10	0,2011
Sulfate de manganèse monohydrate	MnSO₄.H₂O	0,00077		0,0767		0,153
Acide borique	H₃BO₃	0,00093		0,0931		0,186
Sodium molybdate dihydrate	Na2MoO ₄ .2H ₂ O	0,00006		0,0061		0,012
Sulfate de zinc	ZnSO ₄ .7H ₂ 0	0,00057		0,0574		0,115
Sulfate de cuivre	CuSO ₄ .5H ₂ O	0,00009		0,0093		0,019

Annexe 6:

Planche de développement des végétaux potagers et des graminées (2014-2015)

Annexe:

Tableau récapitulatif du développement des cultures

P1 Courgette	06/06/14	10/06/14 Prélèvement pour APPOLINE	01/07/14	18/07/14	18/08/2014
Semis le 23 mai 2014 Prélèvement de feuille pour le projet APOLLINE le 10 juin 2014 Première fertilisation avec NH4NO3 (80 U) le 26/06/14 Traitement au pyrètre le 10/07/14 Seconde fertilisation avec NH4NO3 (80 U) le 17/07/14 Récolte R1 et R2 le 26/08/14		INERS LIPS	NAMES DATES	The state of the s	
P2 Courgette	06/06/14	10/06/14 Prélèvement pour APPOLINE	01/07/14	18/07/14	18/08/2014
Semis le 23 mai 2014 Prélèvement de feuille pour le projet APOLLINE le 10 juin 2014 Première fertilisation avec NH4NO3 (80 U) le 26/06/14 Traitement au pyrètre le 10/07/14 Seconde fertilisation avec NH4NO3 (80 U) le 17/07/14	DELETE STATE OF THE PARTY OF TH	PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAGE	SERIE SERIES		
P3 Courgette	06/06/14	10/06/14 Prélèvement pour APPOLINE	01/07/14	18/07/14 courgette+carotte	18/08/2014
Semis le 23 mai 2014 Prélèvement de feuille pour le projet APOLLINE le 10 juin 2014 Première fertilisation avec NH4NO3 (80 U) le 26/06/14 Traitement au pyrètre le 10/07/14 Fertilisation en H3PO4 (70 U) le 22/07/14	INERIS E Company	USERIS NAMED	DESCRIPTION OF THE PROPERTY OF		
P4 Courgette	06/06/14	10/06/14 Prélèvement pour APPOLINE	01/07/14	18/07/14 courgette+carotte+ salade	18/08/2014
Semis le 23 mai 2014 Prélèvement de feuille pour le projet APOLLINE le 10 juin 2014 Première fertilisation avec NH4NO3 (80 U) le 26/06/14 Traitement au pyrètre le 10/07/14 Fertilisation en H3PO4 (70 U) le 22/07/14	INERID	District Control of the Control of t			

Projet APPOLINE : prélèvement des extrémités des feuilles 14j après la germination pour dosage des biomarqueurs lipidiques

P1 Courgette	18/08/14 au 1 ^{er} plan	26/08/14	18/08/14 au 2 ^{ème} plan	26/08/14	17/09/14	17/09/14 (erreur sur sachet)
		Baltin topic and a second seco		Acres on the first of the first	Meas	Cherry March 1985 Cert 425 Cer
P2 Courgette	09/09/14 P2-COU-R1	09/09/14	05/08/14	05/08/14	09/09/14	09/09/14
	2eme COU : récolte le 25/09	PS-cou-RA HOSS		Echantillon perdu	2eme COU : non analysée	
P3 Courgette	17/09/14	25/09/14	17/09/14 (arrière plan)	25/09/14	21/09/14 (à droite)	25/09/14
		Pas de photo		Pas de photo		Pas de photo
P4 Courgette	21/09/14	25/09/14	09/09/14	09/09/14	17/09/14 (P4 ?)	25/09/14
		Pas de photo		State Pit - Cou - Piz Can office a		Pas de photo

P1 Carotte+salade	06/06/14 salade+carotte	10/06/14 Prélèvement pour APPOLINE	01/07/14 salade+carotte	18/07/14	18/08/14
Semis le 23 mai 2014 Prélèvements de feuille pour le projet APOLLINE le 10 juin 2014 Fertilisation avec NH4NO3 (50 U pour les salades et 40 U pour les carottes) le 26/06/14 Traitement au pyrètre le 07/07/14 Récolte des salades le 20/08/14		DISCRETE TO SECULAR SECURAR SE			
P2 Carotte+salade	06/06/14 salade+carotte	10/06/14 Prélèvement pour APPOLINE	01/07/14 salade+carotte	18/07/14	18/08/14
Semis le 23 mai 2014 Prélèvements de feuille pour le projet APOLLINE le 10 juin 2014 Fertilisation avec NH4NO3 (50 U pour les salades et 40 U pour les carottes) le 26/06/14 Traitement au pyrètre le 07/07/14	INERUS	DESTA DE LA CONTRACTOR			
P3 Carotte+salade	06/06/14 salade+carotte	10/06/14 Prélèvement pour APPOLINE	01/07/14 salade+carotte	18/07/14 PDT+salade+carotte	18/08/14
Semis le 23 mai 2014 Prélèvements de feuille pour le projet APOLLINE le 10 juin 2014 Fertilisation avec NH4NO3 le (50 U pour les salades et 40 U pour les carottes) le 26/06/14 Traitement au pyrètre le 07/07/14					
P4 Carotte+salade	06/06/14 salade+carotte	10/06/14 Prélèvement Carottes (Salades prélevées le 17/06/14)	01/07/14 carotte+salade	18/07/14 courgette+carotte+salade	18/08/14
Semis le 23 mai (carotte) et le 30 mai 2014 (salade) Prélèvements de feuille pour le projet APOLLINE le 17 juin 2014 Fertilisation avec NH4NO3 (50 U pour les salades et 40 U pour les carottes) le 26/06/14 Traitement au pyrètre le 07/07/14	INERUS S				

P1 Carotte	RECOLTE le 25/09/14					
21/09		Pas de photo	Pas de photo	Pas de photo	Pas de photo	Pas de photo
P2 Carotte	RECOLTE le 25/09/14					
21/09		Pas de photo	Pas de photo	Pas de photo	Pas de photo	Pas de photo
P3 Carotte	RECOLTE le 13/10/14					
21/09	P3. EpC4- K3 A3/A0/4/	13/10/14 P3-Ca-R3	B3-Epca-R1 13404	B-G. R. Asign	P3-E4-C4 134-044	PS_CS_RS_ASJUPE
P4 Carotte	RECOLTE le 13/10/14					
21/09	Pq-ca-Rq 139100 144	P4-Ca-K4 miss Appelly	P4-EFG-RL	PL-Ca-R2 INDAS	R. Epa - Rs	R. Ca. PS Askers

P1 Salade	A la récolte	Après élimination feuilles nécrosées	A la récolte	Après élimination feuilles nécrosées	A la récolte	Après élimination feuilles nécrosées
Récolte le 20/08/14		2001) 1000 PA - 6 A OR 9003	A JACKS NA BARKS P. L. L. C. S.	Aprilan NEW Tomas Contract Con	Local Popular Control	April 16 Street
P2 Salade	A la récolte	Après élimination feuilles nécrosées	A la récolte	Après élimination feuilles nécrosées	A la récolte	Après élimination feuilles nécrosées
Récolte le 20/08/14 ou 2/09/14	F2-8-5	P2.A4	E _C (all N Ps - LP _A) (NCNL) (ACNL)	Lodin fig. LF ₁ and the control of	C2-R3	P2-R3
P3 Salade	A la récolte	Après élimination feuilles nécrosées	A la récolte	Après élimination feuilles nécrosées	A la récolte	Après élimination feuilles nécrosées
Récolte le 2/09/14	P3-R4	P3-83	P3-R2	P3.82	P3 - R3	P3.R3
P4 Salade	A la récolte	Après élimination feuilles nécrosées	A la récolte	Après élimination feuilles nécrosées	A la récolte	Après élimination feuilles nécrosées
Récolte le 2/09/14	P4-84	Ansett P4 - RA	P4-R2	P4-82	P4-R3	P/ ₁ -R5
Salade TEMOIN	16/07/14 : prélèvement des 4		A la récolte P2 et P4 le 2/09/14	Après élimination feuilles		
TEM sur paillasse P1 et P3 : récolte en octobre (comme carottes)	pieds séparemment		Shlade Year Person Person	nécrosées Salabé Tale Pro Maria		

P1 PDT	06/06/14	10/06/14 Prélèvement pour APPOLINE	01/07/14	18/07/14	18/08/14
Semis le 23 mai 2014 Prélèvements de feuille pour le projet APOLLINE le 10 juin 2014 Fertilisation avec NH4NO3 (100 U) le 26/06/14 Traitement au pyrètre le 07/07/14 et le 18/07/14	Making Section 1975 And	THE STATE OF THE S			Totals to the state of the stat
P2 PDT	06/06/14	10/06/14 Prélèvement pour APPOLINE	01/07/14	18/07/14	18/08/14
Semis le 23 mai 2014 Prélèvements de feuille pour le projet APOLLINE le 10 juin 2014 Fertilisation avec NH4NO3 (100 U) le 26/06/14 Traitement au pyrètre le 07/07/14 et le 18/07/14	NERA CONTROL OF THE PARTY OF TH	THE TAX TO SERVICE AND			
P3 PDT	06/06/14	10/06/14 Prélèvement pour APPOLINE	01/07/14	18/07/14	18/08/14
Semis le 23 mai 2014 Prélèvements de feuille pour le projet APOLLINE le 10 juin 2014 Fertilisation avec NH4NO3 (100 U) le 26/06/14 Attaque de pucerons dès le 16 juin Mort des pieds en R1 et R2 – récolte des tubercules (analyse tubercule lavé et non épluché) Traitement au pyrètre le 07/07/14 Derniére récolte le 25/08/2014	S H L				
P4 PDT	06/06/14	10/06/14 Prélèvement pour APPOLINE	01/07/14	18/07/14	18/08/14
Semis le 23 mai 2014 Prélèvements de feuille pour le projet APOLLINE le 10 juin 2014 Fertilisation avec NH4NO3 (100 U) le 26/06/14 Traitement au pyrètre le 07/07/14 et le 18/07/14 Derniére récolte le 25/08/14	TO ST.	ACAST TOTAL CONTRACTOR OF THE PARTY OF THE P	INCRIS (L. 17 C. C.)		

P1 PDT	12/08/14 – 1 ^{ère} récolte (P1)	17/09/14 – récolte totale (R1)		17/09/14 (R2)	12/08/14 – 1 ^{er} pied récolté	17/09/14 (R3) – récolte totale
			Pas de récolte précoce	Control of the Contro		
P2 PDT		17/09/14 (R1)	12/08/14 – 1 ^{er} pied récolté	25/08/14 (R2)	25/08/14 – 1 ^{er} pied récolté	25/08/14 (R3) – récolte totale
	Pas de récolte précoce	Restrict Conference of the Con		P2 PDT R2 COLUMN TAL MICHANIM H, POTT R3	Ty Ty	P2 PDTR3 Cat aspection of the party of the
P3 PDT		16/07/14 (R1))	07/07/14 – 1 ^{er} pied récolté	25/08/14 (R2)		16/07/14 (R3)
Récolte précoce (mort des pieds à cause des pucerons)	-		Pas de photo	PS PDT R2 STATE OF THE STATE O	-	
P4 PDT	12/08/14 – 1 ^{er} pied récolté	25/08/14 (R1) – récolte totale	12/08/14 – 1 ^{er} pied récolté	25/08/14 (R2) – récolte totale	12/08/14 – 1 ^{er} pied récolté	25/08/14 (R
		Pu PDTRA COR MATTER IN TOTAL		CGR 139304 25/09/2014 Py PDT R2 Core - 149 784 F, 1975 L	Pas de récolte précoce	CGR 138 30L 25/09/2014 Pu PDT R-2 COLL 198 30L 12 198 20 12 198 20

Annexe : Planche de suivi des cultures en 2015 : GRAMINEES en conditions contrôlées

P1 Graminées	04/05/2015 (J+12)	12/05/2015 (J+20)	26/05/2015 (J+34)	22/06/2015 (J+61)	15/07/2015 (J+80)	28/07/2015 (J+97)	Récolte le 28/07/2015
Semis le 22/04 Mise en place de l'irrigation le 30/04 Récolte le 28/07							x3
P2 Graminées	04/05/2015 (J+12)	12/05/2015 (J+20)	26/05/2015 (J+34)	22/06/2015 (J+61)	15/07/2015 (J+80)	28/07/2015 (J+97)	Récolte le 28/07/2015
R1 Semis le 22/04 Mise en place de l'irrigation le 30/04 Récolte le 28/07							x3
P3 Graminées	04/05/2015 (J+12)	12/05/2015 (J+20)	26/05/2015 (J+34)	22/06/2015 (J+61)	15/07/2015 (J+80)	28/07/2015 (J+97)	Récolte le 28/07/2015
R1 Semis le 22/04 Mise en place de l'irrigation le 30/04 Récolte le 28/07							x3
P4 Graminées	04/05/2015 (J+12) Croissance ralentie sur R1 à cause du sol	12/05/2015 (J+20)	26/05/2015 (J+34)	22/06/2015 (J+61)	15/07/2015 (J+80)	28/07/2015 (J+97)	Récolte le 28/07/2015
R1 Semis le 22/04 Mise en place de l'irrigation le 30/04 Récolte le 28/07							CA TENTY CONTROL OF THE PROPERTY CONTROL OF THE PROPER

Planche de suivi des cultures en 2015 : HARICOTS

P1 Haricot	04/05/2015 (J+21) Stade > 2 feuilles	26/05/2015 (J+43) Premières fleurs	11/06/2015 (J+59) Premières gousses	07/07/2015 (J+85)	24/07/2015 (J+102)	20/08/2015 (J+129)	Récolte du 12/06 au 21/07
Semis le 14/04 et le 29/04 pour R2 Mise en place de l'irrigation le 30/04							x3
P2 Haricot	04/05/2015 (J+21)	26/05/2015(J+43)	11/06/2015 (J+59) Première récolte	07/07/2015 (J+85)	24/07/2015 (J+102)	20/08/2015	Récolte du 11/06 au 21/07
Semis le 14/04							Constitution of the state of th
P3 Haricot	04/05/2015 (J+21)	26/05/2015 (J+43)	11/06/2015 (J+59)	07/07/2015 (J+85)	24/07/2015 (J+102)	20/08/2015	Récolte du 26/06 au 23/09
Semis le 14/04 et 29/04 sur R3 puis le 27/05 pour le second semis après découverte de l'anthracnose							CC64.13.8 30.1 30.4 (0.8) 115 0.3 (0.8) 115 0.3 (0.8) 115 0.3 (0.8) 115
P4 Haricot	04/05/2015 (J+21)	26/05/2015 (J+43)	11/06/2015 (J+59)	07/07/2015 (J+85)	24/07/2015 (J+102)	20/08/2015	Récolte du 17/06 au 23/09
Semis le 14/04 puis le 27/05 pour le second semis après découverte de l'anthracnose							C Code 1 # 20 - C C Code 1 # 20 - C C C C C C C C C C C C C C C C C C
PHOTOS DIVERSES	Bourgeons	Fleurs	Jeunes	Gousses Goussi	es Matures Gous	Sees récoltées Feu	illes attaquées par l'anthracnose

Planche de suivi des cultures en 2015 : LAITUES 1/2

P1 Salade	12/05/2015 (J+13)	29/05/2015 (J+30)	11/06/2015 (J+43)	29/06/2015 (J+61)	15/07/2015 (J+77)	28/07/2015 (J+90)	28/07/2005 (J+90)
R1 : Semis le 29/04 Fertilisation (U de N/bac) : 50U le 11/05 25U le 08/06 25U le 22/06		The state of the s					8 9
R2 : Semis le 29/04 Fertilisation (U de N/bac) : 50U le 11/05 25U le 08/06 25U le 22/06							
R3 : Semis le 14/04	29 /04/2015 (J+15)	18/05/2015 (J+34)	04/06/2015 (J+51)	22/06/2015 (J+69)	07/07/2015 (J+84)	15/07/2015 (J+98)	21/07/2015 (J+98)
Fertilisation (U de N par bac) : 50U le 11/05 25U le 08/06 25U le 22/06			THE SAME OF THE SA				
P2 Salade	29 /04/2015 (J+15)	18/05/2015 (J+34)	04/06/2015 (J+51)	22/06/2015 (J+69)	07/07/2015 (J+84)	15/07/2015 (J+98)	21/07/2015 (J+98)
R1 : Semis le 14/04 Fertilisation (U de N par bac) : 50U le 11/05 25U le 08/06 25U le 22/06							
R3: Semis le 14/04 Fertilisation (U de N par bac) : 50U le 11/05 25U le 08/06 25U le 22/06		THE STATE OF THE S					
R2 : Semis le 29/04	12/05/2015 (J+13)	29/05/2015 (J+30)	11/06/2015 (J+43)	29/06/2015 (J+61)	15/07/2015 (J+77)	28/07/2015 (J+90)	28/07/2005 (J+90)
Fertilisation (U de N par bac) : 50U le 11/05 25U le 08/06 25U le 22/06	A. C.	24		-4			

Planche de suivi des cultures en 2015 : LAITUES 2/2

P3 Salade	11/06/2015 (J+15)	26/06/2015 (J+30)	15/07/2015 (J+49)	28/07/2015 (J+62)	07/08/2015 (J+72)	20/08/2015 (J+85)
Semis le 27/05 Fertilisation (U de N par bac) : 25U le 08/06 25U le 22/06 25U le 07/07 25U le 14/08						
P4 Salade	11/06/2015 (J+15)	26/06/2015 (J+30)	15/07/2015 (J+49)	28/07/2015 (J+62)	07/08/2015 (J+72)	20/08/2015 (J+85)
Semis le 27/05 Fertilisation (U de N par bac) : 25U le 08/06 25U le 22/06 25U le 07/07 25U le 14/08						

Annexe 7:

Concentrations des POPs dans l'air ambiant de l'enceinte climatique (campagnes 2015 et 2016)

Annexe: Analyse des échantillons d'air ambiant de l'enceinte de culture

Paramètres Date prélèvement PCBs coplanaires PCB 77 PCB 81 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 156 PCB 157 PCB 167 PCB 167 PCB 169 PCB 189 PCB de type dioxine (OMS 1998 PCB-TEQ) avec LQ	pg/Echantillon	32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7	Prélèvement 1-Air 15/06/2015 (a)	16E005424-001 Blanc 25/01/16 25/01/2016 < 36 < 7.8 < 78 < 9.4 < 280 < 8.0	16E005424-002 T25 25/01/16 25/01/2016 (b) < 36 < 7.8 < 78 < 9.4 < 280
PCBs coplanaires PCB 77 PCB 81 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 156 PCB 157 PCB 167 PCB 169 PCB 189	pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon	70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7	< 36 < 4.8 < 78 < 9.4 < 280 < 8.0	<pre></pre>	25/01/2016 (b) < 36 < 7.8 < 78 < 9.4
PCB 77 PCB 81 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 156 PCB 157 PCB 167 PCB 169 PCB 189	pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon	70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7	< 4.8 < 78 < 9.4 < 280 < 8.0	< 7.8 < 78 < 9.4 < 280	< 7.8 < 78 < 9.4
PCB 81 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 156 PCB 157 PCB 167 PCB 169 PCB 189	pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon	70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7	< 4.8 < 78 < 9.4 < 280 < 8.0	< 7.8 < 78 < 9.4 < 280	< 7.8 < 78 < 9.4
PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 156 PCB 157 PCB 167 PCB 169 PCB 189	pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon	32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7	< 78 < 9.4 < 280 < 8.0	< 78 < 9.4 < 280	< 78 < 9.4
PCB 114 PCB 118 PCB 123 PCB 126 PCB 156 PCB 157 PCB 167 PCB 169 PCB 189	pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon	74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7	< 9.4 < 280 < 8.0	< 9.4 < 280	< 9.4
PCB 118 PCB 123 PCB 126 PCB 156 PCB 157 PCB 167 PCB 169 PCB 189	pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon	31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7	< 280 < 8.0	< 280	
PCB 123 PCB 126 PCB 156 PCB 157 PCB 167 PCB 169 PCB 189	pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon	65510-44-3 57465-28-8 38380-08-4 69782-90-7	< 8.0		< 280
PCB 126 PCB 156 PCB 157 PCB 167 PCB 169 PCB 189	pg/Echantillon pg/Echantillon pg/Echantillon pg/Echantillon	57465-28-8 38380-08-4 69782-90-7		< 8.0	
PCB 156 PCB 157 PCB 167 PCB 169 PCB 189	pg/Echantillon pg/Echantillon pg/Echantillon	38380-08-4 69782-90-7	< 4.6		< 8.0
PCB 157 PCB 167 PCB 169 PCB 189	pg/Echantillon pg/Echantillon	69782-90-7		< 10	< 10
PCB 167 PCB 169 PCB 189	pg/Echantillon		< 44	< 44	< 44
PCB 169 PCB 189			< 8.2	< 9.0	< 9.0
PCB 189	pg/Echantillon	52663-72-6	< 22	< 22	< 22
		32774-16-6	< 24	< 24	< 24
PCB de type dioxine (OMS 1998 PCB-TEQ) avec LQ	pg/Echantillon	39635-31-9	< 8.0	< 8.0	< 8.0
	pg/Echantillon		0,773	1,33	1,33
PCB de type dioxine (OMS 1998 PCB-TEQ) sans LQ	pg/Echantillon		ND	ND	ND
PCB de type dioxine (OMS 2005 PCB-TEQ) avec LOQ	pg/Echantillon		1,2	1,76	1,76
PCB de type dioxine (OMS 2005 PCB-TEQ) sans LOQ	pg/Echantillon		ND	ND	ND
WHO(1998)-PCB TEQ incl. 1/2 LOQ	pg/Echantillon		0,386	0,667	0,667
WHO(2005)-PCB TEQ incl. 1/2 LOQ	pg/Echantillon		0,599	0,88	0,88
PCB - 7 Indicateurs	ng/Eshartiller	7012 27 5	1.400	. 620	1550
PCB 28	pg/Echantillon	7012-37-5	1400	< 820	1550
PCB 52	pg/Echantillon	35693-99-3	3590	898	3450
PCB 101	pg/Echantillon pg/Echantillon	37680-73-2	< 980	< 980	< 980
PCB 118 PCB 138	pg/Echantillon	31508-00-6 35065-28-2	< 280 < 720	< 280 < 720	< 280 < 720
	pg/Echantillon				
PCB 153 PCB 180	pg/Echantillon	35065-27-1 35065-29-3	< 1200 < 300	< 1200 < 300	< 1200 < 300
Total 7 PCB Indicateurs incl. LOQ	pg/Echantillon	33003-29-3	8430	5160	8440
Total 7 PCB indicateurs incl. LOQ	pg/Echantillon		4990	898	5000
PCDD/F (17)	P6/ LCHAITUIIOH		4990	050	3000
2,3,7,8-TCDD	pg/Echantillon	1746-01-6	< 0.72	< 0.72	< 0.72
1,2,3,7,8-PeCDD	pg/Echantillon	40321-76-4	< 0.96	< 0.96	< 0.96
1,2,3,4,7,8-HxCDD	pg/Echantillon	39227-28-6	< 1.9	< 1.9	< 1.9
1,2,3,6,7,8-HxCDD	pg/Echantillon	57653-85-7	< 1.9	< 1.9	< 1.9
1,2,3,7,8,9-HxCDD	pg/Echantillon	19408-74-3	< 1.9	< 1.9	< 1.9
1,2,3,4,6,7,8-HpCDD	pg/Echantillon	35822-46-9	< 1.6	< 1.6	< 1.6
OCDD	pg/Echantillon	3268-87-9	< 12	< 12	< 12
2,3,7,8-TCDF	pg/Echantillon	51207-31-9	< 1.3	< 1.3	< 1.3
1,2,3,7,8-PeCDF	pg/Echantillon	57117-41-6	< 1.7	< 1.7	< 1.7
2,3,4,7,8-PeCDF	pg/Echantillon	57117-31-4	< 1.7	< 1.7	< 1.7
1,2,3,4,7,8-HxCDF	pg/Echantillon	70648-26-9	< 1.6	< 1.6	< 1.6
	pg/Echantillon	57117-44-9	< 1.6	< 1.6	< 1.6
1,2,3,7,8,9-HxCDF	pg/Echantillon	72918-21-9	< 1.6	< 1.6	< 1.6
2,3,4,6,7,8-HxCDF	pg/Echantillon	60851-34-5	< 1.6	< 1.6	< 1.6
1,2,3,4,6,7,8-HpCDF	pg/Echantillon	67562-39-4	< 1.5	< 1.5	< 1.5
1,2,3,4,7,8,9-HpCDF	pg/Echantillon	55673-89-7	< 1.5	< 1.5	< 1.5
OCDF	pg/Echantillon	39001-02-0	< 3.2	< 3.2	< 3.2
TR 13C12-1,2,3,4-TetraCDD	ng/m³		****	ND	ND
Dioxines et Furanes TEQ (OMS 1998) avec LQ	pg/Echantillon		4,02	4,02	4,02
Dioxines et Furanes TEQ (OMS 1998) sans LQ	pg/Echantillon		ND	ND	ND
Somme des dioxines (OMS 2005 PCDD/F- TEQ) avec LQ	pg/Echantillon		3,64	3,64	3,64
Somme des dioxines (OMS 2005 PCDD/F- TEQ) sans LQ	pg/Echantillon		ND	ND	ND
I-TEQ (NATO/CCMS)) sans LQ	pg/Echantillon		ND	ND	ND
I-TEQ (NATO/CCMS) avec LQ	pg/Echantillon		3,55	3,55	3,55
WHO(1998)-PCDD/F TEQ incl. 1/2 LOQ	pg/Echantillon		2,01	2,01	2,01
Somme des dioxines (OMS 2005 PCDD/F- TEQ) 1/2 LQ	pg/Echantillon		1,82	1,82	1,82
I-TEQ (NATO/CCMS) incl. 1/2 LOQ	pg/Echantillon		1,78	1,78	1,78

substance détectée mais non quantifiée substance quantifiée

(a): expérimentation en cours dans enceinte remplie des bacs de terre

(b): enceinte vide après les 2 séries de culture de 2014 et 2015

 \underline{rappel} : durée du prélèvement = 68 h / débit = 3 L/min / volume de l'enceinte = 25 m^3 environ

Annexe 8 : Concentrations des POPs dans les graminées et valeurs de BCF

Annexe : concentration des POPs dans les graminées in-situ prélevées en juin 2014 sur les 4 mailles du site (exprimées en poids frais)

Référence laboratoire	14G003624-001	14G003624-002	14G003624-003	14G003624-004	14G003624-005	14G003624-006	14G003624-007	14G003624-008	14G003624-009	14G003624-010	14G003624-011	14G003624-012
Référence client	P1-1	P1-2	P1-3	P2-1	P2-2	P2-3	P3-1	P3-2	P3-3	P4-1	P4-2	P4-3
Taux de matières sèches (%)	23,7	24,3	21,9	24,6	33,2	26,6	23,1	26,8	27	21,4	26,8	21,5
PCDD/F	pg/g de poids frais											
2,3,7,8-TCDF	< 0,05	0,05	0,05	0,49	0,26	0,6	0,48	0,19	0,21	0,16	0,1	0,1
1,2,3,7,8-PeCDF	0,02	0,03	0,02	0,34	0,17	0,43	0,31	0,07	0,06	0,05	< 0,02	0,03
2,3,4,7,8-PeCDF	0,03	0,03	0,03	0,26	0,12	0,34	0,18	0,03	0,04	0,03	< 0,02	0,02
1,2,3,4,7,8-HxCDF	< 0,02	< 0,02	0,02	0,5	0,22	0,81	0,34	0,13	0,14	0,08	0,05	0,04
1,2,3,6,7,8-HxCDF	< 0,02	< 0,02	< 0,02	0,24	0,1	0,36	0,16	0,07	0,08	0,06	0,04	0,03
1,2,3,7,8,9-HxCDF	< 0,01	< 0,01	< 0,01	< 0,14	< 0,07	< 0,24	< 0,11	< 0,02	< 0,03	< 0,01	< 0,02	< 0,01
2,3,4,6,7,8-HxCDF	< 0,02	< 0,02	0,02	0,15	0,07	0,24	0,11	0,04	0,06	0,04	0,03	0,02
1,2,3,4,6,7,8-HpCDF	0,04	0,04	0,05	0,96	0,41	1,5	0,6	0,13	0,11	0,08	0,04	0,05
1,2,3,4,7,8,9-HpCDF	< 0,01	< 0,01	< 0,01	0,3	0,14	0,54	0,19	0,04	0,03	0,02	< 0,01	0,01
OCDF	< 0,04	< 0,04	0,04	1,33	0,54	2,59	0,71	0,24	0,21	0,13	0,08	0,07
2,3,7,8-TCDD	< 0,007	< 0,007	< 0,005	0,01	< 0,008	< 0,007	0,009	< 0,007	< 0,007	< 0,006	< 0,007	< 0,006
1,2,3,7,8-PeCDD	0,009	< 0,009	< 0,007	0,03	0,02	0,03	0,03	0,01	0,01	0,01	< 0,01	< 0,008
1,2,3,4,7,8-HxCDD	< 0,01	< 0,01	< 0,01	0,03	< 0,02	0,04	0,02	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
1,2,3,6,7,8-HxCDD	< 0,02	< 0,02	< 0,01	0,06	0,04	0,08	0,04	0,02	0,02	0,02	< 0,02	< 0,02
1,2,3,7,8,9-HxCDD	< 0,02	< 0,02	< 0,01	0,04	< 0,02	0,05	0,03	< 0,02	< 0,02	< 0,01	< 0,02	< 0,02
1,2,3,4,6,7,8-HpCDD	0,08	0,08	0,05	0,52	0,28	0,82	0,28	0,12	0,11	0,09	0,08	0,04
OCDD	0,22	< 0,20	< 0,16	1,03	0,55	2,08	0,58	0,26	0,24	0,21	0,31	< 0,18
Somme PCDD/F sans TEF	0,40	0,23	0,28	6,29	2,92	10,51	4,07	1,35	1,32	0,98	0,73	0,41
Somme des dioxines (OMS 2005 PCDD/F- TEQ) sans LQ	0,019	0,016	0,018	0,298	0,136	0,39	0,227	0,074	0,079	0,061	0,023	0,027
Somme des dioxines (OMS 2005 PCDD/F- TEQ) avec LQ	0,042	0,043	0,038	0,312	0,154	0,421	0,238	0,086	0,091	0,07	0,054	0,046
PCB												
PCB 28	< 34,4	< 34,9	47,2	106	135	193	106	74,8	148	121	76,4	87,4
PCB 52	< 34,4	< 34,9	33	45,2	83,2	123	58,8	< 37,3	84,5	108	76,7	78,9
PCB 101	63,8	67,1	106	244	380	411	129	102	166	243	229	178
PCB 138	185	280	161	801	1030	843	342	267	249	313	369	222
PCB 153	304	421	251	1120	1440	1220	451	360	365	387	475	313
PCB 180	129	184	97,6	674	787	714	187	152	150	148	182	109
Somme des 6 PCB (sauf le PCB 118) sans LOQ	681	952	696	2990	3860	3500	1270	957	1160	1320	1410	988
Somme des 6 PCB (sauf le PCB 118) avec LOQ	750	1020	696	2990	3860	3500	1270	994	1160	1320	1410	988
PCB 77	7,07	8,85	4,31	31,2	37,5	34,2	17,3	21	18,2	19,9	21	12,5
PCB 81	0,19	0,17	0,16	0,92	1,31	1,14	0,84	0,63	0,62	0,68	0,71	0,57
PCB 105	17,5	20,4	12,5	66,8	87	76,5	44,1	38,1	33,4	81,2	86,9	35,1
PCB 114	0,78	1,48	0,75	4,12	6,55	4,14	3,69	2,31	2,77	4,78	4,94	2,48
PCB 118	55,1	69,5	40,3	206	285	224	137	113	106	223	238	111
PCB 123	0,49	0,47	0,46	2,3	2,19	2,79	1,15	1,46	1,21	2,46	2,59	1,42
PCB 126	1,78	2,03	0,99	11,1	12,9	10,5	4,93	4,36	3,2	3,21	3,86	1,79
PCB 156	8,74	10,6	6,3	42	46,1	43,4	15,9	12,7	10,6	17	19,3	9,13
PCB 157	1,56	2,04	1,22	8,84	9,78	10,1	3,41	2,82	2,43	3,65	4,16	1,83
PCB 167	6,82	5,97	4,41	31,8	24,4	35,1	7,95	10,5	11,7	10,9	13,1	6,26
PCB 169	< 0,41	< 0,42	< 0,34	0,9	0,95	0,91	< 0,41	< 0,45	< 0,42	< 0,35	< 0,46	< 0,37
PCB 189	0,84	1,16	0,69	6,39	5,6	7,17	1,69	1,26	1,28	1,38	1,59	0,75
Somme PCB-dl sans TEF	100,9	122,7	72,1	412,4	519,3	450,0	238,0	208,1	191,4	368,2	396,2	182,8
PCB de type dioxine (OMS 2005 PCB-TEQ) sans LOQ	0,182	0,207	0,101	1,15	1,33	1,09	0,502	0,444	0,327	0,333	0,399	0,185
PCB de type dioxine (OMS 2005 PCB-TEQ) avec LOQ	0,194	0,219	0,111	1,15	1,33	1,09	0,514	0,458	0,339	0,344	0,413	0,197
Dioxine + PCB de type dioxine OMS 2005 TEQ sans LQ	0,201	0,223	0,119	1,448	1,466	1,48	0,729	0,518	0,406	0,394	0,422	0,212
Dioxine + PCB de type dioxine OMS 2005 TEQ avec LQ	0,236	0,262	0,149	1,462	1,484	1,511	0,752	0,544	0,43	0,414	0,467	0,243

<u>légende:</u>

pool-1

pool tout venant

pool-2

pool graminées uniquement

pool-3

pool ronce (espèce dominante hors graminée)

Annexe : concentration des POPs dans les graminées in-situ prélevées en juin 2014 sur les 4 mailles du site (exprimées en poids sec)

2.4.7.8.TCDF	Référence laboratoire	Valeur régle	mentaire	14G003624-001	14G003624-002	14G003624-003	14G003624-004	14G003624-005	14G003624-006	14G003624-007	14G003624-008	14G003624-009	14G003624-010	14G003624-011	14G003624-012
Part	Référence client	réglement euronée	n 28 mars 2012	P1-1	P1-2	P1-3	P2-1	P2-2	P2-3	P3-1	P3-2	P3-3	P4-1	P4-2	P4-3
Page															
Page															
23.13.57 PPCED	PCDD/F		pg/g MS												
1.3.1.3.5.9.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	2.3.7.8-TCDD														
13.45.679 increes 0.0		1		· ·	· ·		· ·	· ·				*		*	
1.23.6.7.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		1			· ·	· ·			•	· ·				*	
2.323,6476HCPC 0.0		1		0,0	0,0	0,0		0,12			0,07	0,1	0,1	0,0	
0.6		1		0,0	0,0	0,0		0,00			0,00	0,0	0,0	0,0	0,0
0.6	1,2,3,4,6,7,8-HpCDD	1		0,3	0,3	0,2	2,11	0,84	3,1	1,2	0,45	0,4	0,4	0,3	0,2
2.3.2.7.6.9.	OCDD			0,9	0,0	0,0	4,19	1,66	7,8	2,5	0,97	0,9	1,0	1,2	0,0
2,3,4,7,6,14CDF	2,3,7,8-TCDF			0,0	0,2	0,2	1,99	0,78	2,3	2,1	0,71	0,8	0,7	0,4	0,5
12.34.78-PHICPT	1,2,3,7,8-PeCDF			0,1	0,1	0,1	1,38	0,51	1,6	1,3	0,26	0,2	0,2	0,0	0,1
12.15.67.9FMCDF 1.00	2,3,4,7,8-PeCDF			0,1	0,1	0,1	1,06	0,36	1,3	0,8	0,11	0,1	0,1	0,0	0,1
1.23.74.0F.CP 0.0	1,2,3,4,7,8-HxCDF			0,0	0,0	0,1	2,03	0,66	3,0	1,5	0,49	0,5	0,4	0,2	0,2
2.3.4.6.7.8.HLGDF 0.0	1,2,3,6,7,8-HxCDF			0,0	0,0	0,0	0,98	0,30	1,4	0,7	0,26	0,3	0,3	0,1	0,1
1.23.46.73.44c.0F 1.23.46.74c.0F 1.23.46.74c.	1,2,3,7,8,9-HxCDF			0,0	0,0	0,0	0,00	0,00	0,0	0,0	0,00	0,0	0,0	0,0	0,0
13.34.78.94pCPT	2,3,4,6,7,8-HxCDF			0,0	0,0	0,1	0,61	•	0,9	0,5	0,15	0,2	0,2	0,1	0,1
OCDE CODE	1,2,3,4,6,7,8-HpCDF			0,2	0,2	0,2			5,6		0,49	0,4	0,4	0,1	0,2
1.7 0.8 1.3 2.6 8.0 3.0 3.0 1.7 5.0 4.9 4.6 2.7 1.9	•			0,0	0,0				2,0	0,8		0,1	0,1	0,0	
Sommer des disolates (DMS 2005 PCD0/F-TCQ) ares (1) PCB1 PCB1 PCB1 PCB1 PCB2 PCB1 PCB1 PCB1 PCB1 PCB1 PCB1 PCB1 PCB1	OCDF			0,0	0,0	0,2	· ·	1,63	9,7	·	0,90	0,8	0,6	0,3	0,3
Sommer des PCE sans LOQ 1364 1376 1464 1565 1470 14				1,7	0,9	1,3	25,6	8,80	39,5	17,6	5,04	4,9	4,6	2,7	1,9
PCB 1972 PCB 1973 PCB 1974 PCB 1975 PCB	Somme des dioxines (OMS 2005 PCDD/F- TEQ) sans LQ	0,75	0,85	0,1			1,2			1,0	0,3	0,3	0,3	0,1	
PCB 28 PCB 28 PCB 28 PCB 28 PCB 28 PCB 29 P	, , ,			0,2	0,2	0,2	1,3	0,5	1,6	1,0	0,3	0,3	0,3	0,2	0,2
PCE 512 PCE 101 PC	PCBi														
PCB-101 PCB-101 PCB-102 PCB-103 PCB-				0,0	0,0		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,						
PCB 138 PCB 138 PCB 138 PCB 138 PCB 138 PCB 138 PCB 139 PCB 13	PCB 52			· ·			183,7	250,6		•		-	*		
PCB 133 PCB 135 PCB 136 PCB 13							· · · · · · · · · · · · · · · · · · ·	· ·	· ·			· ·	-	· · · · · · · · · · · · · · · · · · ·	
1000 11364 2873,4 3917,7 3178,1 12154,5 11526,5 13157,9 5497,8 3570,9 4296,3 6168,2 5261,2 4595,3 5070 4595,3									· ·	· ·	996,3		1462,6	· · · · · · · · · · · · · · · · · · ·	
1000 11364 2873.4 3917.7 3178.1 12154.5 11626.5 13157.9 5497.8 3570.9 4296.3 6168.2 5261.2 4595.3				,		•	, ·	· ·	· ·	· ·	,	,	1808,4		· · · · · · · · · · · · · · · · · · ·
Somme des 7 PCB avec LOQ 3164,6 4197,5 3178,1 12154,5 11626,5 13157,9 5497,8 3709,0 4296,3 6168,2 5261,2 4595,3	PCB 180					· · · · · · · · · · · · · · · · · · ·	2739,8	2370,5	2684,2		567,2		,		
PCB-dI PCB 77	Somme des 6PCB sans LOQ	10000	11364			· ·	,	•	•	· ·	,		· ·	· ·	,
PCB 77 PCB 115 PCB 115 PCB 115 PCB 115 PCB 116 PCB 123 PCB 118 PCB 126 PCB 127 PCB 128 PCB 128 PCB 129				3164,6	4197,5	3178,1	12154,5	11626,5	13157,9	5497,8	3709,0	4296,3	6168,2	5261,2	4595,3
PCB 81	PCB-dl														
PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 126 PCB 126 PCB 126 PCB 156 PCB 156 PCB 157 PCB 157 PCB 168 PCB 159 PCB 169 PCB 16				29,8	36,4	19,7	126,8	113,0		74,9	78,4	67,4	93,0	78,4	58,1
RCB 114					•	•					•	*			
PCB 118 PCB 123 PCB 126 PCB 126 PCB 126 PCB 127 PCB 126 PCB 127 PCB 128 PCB 128 PCB 129 PCB 12					•										
PCB 123 PCB 126 PCB 126 PCB 126 PCB 126 PCB 126 PCB 127 PCB 157 PCB 157 PCB 167 PCB 169 PCB 189 Somme PCB-dI sans TEF PCB de type dioxine (OMS 2005 PCB-TEQ) sans LOQ PCB de type dioxine (OMS 2005 PCB-TEQ) avec LOQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine OMS 2005 TEQ san				- / -	- /	- /	,	, ·	- / -	- / -	- , -		,	· · · · · · · · · · · · · · · · · · ·	
PCB 126 PCB 126 PCB 156 PCB 157 PCB 167 PCB 169 PCB 189 Somme PCB-dl sans TEF Somme PCB-dl sins (DMS 2005 PCB-TEQ) sans LOQ PCB de type dioxine (OMS 2005 PCB-TEQ) avec LOQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine (OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine OMS 2005 TEQ sans LQ Dioxine + PCB de type diox	PCB 118	4													
PCB 156 PCB 157 PCB															
PCB 157 PCB 167 PCB 169 PCB 189 PCB 189 PCB 169 PCB															
PCB 167 28,8 24,6 20,1 129,3 73,5 132,0 34,4 39,2 43,3 50,9 48,9 29,1															
PCB 169 PCB 189 Somme PCB-dl sans TEF 425,6 PCB de type dioxine (OMS 2005 PCB-TEQ) sans LQQ PCB de type dioxine (OMS 2005 PCB-TEQ) avec LQQ Dioxine + PCB de type dioxine OMS 2005 TEQ sans LQ Dioxine + PCB de type dioxine OMS 2005 TEQ avec LQ 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0															
PCB 189 somme PCB-dl sans TEF 425,6 PCB de type dioxine (OMS 2005 PCB-TEQ) sans LOQ PCB de type dioxine (OMS 2005 PCB-TEQ) avec LOQ Dioxine + PCB de type dioxine OMS 2005 TEQ sans LQ 1,25 1,42 1,56 1,50 1,68 1,27 1,68 1,71 1,66 1,21 1,56 1,64 1,59 3,5 3,5 4,8 3,2 26,0 16,9 27,0 7,3 4,7 4,7 4,7 6,4 5,9 3,5 850,4 147,0 1,56 1,21 1,56 1,49 0,86 0,92 0,90 0,51 4,67 4,01 4,10 2,23 1,71 1,26 1,61 1,54 0,92 0,92 0,54 5,89 4,42 5,56 3,16 1,93 1,50 1,84 1,57 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,9		4									•				
somme PCB-dI sans TEF 425,6 504,8 329,2 1676,3 1564,1 1691,5 1030,1 776,6 708,9 1720,4 1478,2 850,4 PCB de type dioxine (OMS 2005 PCB-TEQ) sans LOQ 0,77 0,85 0,46 4,67 4,01 4,10 2,17 1,66 1,21 1,56 1,49 0,86 PCB de type dioxine (OMS 2005 PCB-TEQ) avec LOQ 0,82 0,90 0,51 4,67 4,01 4,10 2,23 1,71 1,26 1,61 1,54 0,92 Dioxine + PCB de type dioxine OMS 2005 TEQ sans LQ 1,25 1,42 0,85 0,92 0,54 5,89 4,42 5,56 3,16 1,93 1,50 1,84 1,57 0,99 Dioxine + PCB de type dioxine OMS 2005 TEQ avec LQ 1,00 1,08 0,68 5,94 4,47 5,68 3,26 2,03 1,59 1,93 1,74 1,13		4			•										
PCB de type dioxine (OMS 2005 PCB-TEQ) sans LOQ PCB de type dioxine (OMS 2005 PCB-TEQ) avec LOQ 1,25 1,42 0,85 0,46 4,67 4,01 4,10 2,17 1,66 1,21 1,56 1,49 0,86 0,92 0,90 0,51 4,67 4,01 4,10 2,23 1,71 1,26 1,61 1,54 0,92 0,92 0,54 5,89 4,42 5,56 3,16 1,93 1,50 1,84 1,57 0,99 1,00 1,00 1,00 1,00 1,00 1,00 1,00															
PCB de type dioxine (OMS 2005 PCB-TEQ) avec LOQ 0,82 0,90 0,51 4,67 4,01 4,10 2,23 1,71 1,26 1,61 1,54 0,92 Dioxine + PCB de type dioxine OMS 2005 TEQ sans LQ 1,25 1,42 0,85 0,92 0,54 5,89 4,42 5,56 3,16 1,93 1,50 1,84 1,57 0,99 Dioxine + PCB de type dioxine OMS 2005 TEQ avec LQ 1,00 1,08 0,68 5,94 4,47 5,68 3,26 2,03 1,59 1,93 1,74 1,13		4													
Dioxine + PCB de type dioxine OMS 2005 TEQ sans LQ 1,25 1,42 0,85 0,92 0,54 5,89 4,42 5,56 3,16 1,93 1,50 1,84 1,57 0,99 Dioxine + PCB de type dioxine OMS 2005 TEQ avec LQ 1,00 1,08 0,68 5,94 4,47 5,68 3,26 2,03 1,59 1,93 1,74 1,13	i i	4													
Dioxine + PCB de type dioxine OMS 2005 TEQ avec LQ 1,00 1,08 0,68 5,94 4,47 5,68 3,26 2,03 1,59 1,93 1,74 1,13															
		1,25	1,42											The second secon	
	Dioxine + PCB de type dioxine OMS 2005 TEQ avec LQ <u>légende</u>			1,00	1,08	0,68	5,94	4,47	5,68	3,26	2,03	1,59	1,93	1,74	1,13

pool-1 pool tout venant

pool-2 pool graminées uniquement

pool-3 pool ronce (espèce dominante)

10

concentration supérieure à la valeur réglementaire pour les PCDD/F dans les denrées animales (n°277/2012]

concentration supérieure à la valeur réglementaire pour les PCB-i (6) dans les denrées animales (n°277/2012) concentration supérieure à la valeur réglementaire pour les PCDD/F+PCB-dl dans les denrées animales (n°277/2012)

0,0 concentration inférieure à la limite de quantification du laboratoire

Annexe: GRAMINEES prélevées sur site - concentration en POP dans les sols (en MS) et dans les feuilles (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

	éNérence EURONINS :	**	14G003624-002		**	14G003624-005		**	14G003624-008		**	14G003624-011		1			
•	RéNérence Client :		P1 -GRA			P2-GRA			P3-GRA			P4-GRA					
	Matrice	s	VX VX	BCF	s	VX VX	BCF	s	VX	BCF	s	VX	BCF				
Paramètres	Incertitude vx		VA.	DCI	3	VA.	DCI	,	**	DCI	3	٧٨	DCI				
Biomasse (g MF)	incertitude vx		_	1		I -	I		_				1				
matière sèche			24,3			33,2			26,8			26,8		1			
PCB indicateurs (6 ou 7 congénèr	res) Unité : na/ka l	MS sollet ng				33,2			20,0			20,0		BCF moyen	SD	BCF min	BFC mx
PCB 28	60%	<80	< 34,9	NA	110,3	135	3,7E+00	<80	74,8	NA	169,9	76,4	1,7E+00	2,7E+00	1,42	1,7E+00	3,7E+00
PCB 52	42%	<60	< 34,9	NA NA	173,3	83,20	1,4E+00	74,1	< 37,3	NA NA	302,2	76,7	9,5E-01	1,2E+00	0,35	9,5E-01	1,4E+00
PCB 101	33%	200,0	67,10	1,4E+00	2053,3	380	5,6E-01	622,7	102	6,1E-01	2255,8	229	3,8E-01	7,3E-01	0,44	3,8E-01	1,4E+00
PCB 118	3370	131,9	69,50	2.2E+00	1635,8	238	4.4E-01	950,2	113	4.4E-01	1972,5	238	4.5E-01	8,8E-01	0,86	4,4E-01	2,2E+00
PCB 138	33%	1072,4	280	1.1E+00	10828,3	1030	2.9E-01	3345,0	267	3,0E-01	9170,0	369	1,5E-01	4,5E-01	0,42	1,5E-01	1,1E+00
PCB 153	33%	1326,7	421	1,3E+00	11952,5	1440	3,6E-01	3939,2	360	3,4E-01	9731,7	475	1,8E-01	5,5E-01	0,51	1,8E-01	1,3E+00
PCB 180	33%	750,9	184	1,0E+00	8213,3	787	2,9E-01	1796,7	152	3,2E-01	7117,5	182	9,5E-02	4,3E-01	0,40	9,5E-02	1,0E+00
Σ 7PCB sans LOQ	15%	3481,9	1021,6	1,2E+00	34966,9	4093,2	3,5E-01	10727,7	1068,8	3,7E-01	30719,6	1646,1	2,0E-01	,	, ,		
Σ 6 PCB (sauf PCB 118) avec LOQ	15%		1020		-	3860			994	·		1410					
Dioxines et furanes PCDD/F (17 c	ongénères), Unité :	ng/kg MS s	ol et pg/g MF végé	étaux													
2,3,7,8-TCDD	35%	<0,20	< 0,007	NA	0,32	< 0,008	NA	1,01	< 0,007	NA	3,47	< 0,007	NA				
1,2,3,7,8-PeCDD	35%	<0,25	< 0,009	NA	1,37	0,02	4,4E-02	3,33	0,01	1,1E-02	15,6	< 0,01	NA	2,8E-02	0,023	1,1E-02	4,4E-02
1,2,3,4,7,8-HxCDD	33%	<0,5	< 0,01	NA	1,74	< 0,02	NA	4,28	< 0,01	NA	20,7	< 0,01	NA				
1,2,3,6,7,8-HxCDD	34%	<0,5	< 0,02	NA	3,67	0,04	3,3E-02	8,09	0,02	9,2E-03	40,4	< 0,02	NA	2,1E-02	0,017	9,2E-03	3,3E-02
1,2,3,7,8,9-HxCDD	42%	<0,5	< 0,02	NA	2,51	< 0,02	NA	5,66	< 0,02	NA	26,6	< 0,02	NA				
1,2,3,4,6,7,8-HpCDD	35%	3,92	0,08	8,4E-02	41,7	0,28	2,0E-02	76,6	0,12	5,8E-03	367,8	0,08	8,1E-04	2,8E-02	0,038	8,1E-04	8,4E-02
OCDD	33%	15,05	< 0,20	NA	147,5	0,55	1,1E-02	157,7	0,26	6,2E-03	718,8	0,31	1,6E-03	6,3E-03	0,005	1,6E-03	1,1E-02
		18,97	0,08		198,8	0,89	1,3E-02	256,7	0,41		1193,3	0,39					
2,3,7,8-TCDF	35%	2,6	0,05	7,9E-02	35,4	0,26	2,2E-02	122,6	0,19	5,8E-03	223,7	0,1	1,7E-03	2,7E-02	0,035	1,7E-03	7,9E-02
1,2,3,7,8-PeCDF	39%	1,6	0,03	7,7E-02	26,1	0,17	2,0E-02	93,0	0,07	2,8E-03	200,6	< 0,02	NA	3,3E-02	0,039	2,8E-03	7,7E-02
2,3,4,7,8-PeCDF	36%	1,6	0,03	7,9E-02	22,8	0,12	1,6E-02	68,4	0,03	1,6E-03	201,3	< 0,02	NA	3,2E-02	0,041	1,6E-03	7,9E-02
1,2,3,4,7,8-HxCDF	38%	2,8	< 0,02	NA	48,1	0,22	1,4E-02	134,9	0,13	3,6E-03	358,7	0,05	5,2E-04	6,0E-03	0,007	5,2E-04	1,4E-02
1,2,3,6,7,8-HxCDF	36%	1,2	< 0,02	NA	20,0	0,10	1,5E-02	54,3	0,07	4,8E-03	216,5	0,04	6,9E-04	6,8E-03	0,007	6,9E-04	1,5E-02
1,2,3,7,8,9-HxCDF	35%	<0,45	< 0,01	NA	<40	< 0,07	NA	<40	< 0,02	NA	<40	< 0,02	NA				
2,3,4,6,7,8-HxCDF	35%	1,1	< 0,02	NA 2 05 02	15,9	0,07	1,3E-02	42,7	0,04	3,5E-03	256,2	0,03	4,4E-04	5,7E-03	0,007	4,4E-04	1,3E-02
1,2,3,4,7,8,9-HpCDF	40%	5,8	0,04	2,8E-02	105,7	0,41	1,2E-02	252,5	0,13	1,9E-03	1204,1	0,04	1,2E-04	1,0E-02	0,013	1,2E-04	2,8E-02
1,2,3,4,6,7,8-HpCDF OCDF	45% 35%	1,6 9,2	< 0,01 < 0.04	NA NA	29,2 163.3	0,14 0.54	1,4E-02 1.0E-02	81,2 388.2	0,04	1,8E-03	252,8 1302,8	< 0,01 0.08	NA 2.3E-04	8,1E-03 4.2E-03	0,009	1,8E-03	1,4E-02 1,0E-02
OCDF	35%	9,2 27,4	< 0,04 0,15	NA	163,3 466,5	0,54 2,03	1,0E-02	388,2 1237,8	0,24 0,94	2,3E-03	1302,8 4216,5	0,08	2,3E-04	4,2E-03	0,005	2,3E-04	1,0E-02
E DCDD /F //- \$4F)		46,4	0,13	2,0E-02	665,4	2,03	6.5E+00	1494,5	1,35	3,4E-03	5409,8	0,34	5,0E-04		1	1	
Σ PCDD/F (pg/g MF) Σ PCDD/F- TEQ sans LQ	18%	40,4	0,02	2,UE-U2	005,4	0,136	6,5E+00	1494,5	0,074	3,4E-03	5409,8	0,023	5,0E-04			1	-
Σ PCDD/F- TEQ avec LQ	18%		0,02			0,154			0,086			0,054					
PCB-dl (12 congénères), Unité : na		σ MF νέσέt≃				0,134			0,000			0,034					
PCB 77	36%	10,0	8,85	3,6E+00	85,7	37,50	1.3E+00	105,2	21	7,4E-01	228,8	21	3.4E-01	1,5E+00	1,47	3,4E-01	3,6E+00
PCB 81	37%	<0,80	0,17	NA NA	2,6	1,31	1,5E+00	10,5	0,63	2,2E-01	20,6	0,71	1,3E-01	6,3E-01	0,78	1,3E-01	1,5E+00
PCB 105	33%	63,5	20,40	1,3E+00	591,7	87,00	4,4E-01	369,5	38,1	3,8E-01	824,2	86,9	3,9E-01	6,4E-01	0,46	3,8E-01	1,3E+00
PCB 114	32%	1,2	1,48	5.3E+00	12,1	6,55	1.6E+00	21,2	2,31	4,1E-01	24,9	4,94	7.4E-01	2,0E+00	2,23	4,1E-01	5,3E+00
PCB 118	35%	131,9	69,50	2,2E+00	1635,8	285,00	5,2E-01	950,2	113	4,4E-01	1972,5	238	4,5E-01	9,0E-01	0,85	4,4E-01	2,2E+00
PCB 123	33%	3,4	0,47	5.7E-01	33,3	2,19	2.0E-01	15,3	1,46	3,6E-01	48,5	2,59	2.0E-01	3,3E-01	0,18	2.0E-01	5,7E-01
PCB 126	34%	10,6	2,03	7,9E-01	123,0	12,90	3,2E-01	73,6	4,36	2,2E-01	211,3	3,86	6,8E-02	3,5E-01	0,31	6,8E-02	7,9E-01
PCB 156	43%	73,5	10,60	5,9E-01	812,5	46,10	1,7E-01	303,4	12,7	1,6E-01	764,6	19,3	9,4E-02	2,5E-01	0,23	9,4E-02	5,9E-01
PCB 157	43%	14,6	2,04	5,7E-01	162,0	9,78	1,8E-01	77,3	2,82	1,4E-01	177,4	4,16	8,7E-02	2,4E-01	0,22	8,7E-02	5,7E-01
PCB 167	45%	50,3	5,97	4,9E-01	569,7	24,40	1,3E-01	201,3	10,5	1,9E-01	540,4	13,1	9,0E-02	2,3E-01	0,18	9,0E-02	4,9E-01
PCB 169	33%	<2,5	< 0,42	NA	16,7	0,95	1,7E-01	13,9	< 0,45	NA	49,6	< 0,46	NA	1,7E-01		1	
PCB 189	33%	14,8	1,16	3,2E-01	187,7	5,60	9,0E-02	74,4	1,26	6,3E-02	199,1	1,59	3,0E-02	1,3E-01	0,13	3,0E-02	3,2E-01
Σ PCD-dl (pg/g MF)		373,8	122,67	1,4E+00	4232,7	519,28	3,7E-01	2216,0	208,1	3,5E-01	5061,8	396,2	2,9E-01	5,9E-01	0,51	2,9E-01	1,4E+00
PCB-dl -TEQ sans LOQ	25%		0,207			1,33			0,444			0,399					
PCB-dl -TEQ avec LOQ	25%		0,219			1,33			0,458			0,413]			
Σ PCDD/F + PCB-dl (12 congénère	s), Unité : ng/kg M	S sol et pg/g	g MF végétaux]			

0,544

0,518

0,467

0,422

légende: * absence d'information si substances détectées lorsque que les concentrations sont < LQ (sol et végétal)

1,484

1,466

0,262

0,223

16%

Σ PCDD/F + PCB-dl TEQ avec LQ

Σ PCDD/F + PCB-dl TEQ sans LQ

^{**} concentration moyenne des substances analysées sur les 12 bacs de culture de 2014

s : concentration dans le sol / vx: concentration dans le végétal

SD : standard déviation

BCF moyen: moyenne des valeurs BCF (tous réplicats et toutes mailles confondus, n≤12)

Annexe: GRAMINEES cultivées en laboratoire - concentration en POP dans les sols (en MS) et dans les feuilles (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

	Référence EUROFIN	S: 15G00	3194-025 150	G005947-004	15G003194-026 15G005947-005 1			15G003194-027 15G005947-006 15G003194-028 15G005947-007			15G003194-029 15G005947-008				15G003194-030 15G005947-009					
	Référence Clier	it :	P1-GRA-R1				RA-R2			RA-R3			P2-GRA-R1			P2-GRA-R2			P2-GRA-R3	
	Matr	ce	s	vx	BCF	s	vx	BCF	S	VX	BCF	S	vx	BCF	S	vx	BCF	s	vx	BCF
Paramètres	Incertitude	vx																		
Biomasse (g MF)				117,7			128,0			112,2			86,8			89,9			86,0	
matière sèche		9	94,1	18,1		90,5	15,1		90,2	16,9		88,2	18,4		89,6	17,3		89,1	18,6	
PCB indicateurs (6 ou 7 congénère																				
PCB 28	60		90	95,1	NA	< 82	76,3	NA	< 80	87,2	NA	< 81	86,0	NA	88,2	83,8	5,5E+00	99,5	75	4,1E+00
PCB 52	42		67	317	NA	< 61	220	NA	< 60	237	NA	160	231	7,8E+00	185	243	7,6E+00	220	195	4,8E+00
PCB 101	33		153	340	1,2E+01	188	311	1,1E+01	190	313	9,7E+00	1800	260	7,9E-01	1700	308	1,0E+00	1980	227	6,2E-01
PCB 118			129	156	6,7E+00	142	212	9,9E+00	145	223	9,1E+00	1510	154	5,5E-01	1700	212	7,2E-01	1920	151	4,2E-01
PCB 138 PCB 153	33		.010	107 170	5,9E-01	1090 1430	165 243	1,0E+00	1080 1440	159 215	8,7E-01 8.8E-01	9830	161 290	8,9E-02	10100 11900	192 295	1,1E-01 1.4E-01	11400 18300	137 184	6,5E-02 5.4E-02
PCB 180	3:		702	< 27	6,9E-01 NA	847	34,20	1,1E+00 2,7E-01	869	28,80	2,0E-01	11800 8040	42,2	1,3E-01 2,9E-02	8220	47,1	3,3E-02	9270	36,8	2,1E-02
Σ 7PCB sans LOQ	15			1185.10	2,0E+00	3697	34,20 1261.50	2,7E-01 2,3E+00	3724	28,80 1263	2,0E+00	33140,0	1224,2	2,9E-02 2.0E-01	33893,2	1380,9	2,4E-01	43189,5	1005.8	1.3E+02
	11			1029,10	2,02700	3057		2,35400	3/24		2,02700	33140,0		2,0E-01	33033,2	1168.90	2,46-01	43107,3		1,35402
Σ 6 PCB (sauf PCB 118) avec LOQ	1	1%					1049,50			1040,00			1070,20						854,80	
Σ 6 PCB pg/g (sauf PCB 118) en MS	(.)		51 -1 /- 5	5686			6950			6154			5816			6757			4596	
Dioxines et furanes PCDD/F (17 con					NA.	-0.10	.0.0026		-0.10	20.0046	NA.	0.245	-0.0050		0.204	.0.0040		0.422	-0.00400	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	3!			< 0.0051 < 0.0067	NA NA	< 0.18 < 0.24	< 0.0038	NA NA	< 0.18 < 0.24	< 0.0048	NA NA	0,345 1,31	< 0.0050 < 0.0065	NA NA	0,394 1,39	< 0.0048	NA NA	0,422 1,6	<0,00488 <0,0064	NA NA
1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	33			< 0.0067	NA NA	< 0.24	< 0.0050	NA NA	< 0.24	< 0.0063	NA NA	1,31	< 0.0065	NA NA	1,39	< 0.0063	NA NA	2,14	<0,0064	NA NA
1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD	3:			< 0.010	NA NA	< 0.48	< 0.010	NA NA	< 0.47	< 0.0096	NA NA	3,71	< 0.014	NΑ	4,12	< 0.0096	NA NA	4,68	<0,013	NA NA
1,2,3,7,8,9-HxCDD	42		1,51	< 0.014	NA NA	< 0.48	< 0.0099	NA NA	< 0.47	< 0.013	NA NA	2,25	< 0.014	NA NA	2,48	< 0.013	NA NA	2,87	<0,013	NA NA
1,2,3,4,6,7,8-HpCDD	3!		79,4	0,02	1.5E-03	4,13	0,05	7,7E-02	4,33	0,04	5.8E-02	41,1	0,02	3.0E-03	44,3	0,05	7.1E-03	51	0,0309	3.3E-03
OCDD	33		462	< 0.15	NA NA	16	< 0.12	NA NA	15,8	< 0.15	NA	137	< 0.15	NA	152	< 0.15	NA	179	<0,15	NA
Somme des dioxines	-		17,37	0,02	0,00	20,13	0,05	0,08	20,13	0,04		187,4	0,02		206,5	0,05		241,7	0,03	
2,3,7,8-TCDF	35	1% 2	2,76	0,10	2,0E-01	2,96	0,19	4,3E-01	2,87	0,18	3,6E-01	37	0,15	2,2E-02	39,1	0,22	3,2E-02	43,5	0,18	2,2E-02
1,2,3,7,8-PeCDF	39	1% 1	1,55	0,03	1,0E-01	1,66	0,07	2,8E-01	1,85	0,06	1,9E-01	26,5	0,05	1,0E-02	26,4	0,09	2,0E-02	29,5	0,06	1,2E-02
2,3,4,7,8-PeCDF	36	i% 1	1,65	0,02	5,5E-02	1,73	0,04	1,6E-01	1,89	0,04	1,1E-01	23,9	0,04	9,6E-03	26,5	0,06	1,3E-02	29,3	0,05	8,5E-03
1,2,3,4,7,8-HxCDF	38		3,02	0,02	3,5E-02	2,78	0,05	1,1E-01	3,17	0,04	7,1E-02	44,9	0,03	3,8E-03	48,7	0,05	6,0E-03	53,5	0,03	3,4E-03
1,2,3,6,7,8-HxCDF	30			< 0.014	NA	1,24	0,03	1,3E-01	1,37	0,02	9,3E-02	19,6	0,02	4,8E-03	21,8	0,03	7,7E-03	24,7	0,02	4,2E-03
1,2,3,7,8,9-HxCDF	35		,561	< 0.011	NA	< 0.40	< 0.0081	NA	< 0.39	< 0.010	NA	< 4.89	< 0.010	NA	< 4.63	< 0.010	NA	< 5.2	< 0,010	NA
2,3,4,6,7,8-HxCDF	35		2,47	< 0.013	NA	1,26	0,01	6,6E-02	1,3	< 0.012	NA	17	< 0.013	NA	19,4	0,02	4,6E-03	22	< 0,012	NA
1,2,3,4,7,8,9-HpCDF	40		56,4	< 0.010	NA	7,03	0,01	8,6E-03	7,15	< 0.0098	NA	102	< 0.010	NA	102	< 0.0099	NA	116	< 0,0099	NA
1,2,3,4,6,7,8-HpCDF	45		2,96	0,02	4,2E-02	1,53	0,06	2,5E-01	1,81	0,05	1,6E-01	27,8	0,04	6,9E-03	29,3	0,05	1,1E-02	34,1	0,04	6,9E-03
OCDF	3!		72,7	0,10	7,5E-03	9,87	0,05	3,1E-02	10,3	0,04	2,2E-02	155	0,11	3,8E-03	172	0,05	1,7E-03	194	0,04	1,2E-03
Somme des furannes			55,85 3.22	0,28 0.31	2,4E-03	30,06 50.19	0,50 0.55	7,3E-02	31,71 51.84	0,42	5,3E-02	453,7 641,15	0,44	3.9E-03	485,2 691,7	0,56 0,62	5.2E-03	546,60 788,3	0,43 0,46	3.2E-03
Σ PCDD/F (pg/g MF)		/(15,22	0,10	2,46-03	30,13	0,29	7,5E-UZ	31,04	0,22	3,3E-UZ	041,13	0,19	3,3E-U3	051,7	0,30	3,26-03	700,5	0,22	3,25-03
Σ PCDD/F (pg I-TEQ/g MS) sans LQ Σ PCDD/F (pg I-TEQ/g MS) avec LQ				0,10			0,37			0,32			0,19			0,39			0,31	
Σ PCDD/F- pg I-TEQ/g MF sans LQ	18	0/		0,0179			0,0434			0,0369			0,0348			0,0525			0,040	
Σ PCDD/F- pg I-TEQ/g MF sails EQ Σ PCDD/F- pg I-TEQ/g MF avec LQ	18			0,0179			0,0559			0,0539			0,0524			0.0683			0,057	-
PCB-dl (12 congénères), Unité : ng/			étaux	0,0373			0,0333			0,0333			0,0324			0,0003			0,037	
PCB 77	36		9,24	4,14	2.5E+00	11,4	5,0	2.9E+00	12,1	5,16	2.5E+00	85,6	3,68	2.3F-01	92,3	5,16	3.2F-01	108	5,23	2.6F-01
PCB 81	31		0.85	0,08	NA NA	< 0.78	0,10	NA NA	< 0.77	0,13	NA NA	3,3	0,08	1,3E-01	3,87	0,11	1,7E-01	3,99	0,10	1,3E-01
PCB 105	33		55,2	44,60	4,5E+00	65,1	70,0	7,1E+00	65,1	71,5	6,5E+00	530	44,7	4,6E-01	607	68,9	6,6E-01	680	52	4,1E-01
PCB 114	32	!% <	1.09	2,02	NA	1,2	3,99	2,2E+01	1,15	3,35	1,7E+01	12,5	2,56	1,1E+00	15,9	3,33	1,2E+00	18,1	3,66	1,1E+00
PCB 118	3!		129	156	6,7E+00	142	212	9,9E+00	145	223	9,1E+00	1510	154	5,5E-01	1700	212	7,2E-01	1920	151	4,2E-01
PCB 123	33		5,06	1,04	1,1E+00	3,95	1,58	2,6E+00	4	2,10	3,1E+00	32,2	1,05	1,8E-01	30	2,18	4,2E-01	37	1,35	2,0E-01
PCB 126	34		9,91	0,32	1,8E-01	14	0,44	2,1E-01	14,1	0,44	1,9E-01	131	0,41	1,7E-02	146	0,58	2,3E-02	166	0,62	2,0E-02
PCB 156	4		54,1	3,86	3,3E-01	79,4	7,65	6,4E-01	82,2	7,21	5,2E-01	816	6,51	4,3E-02	879	8,67	5,7E-02	939	7,92	4,5E-02
PCB 157	43		16,6	0,70	2,3E-01	18,4	1,36	4,9E-01	17,9	1,17	3,9E-01	176	1,33	4,1E-02	183	1,70	5,4E-02	208	1,87	4,8E-02
PCB 167	45		18,3	2,20	2,5E-01	54,2	3,86	4,7E-01	54,6	3,76	4,1E-01	553	4,22	4,1E-02	581	5,07	5,0E-02	657	5,12	4,2E-02
PCB 169	33		2.6	< 0.32	NA	< 2.4	< 0.24	NA 7.35.03	< 2.4	< 0.30	NA 5.35.03	19,9	< 0.31	NA 5.75.03	21,4	< 0.30	NA C 35 03	20,1	<0,31	NA 1.25.02
PCB 189	33	-	14	< 0.11	NA	18,4	0,20	7,2E-02	18,6	0,17	5,3E-02	208	0,22	5,7E-03	213	0,23	6,3E-03	238	0,51	1,2E-02
Σ PCB-dl (pg/g MF)		3.	51,4	215,0	3,4E+00	408,1	306,2	5,0E+00	414,8	318,0	4,5E+00	4077,5	218,8	2,9E-01	4472,5	307,9	4,0E-01	4995,2	229,4	2,5E-01
Σ PCB-dl (pg I-TEQ/g MS) sans LQ				0,21 0,27			0,35			0,32 0,37	-	-	0,26 0.31			0,39 0,44			0,37 0.42	1
Σ PCB-dl (pg I-TEQ/g MS) avec LQ Σ PCB-dl -TEQ MF sans LQ	25	9/	-	0,27			0,40			0,37	1	1	0,31			0,44			0,42	1
Σ PCB-dl -TEQ MF sans EQ Σ PCB-dl -TEQ MF avec LQ	2!			0,039			0,0532			0,0633			0,0569			0,0676			0,069	1
Σ PCDD/F + PCB-dl (12 congénères)			a/a MF végéta				0,0003			0,0033	1		0,0303			0,0707			0,070	1
Σ PCDD/F + PCB-dl (12 congeneres) Σ PCDD/F + PCB-dl (pg I-TEQ/g MS) sai			5/5 IVIF VEGETA	0,31			0,64			0,54	 		0,45			0,69			0,59	-
Σ PCDD/F + PCB-dl (pg I-TEQ/g MS) av				0,47			0,77			0,69	1		0,59			0,84			0,73	1
	gende : < 0,01		ice détectée mais		e		,		valeur anormale da				.,					1		1

légende: < 0,01 substance détectée mais non quantifiée
s : concentration dans le sol / vx: concentration dans le végétal
SD : standard dévaison
BCF moyen: moyenne des valeurs BCF (tous réplicats et toutes mailles confondus, rs12)

Annexe: GRAMINEES cultivées en laboratoire - concentration en POP dans les sols (en MS) et dans les feuilles (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

Référ	ence EUROFINS :	15G003194-031	15G005947-010		15G003194-032	15G005947-011		15G003194-033	15G005947-012		15G003194-034	15G005947-013		15G003194-035	15G005947-014		15G003194-036	15G005947-015		1	
R	éférence Client :		P3-GRA-R1		P3-G	RA-R2			P3-GRA-R3		P4-G	RA-R1		P4-G	RA-R2		P4-G	RA-R3			
	Matrice	S	vx	BCF	S	vx	BCF	S	vx	BCF	s	vx	BCF	S	vx	BCF	S	VX	BCF		
Paramètres	Incertitude vx		,		1		,		1					,	,						
Biomasse (g MF)			115,9			111,8			101,8			97,9			120,0			128,2			
matière sèche		96,2	19,2		90,2	17,5		96	17,5		93,4	18,8		85,9	17,7		85,4	18,4		BCF moyen	SD
PCB indicateurs (6 ou 7 congénères), Un	ite : ng/kg M	0.0	46.6											00.0	40.4						4 55 00
PCB 28	60%	< 86 < 64	46,5 274	NA NA	< 81	60,6	NA 1.3F+01	< 87	49	NA 1.4F+01	< 89	< 28	NA 2.1E+00	88,2	40,1 140	2,6E+00 2.5E+00	< 82	< 27	NA 2.3E+00	4,04E+00	1,5E+00
PCB 52 PCB 101	42% 33%	< 64 565	274	2.7E+00	106 753	249 265	1,3E+01 2.0E+00	125 781	301 322	1,4E+01 2.4E+00	340 2450	133 150	2,1E+00 3.3E-01	321 2050	140	2,5E+00 5.5E-01	324 2030	138 189	2,3E+00 5.1E-01	6,78E+00 3.65E+00	4,8E+00 4,5E+00
PCB 118	33%	982	153	8,1E-01	1340	168	7,2E-01	1230	163	7,6E-01	2320	125	2,9E-01	2180	200	5,5E-01 5,2E-01	2240	198	4,8E-01	2,58E+00	3,7E+00
PCB 138	33%	3320	118	1.9E-01	4350	126	1.7E-01	4220	122	1.7E-01	9910	123	6.6E-02	8140	156	1.1E-01	8390	148	9.6E-02	2,92E-01	3,3E-01
PCB 153	33%	4180	161	2.0F-01	4800	162	1,9F-01	5250	161	1,7E-01 1.8E-01	12000	175	7.8E-02	10300	191	1.0E-01	10000	189	1.0E-01	3,24E-01	3,6E-01
PCB 180	33%	1940	<28	NA NA	2480	26,1	6.0E-02	2270	< 26	NA	9340	30,5	1,7E-02	7390	38.3	2,9E-02	7450	33,7	2,5E-02	7,53E-02	9,1E-02
Σ 7PCB sans LOQ	15%	10987,0	1042,5	4.9E-01	13829.0	1056,7	4.4E-01	13876.0	1118,0	4.6E-01	36360	736,5	1,1E-01	30469	964.4	1.8E-01	30434	895,7	1,6E-01	1,11E+01	3,6E+01
Σ 6 PCB (sauf PCB 118) avec LOQ	15%		889.50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		623,70	,,		955,00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		611,50			764.40	-,		697,70	_,		0,02.02
Σ 6 PCB pg/g (sauf PCB 118) en MS	13/0		4633			3564			5457			3253			4319			3792			
Dioxines et furanes PCDD/F (17 congénè	res). Unité · n		4033			3304			3437			3233			4313			3132			
2.3.7.8-TCDD	35%	1,15	< 0.0054	NA	1,48	< 0.0049	NA	1.42	< 0.0049	NA .	4.33	< 0.0054	NA	3.81	< 0.0050	NA	4,31	< 0.0051	NA	pas de BCF	
1,2,3,7,8-PeCDD	35%	3.36	< 0.0071	NA NA	4.7	< 0.0045	NA NA	4.35	< 0.0064	NA NA	16.3	< 0.0071	NA NA	16	< 0.0066	NA NA	17.7	< 0.0051	NA NA	pas de BCF	
1,2,3,4,7,8-HxCDD	33%	3,67	< 0.011	NA	5,95	< 0.0098	NA NA	4,74	< 0.0098	NA	19,9	< 0.011	NA	22	< 0.01	NA NA	24	< 0.010	NA	pas de BCF	
1,2,3,6,7,8-HxCDD	34%	8,6	< 0.015	NA	13,7	< 0.013	NA	10,7	< 0.013	NA	44,8	< 0.015	NA	45,5	< 0.014	NA	53,6	< 0.014	NA	pas de BCF	
1,2,3,7,8,9-HxCDD	42%	5,43	< 0.014	NA	7,91	< 0.013	NA	6,3	< 0.013	NA	27,6	< 0.014	NA	26,8	< 0.013	NA	32,5	< 0.013	NA	pas de BCF	
1,2,3,4,6,7,8-HpCDD	35%	68,7	0,04	2,7E-03	110	0,0499	2,6E-03	88,2	0,04	2,7E-03	402	< 0.023	NA	363	0,06	8,9E-04	436	0,04	5,4E-04	1,45E-02	2,7E-02
OCDD	33%	137	< 0.16	NA	239	< 0.15	NA	171	< 0.15	NA	751	< 0.16	NA	727	< 0.15	NA	849	< 0.16	NA	pas de BCF	
Somme des dioxines		227,91	0,04		382,74	0,05		286,71	0,04		1265,93	0		1204,11	0,057		1417,11	0,0437			
2,3,7,8-TCDF	35%	138	0,27	1,0E-02	184	0,288	8,9E-03	169	0,29	9,8E-03	292	0,56	1,0E-02	262	0,47	1,0E-02	285	0,72	1,4E-02	9,45E-02	1,5E-01
1,2,3,7,8-PeCDF	39%	88,6	0,11	6,4E-03	121	0,126	6,0E-03	111	0,13	6,9E-03	260	0,18	3,7E-03	233	0,15	3,6E-03	249	0,15	3,2E-03	5,42E-02	9,2E-02
2,3,4,7,8-PeCDF	36%	72,6	0,05	3,8E-03	105	0,0665	3,6E-03	86,4	0,06	4,1E-03	231	0,08	1,8E-03	241	0,08	1,8E-03	263	0,08	1,6E-03	3,07E-02	5,1E-02
1,2,3,4,7,8-HxCDF	38%	120	0,05	2,3E-03	177	0,059	1,9E-03	142	0,06	2,4E-03	381	0,08	1,1E-03	395	0,07	1,0E-03	441	0,06	7,6E-04	2,00E-02	3,6E-02
1,2,3,6,7,8-HxCDF	36%	52,8	0,03	2,6E-03	77,6	0,032	2,4E-03	66,1	0,03	2,5E-03	210	0,04	9,4E-04	209	0,04	1,1E-03	232	0,03	7,7E-04	2,31E-02	4,6E-02
1,2,3,7,8,9-HxCDF	35%	< 14.8	< 0.011	NA	< 19.2	< 0.010	NA	< 17.1	< 0.010	NA	< 52.2	< 0.011	NA	< 50.2	< 0.011	NA	< 61.9	< 0.011	NA	pas de BCF	4
2,3,4,6,7,8-HxCDF	35%	42,3	< 0.014	NA 3.4F-04	68,3	0,0168	1,4E-03	52,5	0,01	1,5E-03	245	0,02	3,9E-04	277	0,02	4,0E-04	305	0,02	3,4E-04	1,07E-02	2,5E-02
1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDF	40% 45%	213 82,9	0,01		330 114	0,0145	2,5E-04	268 101	< 0.010 0,05	NA 2.75.02	1050 288	0,01	6,5E-05 1,2E-03	1170 272	0,01	6,1E-05 1,5E-03	1290 303	< 0.011 0,06	NA 1,0E-03	1,85E-03 4.03E-02	3,7E-03 7.8E-02
1,2,3,4,6,7,8-HPCDF OCDF	45% 35%	82,9 368	0,07	4,3E-03 1.6E-03	551	0,0591	3,3E-03 6.1F-04	472	0,03	2,7E-03 3.8E-04	1390	0,08	1,2E-03 3.1E-04	1320	0,07	1,5E-03 2.3E-04	1460	0,08	1,0E-03 1,2E-04	5,88E-03	1,0E-02
Somme des furannes	3376	1178,20	0,70	1,02-03	1727,90	0,73	0,1E-U4	1468,00	0,67	3,8E-U4	4347	1,1049	3,16-04	4379	0,9663	2,3E-04	4828	1,1468	1,26-04	3,00E-U3	1,02-02
Σ PCDD/F (pg/g MF)		1406.1	0,70	2.9F-03	2110.6	0,8	2.1F-03	1754,7	0,7	2.3F-03	5613	1,1049	1,0E-03	5583	1,0	1,0E-03	6245	1,1400	1,0E-03		
Σ PCDD/F (pg I-TEQ/g MS) sans LQ			0,29	2,52.55		0,37	_,		0,36	2,22 22		0,53			0,51			0,61	-,		
Σ PCDD/F (pg I-TEQ/g MS) avec LQ			0.39			0,46			0.45			0,62			0,60			0.70			
Σ PCDD/F- pg I-TEQ/g MF sans LQ	18%		0.0554			0.0647			0.0628			0.0987			0.0894			0,112			
Σ PCDD/F- pg I-TEQ/g MF avec LQ	18%		0,0744			0,0807			0,0789			0,117			0,106			0,129			
PCB-dl (12 congénères), Unité : ng/kg M:	sol et pg/g												NA			NA			NA		
PCB 77	36%	97	4,49	2,4E-01	150	5,11	1,9E-01	126	5,25	2,4E-01	236	4,52	1,0E-01	246	6,50	1,5E-01	270	6,73	1,4E-01	8,15E-01	1,1E+00
PCB 81	37%	11	0,10	4,8E-02	16,6	0,10	3,5E-02	13,6	0,16	6,6E-02	31	< 0.076	NA	42,9	0,09	1,2E-02	43,2	< 0.073	NA	8,37E-02	5,8E-02
PCB 105	33%	359	48,70	7,1E-01	501	56,50	6,4E-01	467	55,00	6,7E-01	955	39,00	2,2E-01	881	63,00	4,0E-01	910	65,20	3,9E-01	1,89E+00	2,6E+00
PCB 114	32%	18,4	2,62	7,4E-01	30,4	3,06	5,8E-01	19	2,93	8,8E-01	54,5	2,32	2,3E-01	54,5	3,55	3,7E-01	56,4	3,19	3,1E-01	4,16E+00	7,7E+00
PCB 118	35%	982	153,00	8,1E-01	1340	168,00	7,2E-01	1230	163,00	7,6E-01	2320	125,00	2,9E-01	2180	200,00	5,2E-01	2240	198,00	4,8E-01	2,58E+00	3,7E+00
PCB 123	33%	28,4	1,33	2,4E-01	24,7	1,23	2,8E-01	42,9	1,23	1,6E-01	77,1	1,15	7,9E-02	45,1	1,95	2,4E-01	50,8	1,74	1,9E-01	7,41E-01	1,0E+00
PCB 126	34%	75,9	0,36	2,5E-02	109	0,50	2,6E-02	91,6	0,44	2,8E-02	246	0,59	1,3E-02	264	0,78	1,7E-02	267	0,84	1,7E-02	6,30E-02	7,7E-02
PCB 156	43% 43%	286	4,66	8,5E-02 6.0F-02	408	6,30	8,8E-02 6.6E-02	371	5,86	9,0E-02 6.4F-02	867	5,00	3,1E-02 2.8E-02	832	8,17	5,5E-02 4.7E-02	810	8,28	5,6E-02 4.1E-02	1,70E-01	2,1E-01
PCB 157 PCB 167	43% 45%	79 208	0,91		106 281	1,22 3.78	6,6E-02	97,3	1,09 3.57	-,	218	1,16 4.02		220	1,83		224	1,71 5.44		1,30E-01 1.37E-01	1,6E-01
PCB 167 PCB 169	45% 33%	208 12,9	3,22 < 0.34	8,1E-02 NA	281 20,1	3,78 < 0.31	7,7E-02 NA	252 13	3,57 < 0.31	8,1E-02	612 48	4,02 < 0.34	3,5E-02 NA	532 57,1	5,28 < 0.32	5,6E-02 NA	554 60,3	5,44 < 0.32	5,3E-02 NA	1,37E-01 pas de BCF	1,5E-01
PCB 189	33% 33%	12,9 68,3	0,15	1.1E-02	20,1 102	< 0.31 0,19	1.1E-02	83,4	0.31	1.2E-02	48 224	0,29	7.0E-03	229	0,38	9.3E-03	238	< 0.32 0.37	NA 8.4E-03	1,88E-02	2,2E-02
Σ PCB-dl (pg/g MF)	3370	2225.9	219.5	5.4F-01	3088.8	246.0	4.6E-01	2806.8	238.7	4.9F-01	5889	183.1	1.7E-01	5584	291,5	2.9E-01	5724	291,5	2.8E-01	1,001-02	2,21-02
Σ PCB-dl (pg/g MF) Σ PCB-dl (pg I-TEQ/g MS) sans LQ		2223,3	0.22	5,41-01	3000,0	0.33	4,02-01	2000,0	0.30	4,51-01	3003	0.34	1,75-01	3304	0.49	2,95-01	3724	0.50	2,82-01	1	
Σ PCB-dl (pg I-TEQ/g MS) sails EQ Σ PCB-dl (pg I-TEQ/g MS) avec LQ			0,22			0,38			0,35			0,40	1		0,54			0,56	1	1	
Σ PCB-dI -TEQ MF sans LQ	25%		0.0427			0.0576			0.0519			0.0648	1		0.0868			0.0929		i	
Σ PCB-dl -TEQ MF avec LQ	25%		0,053			0,0669			0,0611			0,075			0,0962			0,103		1	
Σ PCDD/F + PCB-dl (12 congénères), Unit			.,			-,			.,						.,			-,	1	1	
Σ PCDD/F + PCB-dl (pg I-TEQ/g MS) sans LQ	16%		0,51			0,70			0,66			0,87			1,00			1,11	1	1	
Σ PCDD/F + PCB-dl (pg I-TEQ/g MS) avec LQ	16%		0,66			0,84			0,80			1,02			1,14			1,26	1	1	

légende : < 0,01 s : concentrati SD : standard c BCF moyen: m

Annexe 9:

Concentrations des POPs dans les végétaux potagers et valeurs de BCF

Annexe : POMME DE TERRE ENTIERE - concentration en POP dans les sols (en MS) et dans les tubercules non épluchées (en MF) - détermination du BCF sur la matière sèche (sol et végétal

	Référence EUROFINS :	14G003326-041	14G006117-002		14G003326-042	14G006117-003		14G003326-043	14G006117-004		14G003326-001	14G006117-005		14G003326-002	14G005515-005		14G003326-003	14G005515-006	
	Référence Client :		PDT R1	P1-PDT R1		PDT-R2	P1-PDT-R2	P1-P		P1-PDT R3	P2-PI	OT-R1	P2-PDT-R1		PDT-R2	P2-PDT-R2	P2-PI		P2-PDT-R3
	Matrice	s	vx	BCF	s	vx	BCF	s	vx	BCF	s	vx	BCF	s	vx	BCF	s	vx	BCF
Paramètres	Incertitude vx																		
biomasse récoltée (g MF)			260			250			240			220			190			210	
matière sèche		88,8	16,9		88,4	17,5		88,4	17,8		88	18,4		87,6	19,4		87,9	20,1	
PCB indicateurs (6 ou 7 congénères),	Unité : ng/kg MS so	ol et ng/g MF ve	égétaux																
PCB 28	60%	< 90,0	<0,01		< 84,9	<0,01		< 91,0	<0,01		< 83,3	<0,01		81,6	< 0,01		< 81,1	< 0,01	
PCB 52	42%	< 67,0	<0,01		< 63,2	<0,01		< 67,7	<0,01		405	<0,01		153	< 0,01		112	< 0,01	
PCB 101	33%	265	<0,01		189	<0,01		178	<0,01		2550	0,05	1,1E-01	2020	0,04	1,0E-01	1670	0,04	1,2E-01
PCB 118		180	0,003	9,9E-02	123	0,002	9,3E-02	118	0,003	1,4E-01	2250	0,02	4,8E-02	1610	0,021	6,7E-02	1390	0,0179	6,4E-02
PCB 138	33%	1300	0,02	9,1E-02	1220	0,02	9,4E-02	1100	0,03	1,5E-01	9860	0,25	1,4E-01	9230	0,25	1,4E-01	7900	0,21	1,3E-01
PCB 153	33%	1420	0,04	1,7E-01	1320	0,03	1,3E-01	1400	0,04	1,6E-01	11900	0,35	1,6E-01	11500	0,33	1,5E-01	10300	0,3	1,4E-01
PCB 180	33%	732	0,01	8,1E-02	711	<0,01		741	<0,01		8070	0,12	8,1E-02	8050	0,12	7,7E-02	7070	0,1	7,0E-02
Σ 7PCB sans LOQ	15%	3897	0,07	1,1E-01	3563	0,05	8,3E-02	3537	0,07	1,2E-01	35035	0,79	1,2E-01	32645	0,76	1,2E-01	28442	0,67	1,2E-01
Σ 6 ou 7PCB (sauf PCB 118) avec LOQ	15%	4060	0,11		3720	0,1		3690	0,13		35200	0,8		32700	0,77		28500	0,68	1
Dioxines et furanes PCDD/F (17 congé	nères), Unité : ng/	kg MS sol et pg/	/g MF végétaux																
2,3,7,8-TCDD	35%	< 0,20	<0,002		< 0,19	<0,002		< 0,20	<0,003		0,39	<0,003		0,29	< 0,002		0,33	< 0,003	
1,2,3,7,8-PeCDD	35%	< 0,26	<0,003		< 0,25	<0,003		< 0,27	<0,004		1,38	0,006	2,4E-02	1,26	0,007	2,9E-02	1,2	0,006	2,5E-02
1,2,3,4,7,8-HxCDD	33%	< 0,53	<0,005		< 0,50	<0,005		< 0,53	<0,005		1,8	0,007	2,1E-02	1,55	0,008	2,7E-02	1,54	0,006	1,9E-02
1,2,3,6,7,8-HxCDD	34%	< 0,53	<0,006		< 0,50	<0,006		< 0,53	<0,007		3,98	0,02	2,7E-02	3,59	0,02	2,9E-02	3,39	0,01	1,5E-02
1,2,3,7,8,9-HxCDD	42%	< 0,53	<0,006		< 0,50	<0,006		< 0,53	<0,007		2,81	0,007	1,4E-02	2,43	< 0,006		2,34	< 0,007	
1,2,3,4,6,7,8-HpCDD	35%	3,52	<0,009		4,07	0,01	1,4E-02	3,64	0,01	1,5E-02	43,1	0,07	8,8E-03	43,6	0,08	9,5E-03	37,7	0,07	9,2E-03
OCDD	33%	15,5	<0,07		19,2	<0,07		14	<0,08		140	0,1	3,9E-03	253	0,18	3,7E-03	127	0,16	6,3E-03
Somme des dioxines		19,02	0		23,27	0,010		17,64	0,01		193,46	0,21		305,72	0,295		173,5	0,252	
2,3,7,8-TCDF	35%	2,46	0,02	4,8E-02	2,45	0,03	7,0E-02	2,56	0,03	6,6E-02	38,2	0,2	2,8E-02	32	0,24	3,9E-02	30,5	0,2	3,3E-02
1,2,3,7,8-PeCDF	39%	1,4	0,01	4,2E-02	1,54	0,01	3,7E-02	1,79	0,008	2,5E-02	28,6	0,2	3,8E-02	25,3	0,16	3,3E-02	23,9	0,14	2,9E-02
2,3,4,7,8-PeCDF	36%	1,38	0,01	4,3E-02	1,57	0,01	3,6E-02	1,35	0,009	3,7E-02	23,5	0,1	2,3E-02	20,2	0,13	3,3E-02	19,8	0,11	2,8E-02
1,2,3,4,7,8-HxCDF	38%	2,55	0,01	2,3E-02	2,67	0,01	2,1E-02	2,88	0,02	3,9E-02	52,1	0,2	2,1E-02	44,7	0,18	2,1E-02	42,1	0,16	1,9E-02
1,2,3,6,7,8-HxCDF	36%	1,09	<0,006		1,16	<0,007		1,11	<0,008		20,4	0,07	1,9E-02	17,8	0,08	2,3E-02	17,1	0,06	1,7E-02
1,2,3,7,8,9-HxCDF	35%	< 0,44	<0,005		< 0,43	<0,005		< 0,44	<0,006		< 4,80	<0,04		< 4,63	< 0,03		< 5,69	< 0,02	
2,3,4,6,7,8-HxCDF	35%	1,01	<0,006		0,98	<0,006		0,93	<0,007		17,2	0,05	1,6E-02	14,3	0,05	1,8E-02	14,2	0,05	1,8E-02
1,2,3,4,7,8,9-HpCDF	40%	5,11	<0,005	0.45.00	5,44	<0,03		5,42	<0,006	7 45 00	116	0,04	1,9E-03	103	0,05	2,5E-03	95,7	0,04	2,1E-03
1,2,3,4,6,7,8-HpCDF OCDF	45% 35%	1,46 8,56	0,02 <0,01	8,1E-02	1,56 8,56	<0,005 <0,01		1,51 8,43	0,02 <0,02	7,4E-02	31,4 164	0,2 0,1	3,5E-02 3,3E-03	28,5 160	0,24 0,19	4,3E-02 6,1E-03	27,6 140	0,2 0,17	3,6E-02
Somme des furannes	35%	25,02	0,07		25,93	0,06		25,98	0,087		491,4	1,16	3,3E-U3	445,8	1,32	6,1E-U3	410,9	1,13	6,0E-03
Σ PCDD/F (pg/g sans TEF)		44.04	0,07	9,4E-03	49,20	0,06	8,1E-03	43,62	0,087		491,4 684.9	1,16	1,1E-02	751,5	1,32	1,1E-02	584,4	1,13	1,2E-02
Σ PCDD/F (pg/g sans LC) Σ PCDD/F- TEQ sans LQ		1,28	0,008	9,45-03	1,36	0,009	0,1E-U3	1,32	0,007		25,3	0,1	1,16-02	21,9	0,112	1,1E-02	21	0,094	1,2E-02
Σ PCDD/F- TEQ sans EQ Σ PCDD/F- TEQ avec LQ	1	1,94	0,008		1,99	0,003		1,99	0,02		25,8	0,1		22,3	0,112		21,5	0,099	+
PCB-dl (12 congénères), Unité : ng/kg	MS sol et na/a M		0,02		1,55	0,02		1,55	0,02		25,0	0,1		22,3	0,117		21,5	0,033	
PCB 77	36%	9,22	<0,2		9,04	<0,2		8,43	<0,3		85,3	0,5	3,2E-02	85,5	0,5	3.0E-02	76,6	0,33	2,1E-02
PCB 77	37%	< 0,86	<0,03		< 0,81	<0,03		< 0,87	<0,04		2,84	<0,04	JAC OF	3,04	< 0,03	3,01 01	2,8	< 0,04	2,22 02
PCB 105	33%	89,1	1	6,6E-02	54,3	1	1,1E-01	54,5	1	1,0E-01	766	8	5,7E-02	543	6,8	6,5E-02	496	5,61	5,6E-02
PCB 114	32%	< 1,03	<0,06		< 0,97	<0,06		< 1,04	<0,07		28,5	0,2	3,8E-02	17,4	0,11	3,3E-02	12	0,11	4,6E-02
PCB 118	35%	180	3	9,9E-02	123	2	9,3E-02	118	3	1,4E-01	2250	20	4,8E-02	1610	21	6,7E-02	1390	17,9	6,4E-02
PCB 123	33%	4,61	0,08	1,0E-01	3,25	0,07	1,2E-01	2,56	0,09	2,0E-01	37,7	0,7	1,0E-01	33,2	0,63	9,8E-02	19,8	0,64	1,6E-01
PCB 126	34%	7,88	0,2	1,5E-01	9,09	0,1	6,3E-02	9,95	0,2	1,1E-01	132	1	4,1E-02	125	1,28	5,3E-02	115	1,04	4,5E-02
PCB 156	43%	75,5	1	7,8E-02	65,9	1	8,7E-02	69,1	1	8,1E-02	873	10	6,2E-02	804	11,2	7,2E-02	718	9,54	6,6E-02
PCB 157	43%	13,9	0,3	1,3E-01	11,1	0,2	1,0E-01	14	0,3	1,2E-01	185	3	8,8E-02	170	2,56	7,8E-02	153	2,17	7,1E-02
PCB 167	45%	49,9	0,9	1,1E-01	48,7	0,8	9,4E-02	46,9	1	1,2E-01	562	9	8,7E-02	507	8,98	9,1E-02	456	7,42	8,1E-02
PCB 169	33%	< 2,64	<0,1		< 2,48	<0,1		< 2,66	<0,2		20,6	0,2	5,3E-02	18,9	0,19	5,2E-02	17,9	< 0,16	
PCB 189	33%	11,9	0,2	9,9E-02	12,4	0,2	9,2E-02	13,6	0,2	8,3E-02	203	2	5,4E-02	198	1,63	4,2E-02	176	1,5	4,2E-02
Σ PCB-dl (pg/g sans TEF)		442,0	6,7	8,9E-02	336,8	5,4	9,1E-02	337,0	6,8	1,1E-01	5145,9	54,6	5,8E-02	4115,0	54,9	6,9E-02	3633,1	46,3	6,3E-02
PCB-dl -TEQ sans LOQ	25%	0,801	0,02		0,919	0,01		1,01	0,02		14	0,1		13,2	0,135		12,1	0,106	
PCB-dl -TEQ avec LOQ	25%	0,881	0,02		0,994	0,02		1,09	0,02		14	0,1		13,2	0,135		12,1	0,11	
Σ PCDD/F + PCB-dl (12 congénères), U	nité : ng/kg MS sol	et pg/g MF vég	gétaux																
Σ PCDD/F + PCB-dl TEQ avec LQ	16%		0,03			0,04			0,04			0,2			0,252			0,209	
Σ PCDD/F + PCB-dl TEQ sans LQ	16%		0,04			0,02			0,03			0,2			0,247			0,2	
légende		* absence d'inforr	r détectée mais non	détectée mais non	quantifiée														

<u>légende :</u>

^{*} absence d'inform détectée mais non détectée mais non quantifiée
s : concentration dans le sol / vx: concentration dans le végétal
SD : standard déviation
BCF moyen: moyenne des valeurs BCF (tous réplicats et toutes mailles confondus, n ≤12)

Annexe : POMME DE TERRE ENTIERE - concentration en POP dans les sols (en MS) et dans les tubercules non épluchées (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

Re	14G003326-016	14G004456-002		14G003326-017	14G005515-001		14G003326-018	14G004456-003		14G003326-025	14G005515-002		14G003326-026	14G005515-003		14G003326-027	14G005515-004		ì	
	P3-F	DT R1	P3-PDT-R1	P3-PI	DT-R2	'P3-PDT-R2	P3-	PDT R3	'P3-PDT-R3	P4-Pi	DT-R1		P4-P	DT-R2		P4-F	DT-R3			
	s	vx	BCF	s	vx	BCF	s	vx	BCF	S	VX	BCF	S	VX	BCF	S	VX	BCF		
Paramètres				-			•													
biomasse récoltée (g MF)		70			90			120			160			160			130			
matière sèche	89.9	19.8		89.7	21,8		89.9	20.5		85,3	20.7		84.8	21.4		85.4	21,1			
PCB indicateurs (6 ou 7 congénères), UI	65,5	13,8		63,7	21,0		63,3	20,3		85,5	20,7		64,6	21,4		83,4	21,1		BCF moyen	SD
. 5 ,,	< 81,6	.0.02		.01.0	.0.01		< 82,3	10.00		400	.0.01		< 83,5	. 0.01		84,6	.0.01			30
PCB 28		< 0,02		< 81,9	< 0,01			< 0,06		109	< 0,01			< 0,01			< 0,01		pas de BCF	4
PCB 52	< 60,7	< 0,02		68,7	< 0,01		< 61,2	< 0,06		374	< 0,01		197	< 0,01		310	< 0,01		pas de BCF	
PCB 101	624	< 0,02	T 05 00	658	< 0,01	7.05.00	524	< 0,06	E 05 00	2870	0,02	3,4E-02	1830	0,02	5,1E-02	2410	0,02	3,9E-02	7,53E-02	3,8E-02
PCB 118	939	0,00937	5,0E-02 5.6E-02	985	0,015	7,0E-02 8.7E-02	823	0,00981	5,8E-02	2330	0,0161	3,3E-02	1590	0,0142	4,2E-02	2210	0,0135	2,9E-02	6,64E-02	3,2E-02
PCB 138	3630	0,04	.,	3180	0,06		3510	< 0,06		10300	0,09	4,2E-02	7140	0,09	5,9E-02	9270	0,09	4,6E-02	9,43E-02	4,1E-02
PCB 153	4560	0,05	5,5E-02	3730	0,08	9,8E-02	4460	< 0,06		12100	0,13	5,2E-02	8400	0,12	6,7E-02	11500	0,14	5,8E-02	1,13E-01	4,7E-02
PCB 180	1920	< 0,02		2080	0,02	4,4E-02	1550	< 0,06		8410	0,06	3,4E-02	5690	0,05	4,1E-02	7760	0,04	2,4E-02	5,66E-02	2,3E-02
Σ 7PCB sans LOQ	11673	0,10	4,3E-02	10702	0,18	7,5E-02	10867	0,01	4,4E-03	36493	0,32	4,2E-02	24847	0,29	5,5E-02	33545	0,30	4,3E-02	7,77E-02	
Σ 6 ou 7PCB (sauf PCB 118) avec LOQ	11800	0,17		10800	0,2		11000	0,34		36500	0,33		24900	0,3		33600	0,32			
Dioxines et furanes PCDD/F (17 congén																				
2,3,7,8-TCDD	1,03	< 0,004		1,01	0,005	2,3E-02	0,92	< 0,01		3,33	0,009	1,3E-02	2,93	0,008	1,3E-02	3	0,007	1,1E-02	1,49E-02	5,3E-03
1,2,3,7,8-PeCDD	3,27	0,01	1,5E-02	3,62	0,02	2,5E-02	2,81	< 0,01		18,4	0,04	1,1E-02	11,8	0,03	1,2E-02	15,8	0,02	6,0E-03	1,83E-02	8,4E-03
1,2,3,4,7,8-HxCDD	4	0,01	1,3E-02	4,86	0,02	1,9E-02	3,51	< 0,02		24,7	0,05	9,8E-03	16,5	0,02	5,7E-03	20,4	0,02	4,6E-03	1,48E-02	7,9E-03
1,2,3,6,7,8-HxCDD	7,83	0,02	1,3E-02	8,79	0,04	2,1E-02	6,52	< 0,03		46,1	0,11	1,2E-02	34,1	0,05	6,9E-03	40,8	0,04	4,6E-03	1,59E-02	8,9E-03
1,2,3,7,8,9-HxCDD	5,53	0,01	9,1E-03	6,06	0,01	7,6E-03	4,61	< 0,03		29	0,05	8,3E-03	22,9	0,02	4,1E-03	27	0,01	1,8E-03	7,40E-03	4,1E-03
1,2,3,4,6,7,8-HpCDD	75,2	0,07	4,7E-03	82	0,14	7,8E-03	63,1	0,08	6,2E-03	401	0,64	7,7E-03	363	0,2	2,6E-03	353	0,13	1,7E-03	7,98E-03	4,2E-03
OCDD	156	< 0,11		163	0,19	5,3E-03	132	< 0,33		693	1,04	7,2E-03	882	0,29	1,5E-03	657	0,15	1,1E-03	4,15E-03	2,3E-03
Somme des dioxines	252,86	0,12	0,054805817	269,34	0,425	0,108551997	213,47	0,08	0,006184531	1215,53	1,94		1333,23	0,62		1117	0,38			
2,3,7,8-TCDF	123	0,47	1,9E-02	134	1,02	3,5E-02	107	0,53	2,4E-02	264	1,26	2,3E-02	179	1,14	3,0E-02	256	1,07	2,0E-02	3,62E-02	1,7E-02
1,2,3,7,8-PeCDF	92,6	0,32	1,7E-02	106	0,63	2,7E-02	78,7	0,3	1,9E-02	235	0,87	1,8E-02	147	0,7	2,2E-02	208	0,61	1,4E-02	2,68E-02	9,2E-03
2,3,4,7,8-PeCDF	66,6	0,2	1,5E-02	83,8	0,42	2,3E-02	56,6	0,23	2,0E-02	234	0,68	1,4E-02	143	0,46	1,5E-02	223	0,39	8,3E-03	2,47E-02	1,1E-02
1,2,3,4,7,8-HxCDF	128	0,25	9,9E-03	155	0,54	1,6E-02	114	0,28	1,2E-02	423	1,02	1,2E-02	272	0,65	1,1E-02	377	0,5	6,3E-03	1,76E-02	8,7E-03
1,2,3,6,7,8-HxCDF	52,6	0,12	1,2E-02	62,7	0,23	1,7E-02	43,7	0,11	1,2E-02	260	0,56	1,0E-02	164	0,29	8,3E-03	220	0,23	5,0E-03	1,37E-02	5,7E-03
1,2,3,7,8,9-HxCDF	< 13,2	< 0,01		< 15,9	< 0,07		< 18,6	< 0,07		< 42,9	< 0,21		< 25,4	< 0,10		< 30,3	< 0,08		pas de BCF	
2,3,4,6,7,8-HxCDF	40,8	0,06	7,4E-03	49,7	0,14	1,3E-02	36	0,06	8,1E-03	273	0,65	1,2E-02	204	0,22	5,0E-03	242	0,17	3,3E-03	1,11E-02	5,4E-03
1,2,3,4,7,8,9-HpCDF	241	0,06	1,3E-03	286	0,13	2,1E-03	214	0,06	1,4E-03	1410	0,38	1,3E-03	1160	0,18	7,3E-04	1100	0,12	5,2E-04	1,52E-03	6,6E-04
1,2,3,4,6,7,8-HpCDF	78,3	0,26	1,7E-02	88,6	0,56	2,9E-02	65,4	0,28	2,1E-02	281	2,39	4,1E-02	199	0,81	1,9E-02	253	0,53	9,9E-03	3,69E-02	2,3E-02
OCDF	386	0,18	2,4E-03	433	0,42	4,4E-03	327	0,19	2,8E-03	1330	1,62	5,9E-03	1160	0,6	2,4E-03	1200	0,32	1,3E-03	3,85E-03	1,8E-03
Somme des furannes	1208,9	1,92		1398,8	4,09		1042,4	2,04		4710	9,43		3628	5,05		4079	3,94			
Σ PCDD/F (pg/g sans TEF)	1462	2	7,0E-03	1668,1	4,5	1,2E-02	1255,9	2,1	8,2E-03	5925,5	11,4	9,3E-03	4961,2	5,7	5,3E-03	5196,0	4,3	3,9E-03		
Σ PCDD/F- TEQ sans LQ	67,3	0,178		79,8	0,38		58,2	0,181		252	0,689		169	0,445		228	0,376			
Σ PCDD/F- TEQ avec LQ	68,6	0,183		81,4	0,387		60	0,221		257	0,71		172	0,456		231	0,384			
PCB-dl (12 congénères), Unité : ng/kg N																				
PCB 77	103	0,78	3,8E-02	110	1,1	4,6E-02	81,4	< 1,03		250	1,07	2,1E-02	166	1,02	2,9E-02	248	0,99	1,9E-02	2,95E-02	9,3E-03
PCB 81	11,5	0,07	3,1E-02	11,5	0,15	6,0E-02	9,64	< 0,15		22,1	0,2	4,4E-02	15,1	0,13	4,0E-02	33,3	0,08	1,1E-02	3,72E-02	1,8E-02
PCB 105	364	3,49	4,8E-02	381	6,08	7,3E-02	321	3,86	5,9E-02	946	7,03	3,6E-02	630	6,61	4,9E-02	949	6,35	3,2E-02	6,24E-02	2,3E-02
PCB 114	19,8	0,22	5,6E-02	22,6	0,34	6,9E-02	18,2	< 0,30		34,1	0,38	5,4E-02	19,7	0,29	6,9E-02	30,7	0,25	3,9E-02	5,03E-02	1,4E-02
PCB 118	939	9,37	5,0E-02	985	15	7,0E-02	823	9,81	5,8E-02	2330	16,1	3,3E-02	1590	14,2	4,2E-02	2210	13,5	2,9E-02	6,64E-02	3,2E-02
PCB 123	15,3	0,36	1,2E-01	14,9	0,39	1,2E-01	12,5	< 0,23		39,7	0,52	6,3E-02	28,6	0,49	8,0E-02	45,4	0,43	4,5E-02	1,10E-01	4,3E-02
PCB 126	70,7	0,42	3,0E-02	75,1	0,85	5,2E-02	58,6	0,52	4,3E-02	222	1,31	2,9E-02	142	0,98	3,2E-02	224	0,91	1,9E-02	5,58E-02	3,8E-02
PCB 156	300	2,31	3,9E-02	321	3,97	5,7E-02	240	2,36	4,8E-02	912	6,47	3,4E-02	599	5,59	4,4E-02	838	5,09	2,9E-02	5,81E-02	1,9E-02
PCB 157	75,7	0,58	3,9E-02	77,9	1,04	6,1E-02	63,1	0,62	4,8E-02	226	1,77	3,8E-02	155	1,5	4,5E-02	213	1,33	3,0E-02	7,07E-02	3,3E-02
PCB 167	195	1,77	4,6E-02	209	3,01	6,6E-02	162	1,83	5,5E-02	591	5,34	4,4E-02	407	4,51	5,2E-02	571	3,76	3,1E-02	7,28E-02	2,8E-02
PCB 169	14,3	< 0,24		14,3	< 0,17		11,8	< 0,68		55,6	0,25	2,2E-02	34,7	0,18	2,4E-02	49,5	< 0,17		3,76E-02	1,7E-02
PCB 189	76,8	0,38	2,5E-02	81,1	0,61	3,5E-02	60,2	0,37	3,0E-02	250	1,32	2,6E-02	162	1,02	2,9E-02	211	0,71	1,6E-02	4,77E-02	2,8E-02
Σ PCB-dl (pg/g sans TEF)	2185,1	19,8	4,6E-02	2303,4	32,5	6,5E-02	1861,4	19,4	5,1E-02	5878,5	41,8	3,4E-02	3949,1	36,5	4,3E-02	5622,9	33,4	2,8E-02		
PCB-dl -TEQ sans LOQ	7,57	0,043		8,02	0,086		6,28	0,053		24,1	0,14		15,4	0,104		24,1	0,092		1	
PCB-dl -TEQ avec LOQ	7,57	0,05		8,02	0,091		6,28	0,074		24,1	0,14		15,4	0,104		24,1	0,097		1	
Σ PCDD/F + PCB-dl (12 congénères), Un	·	,		,			·	,		,	,								1	
Σ PCDD/F + PCB-dl TEQ avec LQ		0.233			0.478			0.295			0.85			0.56			0.481		1	
Σ PCDD/F + PCB-dl TEQ avec EQ		0,221			0,466			0,234			0,829			0,549	1		0,468		1	
Z PCDD/F + PCB-ul TEQ SallS EQ																				

Annexe : CAROTTE ENTIERE - concentration en POP dans les sols (en MS) et dans les racines non épluchées (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

Référence EUROFIN	146003336 020	14G006390-007	146006390.010		146003326.020	14G006390-008	146006937.001			14G003326-040	14G006390-009				146003326-047	14G006447-001	146006447.004			146003326-049	14G006447-002	146006937,002			146003326-040	14G006937-004	146006937-004	
Référence Clie		140000330-007	P1-CA R1		140003320-039	140000330-008	P1-CA-R2			140003320-040		I-CA R3			140003320-047	140000447-001	P2-CA-R1			140003320-048	140000447-002	P2-CA-R2			140003320-049	140000337-004	P2-CA-R3	
Material	ico e	vx épluché	épluchure	vx entier BCFtot		vx épluché	épluchure	vy entier	BCEtot	s	vx épluché	épluchure	uv entior	BCEtot .		vx épluché	énluchure	vx entier	BCFtot		vx épluché	épluchure	vx entier	BCFtot	s	vx épluché	énluchure	vx entier BCFtot
Paramètres Incertitude	V/V	VX CPIOCIIC	срисните	VA CITALET DEFEOT		vx cpiuciic	срисние	• A CITALET	aucune énli	luchée récunérée et d	nalusée	сріцспагс	VX CITCLE	Deritor		va epidene	Сриспис	VA CITALET	Dertot		va epidene	Сриснис	VA CITATE!	Dertot	,	ex epidene	срисние	VA CITATE DELLOC
biomasse récoltée (g MF)		140	20	160		130	20	150			40	0	40			120	20	140			80	20	100			90	20	110
matière sèche	89	10,8	9,75	10,7	88	12.9	9,84	12,5		88.6	11,1		11,1		87.7	12,1	11,5	12,0		87,5	11,7	9,98	11,4		87,6	12.4	10,9	12,1
PCB indicateurs (6 ou 7 congénères), Unité : ng/kg MS s	ol et ng/g MF végé	taux	·							·	*					P2-CA-R1				•	P2-CA-R2					P2-CA-R3		
PCB 28 6		< 0,009	< 0,06	<	< 82,5	< 0,01	< 0,11			< 82,0	< 0,05				82	< 0,01	< 0,06			< 84,4	< 0,02	< 0,18			< 81,1	< 0,02	< 0,12	
PCB 52 4	2% < 63.0	< 0.009	< 0.06	<	< 61.4	< 0,01	< 0,11			< 61.0	< 0.05				142	< 0,01	0.07	0,01	5,9E-01	250	< 0,02	< 0.18			153	< 0.02	< 0.12	
PCB 101 3	3% 204	< 0,009	< 0,06	<	187	< 0,01	< 0,11			198	< 0,05				1750	< 0,01	0,88	0,13	6,0E-01	2490	< 0,02	< 0,18			2200	< 0,02	< 0,12	
PCB 118	138	0,00288	0,0184	0,005 3,3E-01	126	0,00189	0,02150	0,005	2,9E-01	133					1480	<0,0029	0,367	0,05	2,9E-01	1690	0,00526	0,0657	0,017	9,0E-02	1600	<0,00254	0,0477	0,01 4,5E-02
PCB 138 3	3% 923	< 0,009	0,15	0,019 1,9E-01	890	< 0,01	0,20000	0,027	2,4E-01	862	< 0,05				8570	0,02	4,15	0,61	5,9E-01	13800	0,07	0,73	0,20	1,3E-01	13800	0,03	0,52	0,12 7,1E-02
PCB 153 3	3% 1300	0,01	0,24	0,039 2,8E-01	1210	< 0,01	0,32000	0,043	2,8E-01	1170	< 0,05				9830	0,04	5,85	0,87	7,4E-01	14000	0,12	1,1	0,32	2,0E-01	13700	0,05	0,75	0,18 1,1E-01
PCB 180 3	761	< 0,009	0,09	0,01 1,4E-01	712	< 0,01	< 0,11			697	< 0,05				6460	< 0,01	2,22	0,32	4,1E-01	9210	0,03	0,45	0,11	1,1E-01	8990	< 0,02	0,31	0,06
Σ 7PCB sans LOQ 1	3326	0,01	0,50	0,074 2,1E-01	3125	0,00	0,54	0,072	1,8E-01	3060	ND				28314	0,06	13,54	1,99	5,8E-01	41440	0,23	2,35	0,65	1,4E-01	40443	0,08	1,63	0,36 7,4E-02
Σ 6 ou 7PCB (sauf PCB 118) avec LOQ 1	5% 3470	0,06	0,65	0,13	3270	0,06	0,96	0,18		3200	0,32		0,32		28300	0,12	13,2	1,99		41500	0,27	2,83	0,78		40500	0,15	1,95	0,48
Dioxines et furanes PCDD/F (17 congénères), Unité : ng,	kg MS sol et pg/g	MF végétaux																										
2,3,7,8-TCDD 3	5% < 0,19	< 0,002	< 0,01	<	< 0,18	< 0,002	< 0,02			< 0,18	< 0,01				0,27	< 0,003	< 0,04			0,34	< 0,004	< 0,04			0,28	< 0,003	< 0,02	
1,2,3,7,8-PeCDD 3	5% < 0,25	< 0,002	< 0,01	<	< 0,24	< 0,003	< 0,03			< 0,24	< 0,01				1,27	< 0,004	0,14	0,02	1,3E-01	1,45	< 0,005	< 0,05			1,5	< 0,005	< 0,03	
1,2,3,4,7,8-HxCDD 3	3% < 0,50	< 0,004	< 0,02	<	< 0,48	< 0,004	< 0,04			< 0,48	< 0,02				1,6	< 0,006	0,16	0,02	1,2E-01	1,79	< 0,008	< 0,07			2,01	< 0,007	< 0,05	
1,2,3,6,7,8-HxCDD 3	1% < 0,50	< 0,005	< 0,03	<	< 0,48	< 0,006	< 0,06			< 0,48	< 0,03				3,61	< 0,008	0,33	0,05	1,1E-01	3,74	< 0,01	< 0,1			4,05	< 0,009	< 0,06	
1,2,3,7,8,9-HxCDD 4	2% < 0,50	< 0,005	< 0,03	<	< 0,48	< 0,005	< 0,05			< 0,48	< 0,03				2,47	< 0,007	0,17	0,02	8,2E-02	2,63	< 0,01	< 0,09			2,77	< 0,009	< 0,06	
1,2,3,4,6,7,8-HpCDD 3	3,86	< 0,008	0,12	0,02 3,6E-02	4,39	< 0,009	< 0,09			3,76	< 0,04				39,7	0,02	1,67	0,26	5,4E-02	43,6	0,03	0,35	0,09	1,9E-02	50,3	< 0,01	0,3	0,05 8,9E-03
OCDD 3	3% 14,1	< 0,05	< 0,32	<	16,9	< 0,06	< 0,64			12,6	< 0,31				130	< 0,09	3,71	0,53	3,4E-02	139	< 0,12	< 1,07			173	< 0,11	< 0,71	
2,3,7,8-TCDF 3	5% 2,72	0,02	0,28	0,053 1,8E-01	2,6	0,01	0,36	0,057	1,7E-01	2,44	0,05		0,050		32,3	0,03	4,97	0,74	1,9E-01	35,8	0,09	1,03	0,28	6,8E-02	39,4	0,05	0,82	0,19 4,0E-02
1,2,3,7,8-PeCDF 3	1,73	0,006	0,12	0,020 1,1E-01	1,66	0,006	0,18	0,029	1,4E-01	1,5	0,02		0,020	1,2E-01	25,4	0,02	3,12	0,46	1,5E-01	25,5	0,04	0,66	0,16	5,7E-02	27,3	0,02	0,55	0,12 3,5E-02
2,3,4,7,8-PeCDF 3	5% 1,64	< 0,005	0,11	0,014 7,9E-02	1,69	< 0,006	0,14	0,019	8,8E-02	1,51	< 0,03				20,4	0,01	2,61	0,38	1,6E-01	24,2	0,04	0,55	0,14	5,2E-02	26	0,01	0,46	0,09 2,9E-02
1,2,3,4,7,8-HxCDF 3	3% 2,87	< 0,006	0,14	0,018 5,7E-02	2,92	< 0,006	0,15	0,020	5,5E-02	2,66	< 0,03				45,9	0,02	3,83	0,56	1,0E-01	49,9	0,06	0,7	0,19	3,3E-02	56	0,02	0,61	0,13 1,9E-02
1,2,3,6,7,8-HxCDF 3	5% 1,11	< 0,005	0,06	0,008 6,3E-02	1,21	< 0,006	0,07	0,009	6,2E-02	1,15	< 0,03				18,6	0,009	1,63	0,24	1,1E-01	21,6	0,02	0,32	0,08	3,3E-02	24	< 0,01	0,28	0,05 1,7E-02
1,2,3,7,8,9-HxCDF 3	< 0,41	< 0,004	< 0,03	<	< 0,40	< 0,004	< 0,04			< 0,47	< 0,02				< 4,63	< 0,006	< 0,85			< 5,26	< 0,01	< 0,16			< 5,63	< 0,007	< 0,16	
2,3,4,6,7,8-HxCDF 3	5% 1,07	< 0,005	0,05	0,006 5,5E-02	1,1	< 0,005	< 0,05			1,05	< 0,03				14,9	< 0,007	1,18	0,17	9,4E-02	17,7	0,01	0,25	0,06	2,9E-02	18,5	< 0,009	0,21	0,04 1,7E-02
1,2,3,4,7,8,9-HpCDF 4	7,0	< 0,004	0,04	0,005 7,6E-03	6,23	< 0,004	< 0,04			5,43	< 0,02				103	0,007	1,09	0,16	1,3E-02	114	0,02	0,2	0,06	4,3E-03	120	< 0,007	0,18	0,03 2,2E-03
1,2,3,4,6,7,8-HpCDF 4	-,	< 0,005	0,18	0,023 1,3E-01	1,72	< 0,006	0,16	0,021	9,9E-02	1,55	< 0,03				28,6	0,03	5,48	0,81	2,4E-01	30,3	0,08	0,92	0,25	7,2E-02	34,3	0,02	0,85	0,17 4,1E-02
OCDF 3. Σ PCDD/F (pg/g MF)	3,04	< 0,01	0,12	0,015 1,6E-02	9,42	< 0,01	< 0,13			8,33	< 0,06		0.07		150	0,04	4,35	0,66	3,6E-02	190	0,07	0,79	0,21	9,9E-03 1.9E-02	191	< 0,02	0,73	0,13 5,7E-03 1.01 1.1E-02
Σ PCDD/F (pg/g MF) Σ PCDD/F- TEO sans LO 1.	45,9 1.44	0,026 0,002	1,2 0.093	0,18 3,6E-02 0,013	49,8 1.47	0,016 0.002	1,1 0.107	0,16 0,016	2,5E-02	41,98	0.005		0,005	1,5E-02	618,0 22.2	0,186 0,011	34,4 2,33	5,08 0,342	6,8E-02	701,6	0,46 0.033	5,8 0,428	1,52 0,112	1,9E-02	770,4 27,2	0,12 0.011	5,0 0.359	1,01 1,1E-02 0,074
	3% 1,44 8% 2.07			0,013	2,08		0,107	0,016	-	1,34	0,005		0,005		22,2		2,45	0,342		25,1			0,112		27,2		0,359	0,074
Σ PCDD/F- TEQ avec LQ 1 PCB-dl (12 congénères), Unité : ng/kg MS sol et pg/g N	-,	0,011	0,128		2,08	0,012	0,182	-	-	1,95	0,057				22,6	0,021	2,45			25,6	0,046	0,551			27,8	0,025	0,446	
PCB-01 (12 congeneres), Onice . ng/kg wis sor et pg/g w	5% 10.9	0.49	1.19	0.578 5.0E-01	10.2	0.29	< 1.98	0.251	2.0E-01	9.55	< 0.95				78.2	< 0.27	10.2	1.46	1.6E-01	94.5	< 0.37	< 3.32			85.9	< 0.33	< 2.21	
PCB 77 PCB 81 3	7% < 0,81	< 0,03	< 0,15	< 3,02-01	< 0,78	< 0,03	< 0,30	0,231	2,01-01	< 0.78	< 0,14				3.27	< 0,04	0,47	0,07	1,7E-01	< 0,80	< 0,06	< 0,50			< 0,77	< 0,05	< 0,33	
PCB 105 3	3% 64.8	1,05	7.73	1,885 2,7E-01	61.3	0.63	8.67	1,702	2.2E-01	62,4	2,28		2,280	3.3E-01	516	< 0,58	118	16,86	2,7E-01	664	1,65	21	5,52	7.3E-02	585	0.77	14.5	3,27 4,6E-02
PCB 114 3	2% 1.11	< 0.05	< 0,29	<	1.04	< 0.06	< 0.58	1,702	2,22 02	< 0.94	< 0.28		2,200	3,32 01	15	< 0.08	2,45	0,35	1,9E-01	7.45	< 0.11	< 0.98	3,32	7,52 02	5.69	< 0.1	< 0.65	3,27
PCB 118 3	5% 138	2.88	18.4	4,820 3,3E-01	126	1.89	21,5	4,505	2.9E-01	133	< 7.43				1480	< 2,09	367	52,43	2.9E-01	1690	5,26	65.7	17,35	9.0E-02	1600	< 2.54	47.7	8,67 4,5E-02
PCB 123 3	3% 2,91	0,05	0,42	0,096 3,1E-01	2,61	< 0,04	< 0,44	.,		3,16	< 0,21				29,3	< 0,06	14,4	2,06	5,8E-01	55,5	0,12	1,3	0,26	4,1E-02	46,9	< 0,07	1,25	0,23 4,0E-02
PCB 126 3	1% 13,2	< 0,02	1,08	<	12,8	0,03	1,27	0,195	1,2E-01	11,9	< 0,13				128	0,09	23,9	3,49	2,3E-01	112	0,19	4,66	1,08	8,5E-02	98,9	0,08	3,49	0,70 5,8E-02
PCB 156 4	3% 77,1	0,33	9,62	1,491 1,8E-01	75,5	0,26	11,9	1,812	1,9E-01	72,6	< 1,17				693	0,74	212	30,92	3,7E-01	895	2,29	43,2	10,47	1,0E-01	871	0,82	29,6	6,05 5,7E-02
PCB 157 4	3% 17,5	0,05	1,76	0,264 1,4E-01	16,5	0,05	2,2	0,337	1,6E-01	15,7	< 0,22				156	0,14	44,2	6,43	3,4E-01	142	0,42	9,42	2,22	1,4E-01	148	0,16	6,32	1,28 7,1E-02
PCB 167 4	5% 53,7	0,21	6,17	0,955 1,7E-01	49,4	0,16	8,78	1,309	2,1E-01	46,8	< 0,58				492	0,6	163	23,80	4,0E-01	686	1,69	33,2	7,99	1,0E-01	655	0,71	22,6	4,69 5,9E-02
PCB 169 3	3% < 2,48	< 0,11	< 0,66	<	< 2,42	< 0,13	< 1,32			< 2,40	< 0,64				18,5	< 0,18	4,28	0,61	2,8E-01	12,5	< 0,24	< 2,21			12,7	< 0,22	< 1,47	
PCB 189 3	3% 17	< 0,04	1,39	0,17 9,6E-02	16,5	< 0,04	1,44	0,192	9,3E-02	15,9	< 0,21				183	0,12	39,5	5,75	2,6E-01	171	0,35	7,92	1,86	9,6E-02	171	0,11	6,22	1,22 5,9E-02
Σ PCD-dl (pg/g MF)	396,2			10,3 2,4E-01	371,9			10,3	2,2E-01	371,01			2,3	5,5E-02	3792,3			144,2	3,2E-01	4530,0			46,8	9,1E-02	4280,1			26,1 5,0E-02
PCB-dl -TEQ sans LOQ 2	5% 1,33	0,0002	0,109	0,014	1,29	0,003	0,129	0,020		1,2	0,00007		0,000		13,5	0,009	2,55	0,372		11,7	0,019	0,471	0,109		10,4	0,008	0,353	0,071
PCB-dl -TEQ avec LOQ 2	5% 1,41	0,006	0,129		1,37	0,007	0,169			1,27	0,033				13,5	0,014	2,55			11,7	0,027	0,538			10,4	0,015	0,398	
Σ PCDD/F + PCB-dl (12 congénères), Unité : ng/kg MS so	et pg/g MF végét	taux																										
Σ PCDD/F + PCB-dl TEQ avec LQ 1	5%	0,017	0,257			0,019	0,351				0,09					0,035	5				0,073	1,089				0,04	0,844	
Σ PCDD/F + PCB-dl TEQ sans LQ 1	5%	0,0022	0,202			0,005	0,236				0,00507					0,02	4,88				0,052	0,899				0,019	0,712	
légende : * absence	d'information si subst	tances détectées lors	que que les concent	rations sont < LQ (sol et végét	al]																							
		c concentration dans																										
	rd déviation																											
BCF moyer	: moyenne des valeu	rs BCF (tous réplicats	et toutes mailles co	nfondus, n≤11)																								

Annexe : CAROTTE ENTIERE - concentration en POP dans les sols (en MS) et dans les racines non épluchées (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

Référence FLIROFI	TING . 140003335 00	146006937-005	140000037 044			140003330 000	14G006937-006	140000037 010			146003326-009	140000037.003	140000027 040			140003330 000	146006937-008	140000037 011			40003330 030	146006937-009	140000037 015			140003330 033	146006937-010	140000037.010		_	ı
		14G006937-005				14G003326-008					146003326-009			3		14G003326-028				1	46003326-029					146003326-030	14G006937-010				
Référence Cli			P3-CA R1					3-CA-R2					P3-CA R3					P4-CA-R1					P4-CA-R2					P4-CA-R3			
Mai Incertitus	atrice s	vx épluché	épluchure	vx total	BCFtot	S	vx épluché	épluchure	vx total	BCFtot	S	vx épluché	épluchure	vx total	BCFtot	S	vx épluché	épluchure	vx total	SCFtot	S	vx épluché	épluchure	vx total	BCFtot	S	vx épluché	épluchure	vx total	BCFtot	
anica co	ide vx									г			10																		
masse récoltée (g MF)		60	10	70			60	20	80			80	10	90			100	20	120			70	20	90			100	20	120		
tière sèche 3 indicateurs (6 ou 7 congénères), Unité : ng/kg MS	90	12,2	11,8	12,1		89,9	14,8	10,8	13,8		89,9	12	11,7	12,0		87,4	12,5	11	12,3		84,5	12,8	10,2	12,2		85	12,7	11,6	12,5		
																															BCF m
28 (60% < 81,8	< 0,04	< 0,42			< 79,3	< 0,06	< 0,24			< 82,3	< 0,03	< 0,27			155	< 0,02	< 0,13	<		331	< 0,04	< 0,12	<		< 84,3	< 0,03	< 0,19	<		pas de
2	42% < 60,9	< 0,04	< 0,42			72,2	< 0,06	< 0,24			< 61,3	< 0,03	< 0,27			473	< 0,02	< 0,13	<		362	< 0,04	< 0,12	<		352	< 0,03	< 0,19	<		5,9E
01	33% 493	< 0,04	< 0,42			715	< 0,06	< 0,24			375	< 0,03	< 0,27			3020	< 0,02	< 0,13	<		1940	< 0,04	< 0,12	<		2260	< 0,03	< 0,19	<		6,0E
18	728	< 0,00620	< 0,0591			1140	< 0,00784	0,0419	0,010	6,7E-02	590	<0,00474	0,0567	0,006	8,9E-02	2490	0,00598	0,0625	0,02	,0E-02	1570	<0,00501	0,0588	0,013	6,8E-02	1980	<0,00480	0,057	0,010	3,8E-02	1,4
38	33% 2550	< 0,04	< 0,42			3890	< 0,06	< 0,24			2020	< 0,03	< 0,27			10700	0,04	0,44	0,11	,1E-02	6700	< 0,04	0,42	0,093	1,1E-01	8970	< 0,03	0,31	0,052	4,6E-02	1,8
53	33% 2780	< 0,04	< 0,42			4260	< 0,06	0,24	0,060	1,0E-01	2260	< 0,03	0,33	0,037	1,4E-01	12800	0,06	0,61	0,13	,7E-02	7430	< 0,04	0,61	0,136	1,5E-01	10200	< 0,03	0,38	0,063	5,0E-02	2,18
80	33% 1290	< 0,04	< 0,42			2070	< 0,06	< 0,24			1020	< 0,03	< 0,27			8570	< 0,02	0,23	0,038	,7E-02	5210	< 0,04	0,2	0,044	7,0E-02	6890	< 0,03	< 0,19			1,58
B sans LOQ	15% 7841	ND	ND		0,0E+00	12147	ND	0,28	0,07	4,2E-02	6265	ND	0,39		5,7E-02	38208	0,11	1,34		,7E-02	23543	ND	1,29	0,286	1,0E-01	30652	ND	0,75	0,125	3,2E-02	1,4
7PCB (sauf PCB 118) avec LOQ	15% 7980	0,27	2,53	0,59		12200	0,34	1,42	0,61		6410	0,2	1,67	0,36		38200	0,2	1,66	0,44		23500	0,21	1,59	0,52		30700	0,21	1,43	0,41		
nes et furanes PCDD/F (17 congénères), Unité : ng	ng/kg																														
8-TCDD	35% 0,71	< 0,008	< 0,08			1,25	< 0,01	< 0,04			0,68	< 0,006	< 0,05			10,1	0,005	0,06	0,014	,1E-02	2,15	< 0,007	0,05	0,011	4,2E-02	4,16	< 0,007	0,07	0,012	2,2E-02	2,51
7,8-PeCDD	35% 2,48	< 0,01	< 0,11			4,16	< 0,01	0,1	0,03	4,4E-02	1,83	< 0,008	0,13	0,01	6,6E-02	32,7	0,02	0,18	0,047	,2E-02	11,3	< 0,009	0,2	0,044	3,2E-02	16,1	< 0,009	0,12	0,020	9,9E-03	4,91
4,7,8-HxCDD	33% 3,23	< 0,02	< 0,16			5,11	< 0,02	0,12	0,03	4,3E-02	2,48	< 0,01	0,1	0,01	3,7E-02	33,5	0,02	0,17	0,045	,1E-02	16,4	< 0,01	0,15	0,033	1,7E-02	18,8	< 0,01	0,1	0,017	7,1E-03	3,91
6,7,8-HxCDD	34% 6,45	< 0,02	< 0,22			10,2	< 0,03	0,22	0,06	3,9E-02	4,45	< 0,02	0,2	0,02	4,2E-02	66,7	0,04	0,38	0,097	,2E-02	30,1	< 0,02	0,35	0,078	2,1E-02	36,9	< 0,02	0,22	0,037	7,9E-03	3,81
7,8,9-HxCDD 4	42% 4,58	< 0,02	< 0,21			7,34	< 0,03	< 0,12			3,1	< 0,02	< 0,13			49	0,02	0,15	0,042	,9E-03	18,8	< 0,02	0,11	0,024	1,1E-02	22,5	< 0,02	< 0,09			3,38
4,6,7,8-HpCDD	35% 58,8	< 0,04	1,01	0,14	2,0E-02	92,2	0,05	1,13	0,32	2,5E-02	40,9	< 0,03	0,86	0,10	2,0E-02	563	0,2	1,55	0,425	,2E-03	268	0,03	1,42	0,339	1,0E-02	336	< 0,03	0,91	0,152	3,6E-03	2,01
	33% 124	< 0,26	< 2,45			195	< 0,32	2,14	0,54	2,0E-02	87,5	< 0,20	< 1,56			990	0,35	2	0,625	,2E-03	505	< 0,21	2,17	0,482	7,8E-03	629	< 0,20	1,38	0,230	2,9E-03	1,48
3-TCDF	35% 91,1	0,12	4,48	0,74	6,7E-02	152	0,26	4,34	1,28	6,1E-02	72,6	0,16	5,59	0,76	8,8E-02	295	0,7	7,49	1,832	,1E-02	164	0,18	6,47	1,578	7,9E-02	232	0,07	5,62	0,995	3,4E-02	9,39
,8-PeCDF	39% 70,5	0,07	2,24	0,38	4,4E-02	115	0,14	2,31	0,68	4,3E-02	52,3	0,09	2,69	0,38	6,1E-02	294	0,47	4,35	1,117	,1E-02	146	0,1	3,76	0,913	5,1E-02	198	0,04	2,38	0,430	1,7E-02	6,7
.8-PeCDF	36% 51,1	0,05	1,77	0,30	4.8E-02	82.4	0,1	1,72	0,51	4.4E-02	38	0,05	1,93	0,26	5.7E-02	283	0,26	2,74	0,673	.9E-02	158	0,05	2,52	0,599	3.1E-02	201	0,02	1,74	0.307	1.2E-02	5.6
,7,8-HxCDF	38% 108	0,07	2,13	0,36	2.8E-02	172	0,12	2.37	0,68	2.9E-02	76.7	0.07	2.31		3.5E-02	496	0,45	4,02		.7E-02	258	0,07	3,63	0.861	2.7E-02	334	0,03	2.14	0,382	9.1E-03	3,7
,7,8-HxCDF	36% 41	0,03	0,98	0,17	3,3E-02	69,6	0,05	1,07	0,31	3,2E-02	29,4	0,03	1,03		4,0E-02	305	0,22	1,9	0,500	,3E-02	167	0,04	1,69	0,407	2,0E-02	205	< 0,02	1,02	0,170	6,6E-03	3,9
7.8.9-HxCDF	35% < 14.7	< 0,02	< 0.65			< 16.9	< 0.03	< 0.75			< 6.23	< 0.02	< 0.67			< 51.2	< 0.14	< 1.19			< 25.4	< 0,02	< 1.01			< 32.8	< 0,01	< 0.70			pas o
5.7.8-HxCDF	35% 32.7	< 0.02	0.79	0.11	2.8E-02	53.7	0.04	0.82	0.24	3.2E-02	23.7	0.02	0.74	0.10	3.5E-02	341	0.17	1.59	0.407	.7E-03	208	0.03	1.37	0.328	1.3E-02	232	< 0.02	0.87	0.145	5.0E-03	3.2
1.7.8.9-HpCDF	40% 198	0.03	0.83	0.144	6.0E-03	308	0.04	1.07	0.30	7.0E-03	143	0.02	0.81	0.11	6.3E-03	1470	0.2	1.27	0.378	1F-03	880	0.03	1.17	0.283	2.6F-03	1050	< 0.01	0.76	0.127	9.6F-04	5.21
I.6.7.8-HpCDF	45% 66	0.1	2.97	0.51	6.4E-02	105	0.16	3.8	1.07	7.4E-02	44.3	0,08	2.99		7.6E-02	369	0.79	5.77		.6F-02	185	0.12	5.35	1,282	5.7F-02	238	0.05	3.13	0,563	1.9E-02	8,21
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	35% 293	0,11	2.97	0,52	1.5E-02	465	0.16	4,44	1,23	1.9E-02	225	0,08	3,04		1.5E-02	1720	0,77	4.11		3F-03	983	0.1	4,21	1,013	8.4F-03	1180	0,05	2,54	0.465	3.1E-03	1,31
D/F (pg/g MF)	1151.7	0,58	20,2	3,38	2.4E-02	1838.0	1.12	25,7	7,25	2.9E-02	845.9	0,6	22.4		3.0E-02	7318.0	4.685	37.7		1F-02	4001	0,75	34.6	8.28	1.7F-02	4933	0,26	23,0	4.05	6.6F-03	-,
D/F- TEQ sans LQ	18% 52.7	0.041	1,48	0,247	2,42 02	85.8	0.083	1,64	0,472	2,52 02	39.1	0,046	1.83	0,244	5,02 02	320	0.291	2,85	0,718	,12 02	165	0,052	2,58	0,614	1,72 02	211	0.018	1.83	0,320	0,02 03	
D/F- TEQ avec LQ	18% 54,2	0,071	1,79	-,		87.5	0,119	1.77	-,		39.7	0,068	1,96	-,		325	0,305	2.97	,		168	0,075	2,68	-,		215	0,043	1.91	2,220		
dl (12 congénères), Unité : ng/kg MS sol et pg/g !		0,071	1,73			07,5	0,115	2,77			33,1	0,000	1,50			323	0,303	2,57			100	0,013	2,00			113	0,043	2,51			
ur (12 congeneres), onite : ng/kg wis sor et pg/g i	36% 77.6	< 0.80	< 7.60			132	< 1,01	4.45	1,11	6.1E-02	62,8	< 0.61	6.19	0.69	9.2E-02	301	0,65	5.81	1,510	1F-02	193	< 0.64	5,13	1.140	4.8F-02	225	< 0,62	6.43	1.072	3 8F-02	1.4F
11	37% 7.28	< 0.12	< 1.14			13.2	< 0,15	< 0.64	-,	O,IL OL	5.22	< 0.09	< 0.73	0,03	-)-LL 0L	33.5	0.07	0.66		1F-02	16.3	< 0.1	1.19	0.264	1.3F-01	15,3	< 0.09	0.63	0.105	5.5E-02	1.0E
05	33% 279	< 1.73	20.7	2.96	8.7E-02	437	< 2.19	16.5	4.13	6.8E-02	222	< 1.32	22.6	2.51	9.5E-02	1060	2.32	25.8	6.233	,12 02	680	< 1.39	22.7	5.044	6.1F-02	842	< 1.34	27.4	4.567	4.3F-02	1,0E
14	32% 17.5	< 0,23	< 2,24	2,96	8,7E-02	26.6	< 0.30	< 1,25	4,13	0,82-02	13.6	< 0.18	1.81		1.2E-01	31.3	0.15	1.45		6F-02	20.6	< 0.19	1.63	0.362	1.4F-01	26.3	< 0.18	1	0.167	5.1F-02	1,26
18	35% 728	< 6.20	< 59.1			1140	< 7.84	41.9	10.48	6.7E-02	590	< 4.74	56.7		8.9E-02	2490	5.98	62.5	-7	0F-02	1570	< 5.01	58.8	13.067	6.8F-02	1980	< 4.80	57	9,500	3 8F-02	1,2E
23	33% 728	< 0,18	< 1,69			15.5	< 0.00784	< 0,95	10,46	0,72-02	8.46	< 0,14	1.09		1,2E-01	45,6	0,11	1.56		.3E-02	26,3	< 0,14	1,33	0,296	9.0E-02	34,9	< 0,14	1,26	0,210	4.8F-02	1,46
26	34% 60,5	< 0,18	3,16	0,45	6.1E-02	94.7	0.14	2,33	0.69	5.3E-02	47	< 0,08	3,41		6,7E-02	263	0,11	4.52		3F-02	161	0.09	3,52	0,296	4 3F-02	198	< 0,09	3.5	0,583	2.4E-02	7,78
56	43% 231	< 0,11	13.9	1.99	7.1E-02	354		11.8	2,95	6.0E-02	182	< 0.74	14.4		7.3E-02	946	1.98	22.9		7F-02	565	-,		4,489	6.5E-02	747		3,3	2.667	2,4E-02 2 9F-02	1.1
57	43% 231	< 0,97	3.65	0.52	6.7E-02	96.4	< 1,23 < 0.23	2.21	0.55	4.2E-02	182	< 0,74	3.76		7,3E-02 7.1E-02	946 245	0.41	5.21	1.210	,,,,	1/13	< 0,79 < 0.15	20,2	1.022	5.8F-02	190	< 0,75 < 0.14	4.48	0.747	2,9E-02 3.1F-02	1,1
7	4570							,		4,2E-02 5.4F-02	43	< 0,14	3,76	-,		243	-,				143 371		4,0		7.4F-02	150	-,	4,48	2.000	3,1E-02	
-	45% 159	< 0,49	8,95	1,28	6,6E-02	241	< 0,62	7,16	1,79	5,4E-02	126	. 0,0.	10	1,11	7,4E-02	649	1,21	15,6	3,608	,5E-02	3,1	0,42	13,6	3,349	7,4E-02	514	< 0,38		2,000	3,1E-02	1,17
59	33% 11,2	< 0,53	< 5,07			16,8	< 0,67	< 2,84			8,81	< 0,41	< 3,22			58,1	< 0,28	< 1,50			36,9	< 0,43	< 1,44			45,2	< 0,41	< 2,24			
39	33% 59,2	< 0,18	2,25	0,32	4,5E-02	93,5	< 0,22	1,66	0,42	3,2E-02	46,5	< 0,14	2,32		4,6E-02	249	0,33	4,13	0,963	,2E-02	144	< 0,14	3,68	0,818	4,6E-02	198	< 0,14	2,75	0,458	1,8E-02	7,5
-dl (pg/g MF)	1705,6			7,5	3,6E-02	2660,7			22,1	6,0E-02	1361,4		ļ		8,3E-02	6372			30,3	,7E-02	3927			30,7	6,4E-02	5016			22,1	3,5E-02	
II -TEQ sans LOQ	25% 6,44	ND	0,318	0,045		10,1	0,014	0,236	0,070		5,01	ND	0,345	0,038		28,3	0,038	0,457	0,108		17,4	0,009	0,357	0,086		21,3	ND	0,355	0,059		
dl -TEQ avec LOQ	25% 6,44	0,027	0,473			10,1	0,035	0,321			5,01	0,021	0,442			28,3	0,046	0,502			17,4	0,023	0,4	1		21,3	0,021	0,422			
DD/F + PCB-dl (12 congénères), Unité : ng/kg MS s	sol e																														
DD/F + PCB-dl TEQ avec LQ	16%	0,098	2,263				0,154	2,091				0,089	2,402				0,351	3,472				0,098	3,08				0,064	2,332			
D/F + PCB-dl TEQ sans LQ	16%	0,041	1,798				0,097	1,876				0,046	2,175				0,329	3,307				0,061	2,937		L		0,018	2,185			

légende : * absence s : conce

s : concentrat SD : standard

Annexe : CAROTTE EPLUCHEE - concentration en POP dans les sols (en MS) et dans les racines épluchées (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

	Référence EUROFINS :	14G003326-038	14G006390-007		14G003326-039	14G006390-008		14G003326-040	14G006390-009		14G003326-047	14G006447-001		14G003326-048	14G006447-002		14G003326-049	14G006937-004	
	Référence Client :		P1-CA R1			P1-CA-R2		P1-0	CA R3			P2-CA-R1			P2-CA-R2			P2-CA-R3	
	Matrice	S	vx épluché	BCFéplu	S	vx épluché	BCFéplu	s	vx épluché	BCFéplu	S	vx épluché	BCFéplu	S	vx épluché	BCFéplu	S	vx épluché	BCFéplu
Paramètres	Incertitude v	(
biomasse récoltée (g	(MF)		160			150			40			140			100			110	
matière sèche		89	10,8		88	12,9		88,6	11,1		87,7	12,1		87,5	11,7		87,6	12,4	
PCB indicateurs (60	ou 7 congénères)	. Unité : ng/kg MS	sol et <u>ng/g MF v</u>	<u>régétaux</u>															
PCB 28	60%	< 84.7	< 0.009	NA	< 82.5	< 0.01	NA	< 82.0	< 0.05	NA	82	< 0.01	NA	< 84.4	< 0.02	NA	< 81.1	< 0.02	NA
PCB 52	42%	< 63.0	< 0.009	NA	< 61.4	< 0.01	NA	< 61.0	< 0.05	NA	142	< 0.01	NA	250	< 0.02	NA	153	< 0.02	NA
PCB 101	33%	204	< 0.009	NA	187	< 0.01	NA	198	< 0.05	NA	1750	< 0.01	NA	2490	< 0.02	NA	2200	< 0.02	NA
PCB 118		138	0,00288	1,9E-01	126	0,00189	1,2E-01	133	<0,00743	NA	1480	< 2.09	NA	1690	0,00526	2,7E-02	1600	<0,00254	NA
PCB 138	33%	923	< 0.009	NA	890	< 0.01	NA	862	< 0.05	NA	8570	0,02	1,9E-02	13800	0,07	4,3E-02	13800	0,03	1,8E-02
PCB 153	33%	1300	0,01	7,1E-02	1210	< 0.01	NA	1170	< 0.05	NA	9830	0,04	3,4E-02	14000	0,12	7,3E-02	13700	0,05	2,9E-02
PCB 180	33%	761	< 0.009	NA	712	< 0.01	NA	697	< 0.05	NA	6460	< 0.01	NA	9210	0,03	2,8E-02	8990	< 0.02	NA
Σ 7PCB sans LOQ	15%	3326	0,01	3,6E-02	3125	0,0019	4,7E-03	3060		NA	28314	0,06	1,8E-02	41440	0,23	4,6E-02	40443	0,08	1,6E-02
Σ 6 ou 7PCB (sauf PCB		3470	0,06		3270	0,06		3200	0,32		28300	0,12		41500	0,27		40500	0,15	
Dioxines et furanes	s PCDD/F (17 con			g/g MF végéta															
2,3,7,8-TCDD	35%	< 0.19	< 0.002	NA	< 0.18	< 0.002	NA	< 0.18	< 0.01	NA	0,27	< 0.003	NA	0,34	< 0.004	NA	0,28	< 0.003	NA
1,2,3,7,8-PeCDD	35%	< 0.25	< 0.002	NA	< 0.24	< 0.003	NA	< 0.24	< 0.01	NA	1,27	< 0.004	NA	1,45	< 0.005	NA	1,5	< 0.005	NA
1,2,3,4,7,8-HxCDD	33%	< 0.50	< 0.004	NA	< 0.48	< 0.004	NA	< 0.48	< 0.02	NA	1,6	< 0.006	NA	1,79	< 0.008	NA	2,01	< 0.007	NA
1,2,3,6,7,8-HxCDD	34%	< 0.50	< 0.005	NA	< 0.48	< 0.006	NA	< 0.48	< 0.03	NA	3,61	< 0.008	NA	3,74	< 0.01	NA	4,05	< 0.009	NA
1,2,3,7,8,9-HxCDD	42%	< 0.50	< 0.005	NA	< 0.48	< 0.005	NA	< 0.48	< 0.03	NA	2,47	< 0.007	NA	2,63	< 0.01	NA	2,77	< 0.009	NA
1,2,3,4,6,7,8-HpCDD	35%	3,86	< 0.008	NA	4,39	< 0.009	NA	3,76	< 0.04	NA	39,7	0,02	4,2E-03	43,6	0,03	5,9E-03	50,3	< 0.01	NA
OCDD	33%	14,1	< 0.05	NA	16,9	< 0.06	NA	12,6	< 0.31	NA	130	< 0.09	NA	139	< 0.12	NA	173	< 0.11	NA
2,3,7,8-TCDF	35%	2,72	0,02	6,8E-02	2,6	0,01	3,0E-02	2,44	0,05	1,8E-01	32,3	0,03	7,7E-03	35,8	0,09	2,1E-02	39,4	0,05	1,0E-02
1,2,3,7,8-PeCDF	39%	1,73	0,006	3,2E-02	1,66	0,006	2,8E-02	1,5	0,02	1,2E-01	25,4	0,02	6,5E-03	25,5	0,04	1,3E-02	27,3	0,02	5,9E-03
2,3,4,7,8-PeCDF	36%	1,64	< 0.005	NA	1,69	< 0.006	NA	1,51	< 0.03	NA	20,4	0,01	4,1E-03	24,2	0,04	1,4E-02	26	0,01	3,1E-03
1,2,3,4,7,8-HxCDF	38%	2,87	< 0.006	NA	2,92	< 0.006	NA	2,66	< 0.03	NA	45,9	0,02	3,6E-03	49,9	0,06	1,0E-02	56	0,02	2,9E-03
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	36% 35%	1,11 < 0.41	< 0.005 < 0.004	NA NA	1,21 < 0.40	< 0.006 < 0.004	NA NA	1,15 < 0.47	< 0.03 < 0.02	NA NA	18,6 < 4.63	0,009 < 0.006	4,0E-03 NA	21,6 < 5.26	0,02 < 0.01	7,9E-03 NA	24 < 5.63	< 0.01 < 0.007	NA NA
2,3,4,6,7,8-HxCDF	35%	1,07	< 0.004	NA NA	1,1	< 0.004	NA NA	1,05	< 0.02	NA NA	14,9	< 0.006	NA NA	17,7	0,01	4.8E-03	18,5	< 0.007	NA NA
1,2,3,4,6,7,8-HXCDF	40%	6,14	< 0.005	NA NA	6,23	< 0.005	NA NA	5,43	< 0.03	NA NA	103	0,007	5.6E-04	114	0,01	4,8E-03 1.5E-03	18,5	< 0.009	NA NA
1,2,3,4,7,8,9-HpCDF	45%	1,63	< 0.004	NA NA	1,72	< 0.004	NA NA	1,55	< 0.02	NA NA	28,6	0.03	8.7E-03	30,3	0,02	2.3E-02	34.3	0.02	4.7E-03
OCDF	35%	9,04	< 0.003	NA NA	9,42	< 0.00	NA NA	8,33	< 0.06	NA NA	150	0,04	2.2E-03	190	0,07	3.1E-03	191	< 0.02	4,7L-03 NA
Σ PCDD/F (pg/g MF)	3370	45.91	0.03	5.2E-03	49.84	0.016	2.5E-03	41,98	0.07	1.5E-02	618.0	0.2	2,5E-03	701,6	0.5	5.6E-03	770.4	0.1	1.3E-03
Σ PCDD/F- TEQ sans L	LQ 18%	1.44	0.002	3,2L-03	1.47	0.002	2,31-03	1,34	0.005	1,31-02	22,2	0,011	2,3L-03	25,1	0,033	3,0E-03	27,2	0,011	1,31-03
Σ PCDD/F- TEQ avec L		2,07	0,011		2,08	0,012		1,95	0,057		22,6	0,021		25,6	0,046		27,8	0,025	
PCB-dl (12 congénè		,			_,=,==	-,		=,55	5,55		,-	7,522		==,=	5,5 15		=: / =	2,020	
PCB 77	36%	10,9	0,49	4,2E-01	10,2	0,29	2,2E-01	9,55	< 0.95	NA	78,2	< 0.27	NA	94,5	< 0.37	NA	85,9	< 0.33	NA
PCB 81	37%	< 0.81	< 0.03	NA	< 0.78	< 0.03	NA	< 0.78	< 0.14	NA	3,27	< 0.04	NA	< 0.80	< 0.06	NA	< 0.77	< 0.05	NA
PCB 105	33%	64,8	1,05	1,5E-01	61,3	0,63	8,0E-02	62,4	2,28	3,3E-01	516	< 0.58	NA	664	1,65	2,1E-02	585	0,77	1,1E-02
PCB 114	32%	1,11	< 0.05	NA	1,04	< 0.06	NA	< 0.94	< 0.28	NA	15	< 0.08	NA	7,45	< 0.11	NA	5,69	< 0.1	NA
PCB 118	35%	138	2,88	1,9E-01	126	1,89	1,2E-01	133	< 7.43	NA	1480	< 2.09	NA	1690	5,26	2,7E-02	1600	< 2.54	NA
PCB 123	33%	2,91	0,05	1,6E-01	2,61	< 0.04	NA	3,16	< 0.21	NA	29,3	< 0.06	NA	55,5	0,12	1,8E-02	46,9	< 0.07	NA
PCB 126	34%	13,2	< 0.02	NA	12,8	0,03	1,8E-02	11,9	< 0.13	NA	128	0,09	5,8E-03	112	0,19	1,4E-02	98,9	0,08	6,5E-03
PCB 156	43%	77,1	0,33	4,0E-02	75,5	0,26	2,7E-02	72,6	< 1.17	NA	693	0,74	8,8E-03	895	2,29	2,2E-02	871	0,82	7,6E-03
PCB 157	43%	17,5	0,05	2,6E-02	16,5	0,05	2,3E-02	15,7	< 0.22	NA	156	0,14	7,4E-03	142	0,42	2,5E-02	148	0,16	8,7E-03
PCB 167	45%	53,7	0,21	3,6E-02	49,4	0,16	2,5E-02	46,8	< 0.58	NA	492	0,6	1,0E-02	686	1,69	2,1E-02	655	0,71	8,7E-03
PCB 169	33%	< 2.48	< 0.11	NA	< 2.42	< 0.13	NA	< 2.40	< 0.64	NA	18,5	< 0.18	NA	12,5	< 0.24	NA	12,7	< 0.22	NA
PCB 189	33%	17	< 0.04	NA	16,5	< 0.04	NA	15,9	< 0.21	NA	183	0,12	5,4E-03	171	0,35	1,7E-02	171	0,11	5,2E-03
Σ PCD-dl (pg/g MF)		396,2	5,1	1,2E-01	371,9	3,3	6,9E-02	371,0	2,3	5,5E-02	3792,3	1,7	3,7E-03	4530,0	12,0	2,3E-02	4280,1	2,7	5,0E-03
PCB-dl -TEQ sans LOQ	ე 25%	1,33	0,0002		1,29	0,003		1,2	0,00007		13,5	0,009		11,7	0,019		10,4	0,008	
PCB-dl -TEQ avec LOC		1,41	0,006		1,37	0,007		1,27	0,033		13,5	0,014	-	11,7	0,027		10,4	0,015	
Σ PCDD/F + PCB-dl (· · · · · ·	Unité : ng/kg MS		égétaux															
Σ PCDD/F + PCB-dl TE			0,017			0,019			0,09			0,035			0,073			0,04	
Σ PCDD/F + PCB-dl TE			0,0022			0,005			0,00507			0,02			0,052			0,019	
légen	nde : * absence d'i	nformation si substa	ances détectées lors	aue aue les con	centrations sont < LO	2 (sol et végétal)													

s : concentration dans le sol / vx: concentration dans le végétal

SD : standard déviation NA: non applicable (pas de calcul de BCF)

BCF moyen: moyenne des valeurs BCF (tous réplicats et toutes mailles confondus, n ≤12)

Annexe: CAROTTE EPLUCHEE - concentration en POP dans les sols (en MS) et dans les racines épluchées (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

	éférence FUROFINS :	14G003326-007	14G006937-005		14G003326-008	14G006937-006		14G003326-009	14G006937-007		14G003326-028	14G006937-008		14G003326-029	14G006937-009		14G003326-030	14G006937-010		1	
	éférence Client :	1.0003320 007	P3-CA R1		0005520 000	P3-CA-R2		1.0003320 003	P3-CA R3		1.0003320 028	P4-CA-R1		1.0003320 023	P4-CA-R2		1.0003320 030	P4-CA-R3			
110	Matrice	s	vx épluché	BCFéplu	s	vx épluché	BCFéplu	s	vx épluché	BCFéplu	s	vx épluché	BCFéplu	s	vx épluché	BCFéplu	s	vx épluché	BCFéplu		
Paramètres	Incertitude v	, and the second	TA OPIGOTO	Бег ерги		on epidene	эс. ср.а	,	TA OPIGETIC	эс. ср.а	,	TA OPIGOTO	Белеріа	J	th opinion	Бегерій	J	TA Optionic	Бегерій		
biomasse récoltée (g MF))		70			80			90			120			90			120			
matière sèche	,	90	12,2		89,9	14,8		89,9	12		87,4	12,5		84,5	12,8		85	12,7			
PCB indicateurs (6ou 7	congénères)				·										-			·		BCF moyen	SD
PCB 28	60%	< 81.8	< 0.04	NA	< 79.3	< 0.06	NA	< 82.3	< 0.03	NA	155	< 0.02	NA	331	< 0.04	NA	< 84.3	< 0.03	NA	pas de BCF	
PCB 52	42%	< 60.9	< 0.04	NA	72,2	< 0.06	NA	< 61.3	< 0.03	NA	473	< 0.02	NA	362	< 0.04	NA	352	< 0.03	NA	pas de BCF	
PCB 101	33%	493	< 0.04	NA	715	< 0.06	NA	375	< 0.03	NA	3020	< 0.02	NA	1940	< 0.04	NA	2260	< 0.03	NA	pas de BCF	
PCB 118		728	<0,00620	NA	1140	<0,0784	NA	590	<0,00474	NA	2490	0,00598	1,9E-02	1570	<0,00501	NA	1980	<0,00480	NA	voir PC	B-dl
PCB 138	33%	2550	< 0.04	NA	3890	< 0.06	NA	2020	< 0.03	NA	10700	0,04	3,0E-02	6700	< 0.04	NA	8970	< 0.03	NA	2,8E-02	1,2E-02
PCB 153	33%	2780	< 0.04	NA	4260	< 0.06	NA	2260	< 0.03	NA	12800	0,06	3,8E-02	7430	< 0.04	NA	10200	< 0.03	NA	4,9E-02	2,1E-02
PCB 180	33%	1290	< 0.04	NA	2070	< 0.06	NA	1020	< 0.03	NA	8570	< 0.02	NA	5210	< 0.04	NA	6890	< 0.03	NA	2,8E-02	
Σ 7PCB sans LOQ	15%	7841	ND	NA	12147	ND	NA	6265	ND	NA	38208	0,1	2,1E-02	23543	ND	NA	30652	ND	0,0E+00	2,0E-02	
Σ 6 ou 7PCB (sauf PCB 118	.8 15%	7980	0,27		12200	0,34		6410	0,2		38200	0,2		23500	0,21		30700	0,21			
Dioxines et furanes PC	DD/F (17 con																				
2,3,7,8-TCDD	35%	0,71	< 0.008	NA	1,25	< 0.01	NA	0,68	< 0.006	NA	10,1	0,005	4,0E-03	2,15	< 0.007	NA	4,16	< 0.007	NA	4,0E-03	
1,2,3,7,8-PeCDD	35%	2,48	< 0.01	NA	4,16	< 0.01	NA	1,83	< 0.008	NA	32,7	0,02	4,9E-03	11,3	< 0.009	NA	16,1	< 0.009	NA	4,9E-03	4
1,2,3,4,7,8-HxCDD	33%	3,23	< 0.02	NA	5,11	< 0.02	NA	2,48	< 0.01	NA	33,5	0,02	4,8E-03	16,4	< 0.01	NA	18,8	< 0.01	NA	4,8E-03	
1,2,3,6,7,8-HxCDD	34%	6,45	< 0.02	NA	10,2	< 0.03	NA	4,45	< 0.02	NA	66,7	0,04	4,8E-03	30,1	< 0.02	NA	36,9	< 0.02	NA	4,8E-03	
1,2,3,7,8,9-HxCDD	42%	4,58	< 0.02	NA	7,34	< 0.03	NA	3,1	< 0.02	NA	49	0,02	3,3E-03	18,8	< 0.02	NA	22,5	< 0.02	NA	3,3E-03	1.05.00
1,2,3,4,6,7,8-HpCDD OCDD	35%	58,8	< 0.04	NA	92,2	0,05	3,7E-03	40,9	< 0.03	NA	563	0,2	2,8E-03	268	0,03	8,7E-04	336	< 0.03	NA	3,5E-03	1,8E-03
2,3,7,8-TCDF	33% 35%	124 91,1	< 0.26 0,12	NA 1.1E-02	195 152	< 0.32 0,26	NA 1.2E-02	87,5 72,6	< 0.20	NA 1.8E-02	990 295	0,35	2,8E-03 1.9E-02	505 164	< 0.21 0,18	NA 8.6E-03	629 232	< 0.20 0,07	NA 2.4E-03	2,8E-03 3,27E-02	F 1F 02
1,2,3,7,8-PeCDF	35%	70,5	0,12	8,1E-02	115	0,26	8,2E-03	52,3	0,16 0,09	1,8E-02 1,4E-02	294	0,7	1,9E-02 1.3E-02	146	0,18	5.4E-03	198	0,07	2,4E-03 1.6E-03	3,27E-02 2,14E-02	5,1E-02 3,2E-02
2.3.4.7.8-PeCDF	36%	51,1	0,05	8.0E-03	82.4	0,14	8.2E-03	32,5	0,05	1,4E-02 1.1E-02	283	0,47	7,3E-03	158	0,1	2.5E-03	201	0,04	7.8E-04	6.6E-03	4,3E-03
1,2,3,4,7,8-FECDF	38%	108	0,07	5.3E-03	172	0,12	4,7E-03	76,7	0,07	7.6E-03	496	0,45	7,3E-03	258	0,03	2,3E-03 2.1E-03	334	0,02	7,8E-04 7.1E-04	4,9E-03	3,0E-03
1,2,3,6,7,8-HxCDF	36%	41	0,03	6,0E-03	69,6	0,05	4,9E-03	29,4	0,03	8,5E-03	305	0,22	5,8E-03	167	0,04	1,9E-03	205	< 0.02	NA NA	5,6E-03	2,3E-03
1,2,3,7,8,9-HxCDF	35%	< 14.7	< 0.02	NA	< 16.9	< 0.03	NA	< 6.23	< 0.02	NA	< 51.2	< 0.14	NA	< 25.4	< 0.02	NA	< 32.8	< 0.01	NA	pas de BCF	-,01 00
2,3,4,6,7,8-HxCDF	35%	32,7	< 0.02	NA	53,7	0,04	5,0E-03	23,7	0,02	7,0E-03	341	0,17	4,0E-03	208	0,03	1,1E-03	232	< 0.02	NA	4,4E-03	2,1E-03
1,2,3,4,7,8,9-HpCDF	40%	198	0,03	1,2E-03	308	0,04	8,8E-04	143	0,02	1,2E-03	1470	0,2	1,1E-03	880	0,03	2,7E-04	1050	< 0.01	NA	9,6E-04	4,2E-04
1,2,3,4,6,7,8-HpCDF	45%	66	0,1	1,2E-02	105	0,16	1,0E-02	44,3	0,08	1,5E-02	369	0,79	1,7E-02	185	0,12	5,1E-03	238	0,05	1,7E-03	1,1E-02	6,7E-03
OCDF	35%	293	0,11	3,1E-03	465	0,16	2,3E-03	225	0,08	3,0E-03	1720	0,77	3,6E-03	983	0,1	7,9E-04	1180	0,05	3,3E-04	2,3E-03	1,2E-03
Σ PCDD/F (pg/g MF)		1152	0,6	4,1E-03	1838,0	1,1	4,1E-03	845,9	0,6	5,9E-03	7318,0	4,7	5,1E-03	4000,8	0,8	1,5E-03	4933,5	0,3	4,1E-04		
Σ PCDD/F- TEQ sans LQ	18%	52,7	0,041		85,8	0,083		39,1	0,046		320	0,291		165	0,052		211	0,018			
Σ PCDD/F- TEQ avec LQ	18%	54,2	0,071		87,5	0,119		39,7	0,068		325	0,305		168	0,075		215	0,043			
PCB-dl (12 congénères																					
PCB 77	36%	77,6	< 0.80	NA	132	< 1.01	NA	62,8	< 0.61	NA	301	0,65	1,7E-02	193	< 0.64	NA	225	< 0.62	NA	2,2E-01	2,0E-01
PCB 81	37%	7,28	< 0.12	NA NA	13,2	< 0.15	NA	5,22	< 0.09	NA	33,5	0,07	1,7E-02	16,3	< 0.1	NA	15,3	< 0.09	NA	1,7E-02	1 25 04
PCB 105	33%	279	< 1.73	NA	437	< 2.19	NA	222	< 1.32	NA	1060	2,32	1,8E-02	680	< 1.39	NA	842	< 1.34	NA	1,0E-01	1,2E-01
PCB 114	32%	17,5	< 0.23	NA	26,6	< 0.30	NA	13,6	< 0.18	NA	31,3	0,15	3,8E-02	20,6	< 0.19	NA	26,3	< 0.18	NA	3,8E-02	0.25.02
PCB 118 PCB 123	35% 33%	728 11,3	< 6.20	NA NA	1140 15,5	< 7.84 < 0.22	NA NA	590 8,46	< 4.74 < 0.14	NA NA	2490 45,6	5,98	1,9E-02 1,9E-02	1570 26,3	< 5.01 < 0.14	NA NA	1980 34,9	< 4.80 < 0.14	NA NA	8,9E-02 6,6E-02	8,2E-02 8,1E-02
PCB 123 PCB 126	33%	11,3 60.5	< 0.18 < 0.11	NA NA	15,5 94.7	< 0.22 0.14	NA 1.0E-02	8,46 47	< 0.14 < 0.08	NA NA	45,6 263	0,11	1,9E-02 1.1E-02	26,3 161	< 0.14 0.09	NA 4.4E-03	34,9 198	< 0.14	NA NA	6,6E-02 1.0E-02	8,1E-02 5,0E-03
PCB 156	43%	231	< 0.11	NA NA	354	< 1.23	NA	182	< 0.08	NA NA	263 946	1.98	1,1E-02 1,7E-02	565	< 0.79	4,4E-03 NA	747	< 0.09	NA NA	2,0E-02	1,2E-02
PCB 157	43%	64	< 0.18	NA NA	96,4	< 0.23	NA NA	49	< 0.74	NA NA	245	0,41	1,7E-02 1.3E-02	143	< 0.79	NA NA	190	< 0.75	NA NA	1,7E-02	8,6E-03
PCB 167	45%	159	< 0.49	NA NA	241	< 0.62	NA NA	126	< 0.14	NA NA	649	1,21	1,5E-02	371	0,42	8,8E-03	514	< 0.38	NA NA	1,7E-02 1,8E-02	1,0E-02
PCB 169	33%	11,2	< 0.53	NA NA	16,8	< 0.67	NA NA	8,81	< 0.41	NA NA	58,1	< 0.28	NA	36,9	< 0.43	NA	45,2	< 0.41	NA	pas de BCF	2,02 02
PCB 189	33%	59,2	< 0.18	NA	93,5	< 0.22	NA	46,5	< 0.14	NA	249	0,33	1,1E-02	144	< 0.14	NA	198	< 0.14	NA	9,7E-03	5,8E-03
Σ PCD-dl (pg/g MF)		1705,6		0,0E+00	2660,7	0,14	3,6E-04	1361,390		0,0E+00	6371,5	13,6	1,7E-02	3927,1	0,5	1,0E-03	5015,7		0,0E+00		
PCB-dI -TEQ sans LOQ	25%	6,44	ND		10,1	0,014		5,01	ND		28,3	0,038		17,4	0,009		21,3	ND			
PCB-dl -TEQ avec LOQ	25%	6,44	0,027		10,1	0,035		5,01	0,021		28,3	0,046		17,4	0,023		21,3	0,021			
Σ PCDD/F + PCB-dl (12	congénères)																				
Σ PCDD/F + PCB-dl TEQ a	av 16%		0,098			0,154			0,089			0,351			0,098			0,064			
Σ PCDD/F + PCB-dl TEQ sa	a 16%		0,041			0,097			0,046			0,329			0,061			0,018			
légende :	* abaaaaa al!iu																			•	

s : concentrati SD : standard BCF moyen: n

Annexe: COURGETTE - concentration en POP dans les sols (en MS) et dans les courgettes (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

F	Référence EUROFINS :	14G003326-035	14G005515-007		14G003326-036	14G005515-008		14G003326-037	14G006117-001		14G003326-004	14G005891-001		14G003326-005		1	14G003326-006	14G005891-002	
	Référence Client :		P1-COU R1			P1-COU-R2			P1-COU R3			P2-COU-R1		P2	-COU-R2			P2-COU-R3	
	Matrice	S	vx	BCF	s	vx	BCF	S	vx	BCF	S	vx	BCF	s	vx	BCF	s	vx	BCF
Paramètres	Incertitude vx													1					
Biomasse (g MF)			220			145			130			162			80			202	
matière sèche		88,6	9,2		88,4	11,9		88,4	8,9		87,7	5,52		87,9	échantillon		87,5	5,89	
PCB indicateurs (6 ou 7 congénères),															perdu par				
PCB 28	60%	< 83,0	< 0,006		< 80,0	0,008		< 89,1	0,008		188	< 0,11		< 81,6	Eurofins		< 82,2	0,11	0.00.01
PCB 52	42%	< 61,7	0,02		< 59,5 202	0,02		< 66,3	0,02		159 2190	0,28	3,2E+01	120 1680			134 1720	0,28	3,5E+01
PCB 101 PCB 118	33%	193 133	0,03	1,7E+00 6,9E-01	133	0,04 0,0152	1,7E+00 9.6E-01	192 119	0,04	2,3E+00 9.4E-01	2190 1650	1,9 0.818	1,6E+01 9,0E+00	1680			1/20	1,03	1,0E+01 4.5E+00
PCB 118 PCB 138	33%	946	0,0084	6,9E-01	889	0,0152	8,5E-01	1280	0,01	7,0E-01	12400	5,55	8,1E+00	8770			8710	2,87	5.6E+00
PCB 153	33%	1300	0,08	6,7E-01	1240	0,13	8.8E-01	1450	0,08	7,0E-01 7,7E-01	12700	7,49	1.1E+01	10200			10200	3.58	6.0E+00
PCB 133	33%	776	0,02	2,8E-01	742	0,03	3.4E-01	773	0,02	2,9E-01	9510	2,45	4,7E+00	6640			6680	1,05	2,7E+00
Σ 7PCB sans LOQ	15%	3348	0,22	7,1E-01	3206	0,33	8,7E-01	3814	0,02	8,2E-01	38797	18,49	8,6E+00	28850			28924	9,31	5,5E+00
Σ 6 PCB (sauf PCB 118) avec LOQ	15%	3490	0,2	7,12-01	3340	0,32	0,7L-01	3970	0,27	0,21-01	38800	17,8	8,02700	28900			29000	8,92	3,32+00
Dioxines et furanes PCDD/F (17 congé					3340	0,52		3370	0,2,		50000	17,0		20300			23000	0,52	+
2,3,7,8-TCDD	35%	< 0,18	< 0,001		< 0,18	< 0,001		< 0,20	<0,001		0,4	< 0,02		0,29			0,33	< 0,02	
1,2,3,7,8-PeCDD	35%	< 0,24	< 0,002		< 0,23	0,002		< 0,26	0,002		1,42	0,12	1,5E+00	1,29			1,32	0,05	6,4E-01
1,2,3,4,7,8-HxCDD	33%	< 0,49	< 0,002		< 0,47	0,003		< 0,52	0,003		1,71	0,16	1,7E+00	1,66			1,66	0,05	5,1E-01
1,2,3,6,7,8-HxCDD	34%	< 0,49	< 0,003		< 0,47	< 0,004		< 0,52	<0,004		3,53	0,18	9,2E-01	3,75			3,51	0,08	3,9E-01
1,2,3,7,8,9-HxCDD	42%	< 0,49	< 0,003		< 0,47	< 0,003		< 0,52	<0,004		2,57	< 0,05		2,44			2,55	< 0,04	
1,2,3,4,6,7,8-HpCDD	35%	3,93	0,009	2,5E-02	4,13	0,02	4,1E-02	3,5	0,001	3,2E-03	43,6	0,77	3,2E-01	39,2			40,3	0,3	1,3E-01
OCDD	33%	13,9	< 0,04		16	< 0,04		12,9	<0,05		134	< 0,65		129			133	< 0,50	
Somme des dioxines		17,83	0,009		20,13	0,025		16,4	0,006		187,23	1,23		177,63			182,67	0,48	
2,3,7,8-TCDF	35%	2,58	0,02	8,4E-02	2,66	0,03	9,5E-02	2,41	0,03	1,4E-01	34,4	2,38	1,3E+00	33			33,9	1,43	7,2E-01
1,2,3,7,8-PeCDF	39%	1,63	0,01	6,7E-02	1,55	0,02	1,1E-01	1,58	0,02	1,4E-01	24,8	1,88	1,4E+00	25,6			25,5	0,89	5,9E-01
2,3,4,7,8-PeCDF	36%	1,69	0,01	6,4E-02	1,64	0,02	1,0E-01	1,35	0,02	1,7E-01	23,9	1,53	1,2E+00	21,6			21,8	0,82	6,4E-01
1,2,3,4,7,8-HxCDF	38%	2,83	0,02	7,7E-02	2,68	0,04	1,3E-01	2,65	0,04	1,7E-01	47,2	3,45	1,3E+00	46,3			48,6	1,08	3,8E-01
1,2,3,6,7,8-HxCDF	36%	1,31	0,006	5,0E-02	1,14	0,009	6,6E-02	1,13	0,009	8,9E-02	20,8	0,78	6,8E-01	18,5			19	0,32	2,9E-01
1,2,3,7,8,9-HxCDF 2.3,4,6,7.8-HxCDF	35% 35%	< 0,46	< 0,002	4.1E-02	< 0,39	< 0,006	5.4E-02	< 0,43	<0,008	6.7E-02	< 5,28 16.8	< 0,72	5.0E-01	< 7,26 14.6			< 4,60 15.1	< 0,21	1.9E-01
1,2,3,4,7,8,9-HpCDF	40%	6,11	< 0,004	4,1E-UZ	5,8	0,007	4,3E-03	5,6	0,008	6,7E-02 6,0E-03	104	0,46	5,0E-01 5,2E-02	101			106	0,1	1,6E-02
1,2,3,4,6,7,8-HpCDF	45%	1,63	0,002	1,3E-01	1,53	0,003	1,6E-01	1,42	0,003	1,6E-01	29,5	1,92	1,2E+00	28,3			28,5	0,73	4,3E-01
OCDF	35%	9,6	< 0,007	1,31-01	8,72	< 0,008	1,01-01	8,8	<0,009	1,02-01	164	0,44	4,9E-02	148			155	0,2	2,2E-02
Somme des furannes	3370	28,43	0,09		26,81	0,159		25,95	0,148		465,4	13,14	4,52.02	436,9			453,4	5,74	2,22 02
Σ PCDD/F (pg/g MF)		64,09	0,11	1.8E-02	67,1	0,21	2.6E-02	58,8	0,16	3,1E-02	839,9	15,6	3.4E-01	792,2			818.7	6,70	1.4E-01
Σ PCDD/F- TEQ sans LQ	18%	1,46	0,008		1,42	0,018		1,28	0,02		24,3	1,41		22,6			23,2	0,644	
Σ PCDD/F- TEQ avec LQ	18%	2,07	0,012		2,01	0,02		1,94	0,02		24,8	1,51		23,3			23,7	0,686	1
PCB-dl (12 congénères), Unité : ng/kg	MS sol et pg/g Mi	Fvégétaux																	
PCB 77	36%	10,5	0,16	1,7E-01	11,8	0,27	1,9E-01	9,9	0,3	3,4E-01	93,5	7,15	1,4E+00	80			76	4,4	9,8E-01
PCB 81	37%	< 0,79	< 0,02		< 0,76	< 0,02		< 0,85	<0,02		1,78	< 0,30		2,39			2,51	< 0,23	
PCB 105	33%	63,3	3,51	6,0E-01	66,2	6,03	7,7E-01	60,5	6	1,1E+00	636	260	7,4E+00	489			513	123	4,1E+00
PCB 114	32%	< 0,95	0,08		1,25	0,1	6,7E-01	< 4,20	0,1		5,73	4,02	1,3E+01	12,2			16	3,34	3,5E+00
PCB 118	35%	133	8,4	6,9E-01	133	15,2	9,6E-01	119	10	9,4E-01	1650	818	9,0E+00	1440			1480	388	4,5E+00
PCB 123	33%	3	0,2	7,2E-01	2,9	0,48	1,4E+00	4,81	0,2	4,7E-01	29,9	13,6	8,2E+00	21,5			25,4	8,66	5,8E+00
PCB 126	34%	13,3	< 0,02	2.05.00	13	0,04	2,6E-02	8,81	0,04	5,1E-02	129	1,48	2,1E-01	129			135	1,87	2,4E-01
PCB 156	43%	78	2,55	3,6E-01	74,6	4,73	5,3E-01	70,9	5	7,9E-01	845	313	6,7E+00	725			712	134	3,2E+00
PCB 157 PCB 167	43% 45%	16,4 52,1	0,41 1,04	2,7E-01 2,2E-01	16,6 51,2	0,7 1,93	3,5E-01 3.2E-01	15 51,8	0,7 2	5,2E-01 4,3E-01	155 625	57,7 208	6,7E+00 6,0E+00	160 497			159 503	27,1 90,4	2,9E+00 3,1E+00
PCB 167 PCB 169	45% 33%	< 2,43	< 0,07	2,2E-U1	< 2,34	< 0,08	3,2E-U1	< 2,61	<0,09	4,5E-U1	19,2	< 1,35	6,0E+00	18,4			16,9	< 1,04	3,1E+UU
PCB 189	33%	17,3	0,15	9,4E-02	17,3	0,31	1,5E-01	12,1	0,2	1,9E-01	193	28,6	2,7E+00	186			187	11,2	1,0E+00
Σ PCD-dl (pg/g MF)	3376	386,90	16,5	4,6E-01	387,9	29,8	6.5E-01	352,8	24,5	7,8E-01	4383,1	1711,6	7,1E+00	3760,5			3825.8	792,0	3.5E+00
PCB-dl -TEQ sans LOQ	25%	1.34	0,0005	4,01-01	1,31	0.004	- 0,3E-01	0,892	0,005	7,01-01	13,7	0,2	7,12,700	13,6			14.1	0,211	3,32100
PCB-dl -TEQ sans EOQ PCB-dl -TEQ avec LOQ	25%	1,41	0,000		1.38	0,007		0,971	0,003		13,7	0,24		13,6			14,1	0,242	1
Σ PCDD/F + PCB-dl (12 congénères), U					-,50	2,007		-,5,1	2,000		-3,7	5,24		23,0			,2	5,242	1
Σ PCDD/F + PCB-dl TEQ avec LQ	16%	70/0 408	0,016			0,027			0,03							0,928			1
Σ PCDD/F + PCB-dl TEQ sans LQ	16%		0,0085			0,022			0,03							0,855			+
	* absence d'infor		-,		entrations cont < 10				,		•								

| More | 1,000

Annexe: COURGETTE - concentration en POP dans les sols (en MS) et dans les courgettes (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

	Référence EUROFINS :	14G003326-013	14G006390-002		14G003326-014	14G006390-003		14G003326-015	14G006390-004		14G003326-022	14G006390-005		14G003326-023	14G005891-003		14G003326-024	14G006390-006			
	Référence Client :		P3-COU R1			P3-COU-R2			P3-COU R3			P4-COU-R1			P4-COU-R2			P4-COU-R3		•	
	Matrice	s	vx	BCF	s	VX	BCF	s	vx	BCF	s	vx	BCF	s	vx	BCF	s	vx	BCF	•	
Paramètres	Incertitude vx						•														
Biomasse (g MF)		i	85			60	1		160			180	1		178	1	1	65	1		
matière sèche		89,7	3,85		89,8	3,86		89,9	5,5		86,8	5,84		86,2	10,1		85,2	6,97		BCF moyen	SD
PCB indicateurs (6 ou 7 congénères),	Unité : ng/kg MS s		-,			.,		,				-,-			-,						
PCB 28	60%	< 80,9	< 0,02		< 78,3	< 0,03		< 78,6	< 0,008		< 81,8	< 0,006		< 83,7	< 0,06		< 83,8	< 0,02		pas de BCF	
PCB 52	42%	88,4	< 0,02		80,7	< 0,03		70,5	0,008	2,1E+00	214	0,01	8,0E-01	236	0,17	7,1E+00	359	< 0,02		1,55E+01	1,68E+01
PCB 101	33%		0,02	6,9E-01	740	< 0,03		700	0,02	5.2E-01	1800	0,05	4.8E-01	2070	1,1	5,3E+00	2690	0.07	3,7E-01	3,89E+00	5,15E+00
PCB 118		1040	0,0154	3,8E-01	1150	0,0253	5,7E-01	1040	0,0191	3,3E-01	1680	0,0252	2,6E-01	1870	0,475	2,5E+00	2240	0,0369	2,4E-01	1,85E+00	2,69E+00
PCB 138	33%	4240	0,05	3,1E-01	3690	0,1	7,0E-01	3740	0,06	2,9E-01	8330	0,16	3,3E-01	9450	3,35	3,5E+00	10800	0,21	2,8E-01	1,94E+00	2,65E+00
PCB 153	33%	4460	0,05	2,9E-01	4600	0,1	5,6E-01	4790	0,05	1,9E-01	8310	0,17	3,5E-01	9090	3,73	4,1E+00	9200	0,26	4,1E-01	2,26E+00	3,36E+00
PCB 180	33%	2010	< 0,02		2170	< 0,03		2110	0,01	8,6E-02	6640	0,06	1,5E-01	7080	1,56	2,2E+00	7760	0,1	1,8E-01	1,21E+00	1,62E+00
Σ 7PCB sans LOQ	15%	12589	0,14	2,8E-01	12431	0,23	4,7E-01	12451	0,17	2,4E-01	26974	0,48	3,0E-01	29796	10,39	3,5E+00	33049	0,68	2,9E-01	1,96E+00	2,77E+00
Σ 6 PCB (sauf PCB 118) avec LOQ	15%	12700	0,17		12500	0,33		12500	0,16		27100	0,46		29900	9,96		33100	0,69		,	
Dioxines et furanes PCDD/F (17 conge	énères), Unité : ng/					.,									.,			.,			
2.3.7.8-TCDD	35%	1.07	< 0.003		1,21	< 0.006		1,03	< 0,001		1.98	0,004	3.5E-02	2,72	0.07	2,5E-01	3,47	0.009	3,7E-02	1.09E-01	1.26E-01
1,2,3,7,8-PeCDD	35%	3,72	0,01	7,0E-02	4,43	0,02	1,2E-01	3,58	0,02	1,0E-01	10,8	0,02	3,2E-02	14,1	0,35	2,5E-01	17,8	0,04	3,2E-02	3,47E-01	5,19E-01
1,2,3,4,7,8-HxCDD	33%	4,29	0,01	6,1E-02	5,67	0,03	1,4E-01	4,73	0,02	7,7E-02	15,5	0,03	3,3E-02	24,2	0,38	1,6E-01	23,1	0,05	3,1E-02	3,38E-01	5,70E-01
1,2,3,6,7,8-HxCDD	34%	8,39	0,02	6,2E-02	10,6	0,04	9,8E-02	8,73	0,02	4,2E-02	32,2	0,03	1,6E-02	44,2	0,42	9,4E-02	44,2	0,06	1,9E-02	2,05E-01	3,14E-01
1,2,3,7,8,9-HxCDD	42%	5,39	< 0,009		7,31	< 0,01		6,31	0,006	1,7E-02	19,6	0,01	8,7E-03	29,5	0,14	4,7E-02	30,7	0,02	9,3E-03	2,06E-02	9,56E+00
1,2,3,4,6,7,8-HpCDD	35%	79,2	0,05	1,6E-02	93,9	0,1	2,8E-02	84,8	0,06	1,3E-02	288	0,09	5,4E-03	458	1,5	3,2E-02	389	0,19	7,0E-03	5,61E-02	9,40E-02
OCDD	33%	159	< 0,11		192	< 0,18		182	< 0,05		540	< 0,04		1170	< 0,33		724	< 0,11		pas de BCF	
Somme des dioxines		261,06	0,09		315,12	0,19		291,18	0,126		908,08	0,184		1742,72	2,86		1232,27	0,369			
2,3,7,8-TCDF	35%	129	0,31	6,2E-02	141	0,42	7,7E-02	138	0,34	4,5E-02	191	0,65	5,8E-02	224	8,7	3,8E-01	245	1,08	6,3E-02	2,71E-01	3,85E-01
1,2,3,7,8-PeCDF	39%	95,3	0,25	6,8E-02	106	0,46	1,1E-01	105	0,3	5,2E-02	183	0,52	4,9E-02	193	7,16	3,7E-01	214	0,89	6,0E-02	2,72E-01	4,03E-01
2,3,4,7,8-PeCDF	36%	72,6	0,19	6,8E-02	77,3	0,34	1,1E-01	76,4	0,24	5,7E-02	154	0,32	3,6E-02	247	4,72	1,9E-01	225	0,48	3,1E-02	2,39E-01	3,50E-01
1,2,3,4,7,8-HxCDF	38%	136	0,31	5,9E-02	153	0,66	1,1E-01	151	0,49	5,9E-02	304	0,68	3,8E-02	403	10,3	2,5E-01	391	1,15	4,2E-02	2,40E-01	3,74E-01
1,2,3,6,7,8-HxCDF	36%	56,4	0,1	4,6E-02	64,9	0,16	6,4E-02	61,6	0,12	3,5E-02	168	0,17	1,7E-02	276	2,52	9,0E-02	244	0,28	1,6E-02	1,31E-01	1,96E-01
1,2,3,7,8,9-HxCDF	35%	< 11,5	< 0,04		< 14,7	< 0,08		< 15,1	< 0,06		< 28,3	< 0,07		< 39,3	< 2,78		< 39,8	< 0,09		pas de BCF	
2,3,4,6,7,8-HxCDF	35%	42	0,04	2,5E-02	47,5	0,08	4,4E-02	47,6	0,05	1,9E-02	179	0,1	9,6E-03	487	1,57	3,2E-02	268	0,17	9,1E-03	8,98E-02	1,44E-01
1,2,3,4,7,8,9-HpCDF	40%	259	0,04	4,0E-03	299	0,06	5,2E-03	279	0,04	2,6E-03	848	0,05	1,0E-03	2370	0,94	3,9E-03	1200	0,11	1,3E-03	9,67E-03	1,55E-02
1,2,3,4,6,7,8-HpCDF	45%	82,7	0,19	6,0E-02	96,2	0,32	8,6E-02	90,9	0,23	4,6E-02	213	0,34	2,7E-02	301	5,62	1,8E-01	285	0,69	3,5E-02	2,28E-01	3,36E-01
OCDF	35%	380	0,06	4,1E-03	441	0,07	4,1E-03	451	0,05	2,0E-03	1120	0,06	9,2E-04	1940	1,21	6,2E-03	1390	0,16	1,7E-03	1,12E-02	1,66E-02
Somme des furannes		1253	1,49		1425,9	2,57		1400,5	1,86		3360	2,89		6441	42,74		4462	5,01			
Σ PCDD/F (pg/g MF)		1514,1	1,67	2,9E-02	1741,0	2,95	4,4E-02	1691,7	2,11	2,3E-02	4268,1	3,1	1,2E-02	8183,7	45,6	5,5E-02	5694,3	5,4	1,4E-02		
Σ PCDD/F- TEQ sans LQ	18%	71,9	0,16		80,1	0,284		77,3	0,204		170	0,312		278	4,54		239	0,512			
Σ PCDD/F- TEQ avec LQ	18%	73,1	0,168		81,6	0,299		78,8	0,212		172	0,318		282	4,82		243	0,521			
PCB-dl (12 congénères), Unité : ng/kg		443	0.03	4.05.04	422	4.46	2 25 04	110	0.00	4.45.04	400	0.04	0.25.02	202		4.05.04	270	4.20	7.25.02	2 005 04	4.405.04
PCB 77	36%	113	0,83	1,9E-01	132	1,16	2,3E-01	118	0,88	1,4E-01	189	0,91	8,2E-02	282	11,4	4,0E-01	270	1,38	7,3E-02	3,80E-01	4,19E-01
PCB 81 PCB 105	37% 33%	4,93 402	< 0,05 6,38	4.1E-01	16,5 450	< 0,08	7,2E-01	14 412	< 0,02	4,1E-01	17,6 690	< 0,02	2,9E-01	25,1 833	0,35 210	1,4E-01 2,5E+00	16,2 947	< 0,05 16,7	2,5E-01	1,38E-01 1,68E+00	2,23E+00
PCB 105 PCB 114	33%	20,4	0,37	4,1E-01 4.7E-01	23,1	12,5 0,5	7,2E-01 5.6E-01	23,4	9,2 0,51	4,1E-01 4.0E-01	18,6	11,6 0,55	5.1E-01	24,3	9,9	4.0E+00	27,8	0,7	2,5E-01 3,6E-01	2,58E+00	4,06E+00
PCB 114 PCB 118	35%	1040	15,4	3.8E-01	1150	25,3	5,0E-01 5.7E-01	1040	19,1	3.3E-01	1680	25,2	2.6E-01	1870	475	2.5E+00	2240	36.9	2,4E-01	1.85E+00	2.69E+00
PCB 123	33%	20,8	0,2	2,5E-01	25,5	0,36	3,7E-01 3,7E-01	16,3	0,22	2,5E-01	48,8	0,59	2,0E-01 2.1E-01	66,2	12,3	1,8E+00	75,2	0,82	1,6E-01	1,79E+00	2,69E+00
PCB 125 PCB 126	34%	66,2	0,09	3.5E-01	86,9	< 0,08	3,72-01	78,5	0,09	2,5E-01 2.1E-02	166	0,13	1.3E-02	373	4,52	1,2E-01	239	0,82	7,8E-03	7,97E-02	8.73E-02
PCB 156	43%	343	3.87	2,9E-01	372	7,56	5.3E-01	341	5.09	2,7E-01	670	9,77	2.5E-01	832	188	2.2E+00	869	15,1	2,5E-01	1.40E+00	2,01E+00
PCB 157	43%	70.6	0,66	2,4E-01	93,8	1,39	3,8E-01	86,1	0.75	1.6E-01	140	1.84	2,3E-01	182	41.4	2,3E+00	171	3	2,5E-01	1,30E+00	2.03E+00
PCB 167	45%	231	2,02	2,3E-01	240	4,05	4,4E-01	216	2,4	2,0E-01	491	5,92	2,1E-01	602	113	1,9E+00	651	9,13	2,0E-01	1,20E+00	1,84E+00
PCB 169	33%	10,9	< 0,22		17,4	< 0,37		15,1	< 0,09		31,9	< 0,08		131	< 0,68	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	40,5	< 0,24		pas de BCF	-,
PCB 189	33%	67,6	0,19	7,3E-02	88,7	0,53	1,5E-01	84,1	0,27	5,8E-02	161	0,83	8,8E-02	288	18,5	6,4E-01	205	1,47	1,0E-01	4,77E-01	7,91E-01
Σ PCD-dl (pg/g MF)	33%	2390.4	30,0	3.3E-01	2695,9	53,4	5.1E-01	2444,5	38,5	2.9E-01	4303.9	57,3	2.3E-01	5508,6	1084,4	1.9E+00	5751,7	85,3	2,1E-01	.,	.,
PCB-dl -TEQ sans LOQ	25%	7,03	0.01		9,31	0,002		8,39	0.01		17,7	0,014	7	41,4	0.486	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	25,3	0.016			
PCB-dl -TEQ avec LOQ	25%	7.03	0.016	1	9,31	0.02	1	8,39	0.013	1	17,7	0.017	1	41.4	0,506		25,3	0,023			
Σ PCDD/F + PCB-dl (12 congénères), L		.,03	5,010	1	-,51	5,02	1	2,33	5,015	1	,,	-,517		.2,4	2,500		23,3	2,023			
Σ PCDD/F + PCB-dl TEQ avec LQ	16%	l		0.319			0.225			1			5.326			0.544					
Σ PCDD/F + PCB-dl TEQ avec EQ	16%	1		0,286			0,214			1			5.026			0,528					
	to : * absence d'infor	l .		0,200	1		0,214	1	1	1			3,020	1		0,320	l	1	1		

16% légende : * absence d'infon

s : concentration SD : standard dév BCF moyen: moye

Annexe: HARICOT - concentration en POP dans les sols (en MS) et dans les gousses (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

	Référence EUROFINS :	15G003194-013	15G005029-003		15G003194-014	15G005706-001		15G003194-015	15G005706-002		15G003194-016	15G005029-004		15G003194-017	15G005706-006		15G003194-018	15G005706-007	
	Référence Client :	P1	-HA-R1		P1-H	IA-R2		P1-	IA-R3			P2-HA-R1			P2-HA-R2			P2-HA-R3	
	Matrice	s	vx	BCF	S	vx	BCF	S	vx	BCF	s	vx	BCF	S	vx	BCF	S	vx	BCF
Paramètres	Incertitude vx																		
Biomasse (g MF)			104,4			74,0			82,4			226,0			115,1			118,9	
matière sèche		95,80	10,30		95,50	13,00		93,70	13,50		91,6	11,60		90,9	13,30		91	11,50	
PCB indicateurs (6 ou 7 congénères)	Unité : ng/kg MS s	ol et ng/g M	F végétaux					*				,							
PCB 28	60%	< 84	< 0.017	NA	< 87	< 0.026	NA	< 92	< 0.018	NA	86,50	< 0.016	NA	85,40	< 0.019	NA	104,00	< 0.021	NA
PCB 52	42%	< 62	0,02	NA	< 65	< 0.026	NA	< 68	0.02	NA	224	0.02	0.77	154	0.02	1.13	201	0.02	1.00
PCB 101	33%	173	< 0.017	NA	229	< 0.026	NA	219	< 0.018	NA	2360	< 0.016	NA	2020	0,02	0.07	2380	< 0.021	NA
PCB 118		104	0,01	7,7E-01	151	0.01	6.3E-01	119	0.01	6.9E-01	1990	0.01	0.04	1810	0.01	0.04	2080	0.01	0.04
PCB 138	33%	1110	< 0,017	NA	1660	< 0.026	NA	1120	< 0.018	NA	14800	< 0.016	NA	13400	< 0.019	NA	14500	< 0.021	NA
PCB 153	33%	1200	< 0,017	NA	1680	< 0.026	NA NA	1450	< 0.018	NA	17300	< 0.016	NA	14300	< 0.019	NA	15800	< 0.021	NA
PCB 180	33%	737	< 0,017	NA	1060	< 0.026	NA	785	< 0.018	NA	11500	< 0.016	NA	10300	< 0.019	NA	11600	< 0.021	NA
Σ 7PCB sans LOQ	15%	3324	0,03	8,7E-02	4780	0,01	2,0E-02	3693	0,03	6.3E-02	48261	0,03	5,2E-03	42069	0,05	9.6E-03	46665	0,03	6,2E-03
Σ 6 PCB (sauf PCB 118) avec LOQ	15%	3470	0.11	0,72 02	4940	0.16	2,02 02	3850	0,11	0,32 02	40202	0,1	3,22 03	42003	0.12	3,02 03	40005	0.13	0,22 03
Dioxines et furanes PCDD/F (17 cong					10.10	0,20			-,			*,-			-,			0,20	
2.3.7.8-TCDD	35%	< 0.18	< 0.0033	NA	< 0.19	< 0.0050	NA	< 0.20	< 0.0034	NA	0.40	< 0.0030	NA	0.35	< 0.0037	NA	0.40	< 0.0039	NA
1,2,3,7,8-PeCDD	35%	< 0.25	< 0,0043	NA NA	< 0.25	< 0.0066	NA NA	< 0.27	< 0.0045	NA NA	1,63	< 0.0040	NA	1,38	< 0.0037	NA NA	1.60	< 0.0052	NA NA
1,2,3,4,7,8-HxCDD	33%	< 0.49	< 0.0066	NA NA	< 0.51	< 0.010	NA NA	< 0.54	< 0.0068	NA NA	1.81	< 0.0040	NA	1.80	< 0.0043	NA NA	2.03	< 0.0032	NA NA
1,2,3,6,7,8-HxCDD	34%	< 0.49	< 0,0090	NA NA	< 0.51	< 0.014	NA NA	< 0.54	< 0.0094	NA NA	4.60	< 0.0083	NA NA	4.20	< 0.010	NA NA	4.90	< 0.011	NA NA
1,2,3,7,8,9-HxCDD	42%	< 0.49	< 0,0085	NA NA	< 0.51	< 0.014	NA NA	< 0.54	< 0.0088	NA NA	2,76	< 0.0083	NA NA	2,36	< 0.005	NA NA	3,02	< 0.011	NA NA
1,2,3,4,6,7,8-HpCDD	35%	3.13	< 0.014	NA NA	4.39	< 0.013	NA NA	3,79	< 0.014	NA NA	46.10	< 0.013	NA	39.60	< 0.016	NA NA	45.70	< 0.017	NA NA
OCDD	33%	13,20	< 0,10	NA NA	16,70	< 0.15	NA NA	13.80	< 0.10	NA NA	161.00	< 0.013	NΔ	142,00	< 0.010	NA NA	165,00	< 0.12	NA NA
Somme dioxines	33/0	16.3	0.00	IVA	21.09	0.00	NA NA	17.6	0.00	IVA	218.30	0.00	INA	191.69	0.00	NA NA	222.65	0.00	INA
2,3,7,8-TCDF	35%	2,32	< 0.0090	NA	2,93	< 0.014	NA	2.80	< 0.0094	NA	40.20	< 0.0083	NA	37.50	< 0.010	NA	41.50	< 0.011	NA
1.2.3.7.8-PeCDF	39%	1.36	< 0.0062	NA NA	1.83	< 0.0095	NA NA	1,65	< 0.0054	NA NA	27.10	< 0.0058	NA NA	23.50	< 0.010	NA NA	25.70	< 0.0074	NA NA
2.3.4.7.8-PeCDF	36%	1,38	< 0.0097	NA NA	2,03	< 0.015	NA NA	1,63	< 0.010	NA NA	28.40	< 0.0038	NA NA	25.00	< 0.011	NA NA	28.60	< 0.012	NA NA
1,2,3,4,7,8-HxCDF	38%	2.02	< 0.010	NA NA	3,24	< 0.015	NA NA	2,51	< 0.010	NA NA	51.60	< 0.0094	NA NA	44.00	< 0.011	NA NA	52.00	< 0.012	NA NA
1,2,3,4,7,8-FXCDF 1,2,3,6,7,8-HxCDF	36%	0.94	< 0,0094	NA NA	1.41	< 0.014	NA NA	1.22	< 0.0017	NA NA	24.70	< 0.0094	NA NA	20.90	< 0.011	NA NA	23.70	< 0.012	NA NA
1,2,3,7,8,9-HxCDF	35%	< 0.41	< 0.0069	NA NA	< 0.426	< 0.014	NA NA	< 0.45	< 0.0037	NA NA	< 5.63	< 0.0064	NA NA	< 6.42	< 0.0078	NA NA	< 6.15	< 0.0083	NA NA
2,3,4,6,7,8-HxCDF	35%	0.94	< 0.0085	NA NA	1.34	< 0.011	NA NA	1.16	< 0.0072	NA NA	21.60	< 0.0078	NA NA	19.40	< 0.0078	NA NA	21.60	< 0.010	NA NA
1,2,3,4,7,8,9-HpCDF	40%	- 7-	< 0,0083	NA NA	6,60	< 0.013	NA NA	5,33	< 0.0070	NA NA	101,00	< 0.0078	NA NA	87,70	< 0.0076	NA NA	97,50	< 0.0080	NA NA
1,2,3,4,7,8,9-HPCDF 1,2,3,4,6,7,8-HPCDF	45%	4,13 1.34	< 0,0068	NA NA	1,79	< 0.010	NA NA	1,67	< 0.010	NA NA	34,10	< 0.0062	NA NA	28.80	< 0.0076	NA NA	33,50	< 0.0080	NA NA
OCDF	35%	9,17	< 0,0097	NA NA	10,10	< 0.032	NA NA	9,19	< 0.022	NA NA	183,00	< 0.019	NΔ	163,00	< 0.023	NA NA	193,00	< 0.012	NA
Somme furannes	3376	23,6	0,00	NA	31,3	0,00	NA	27,2	0,00	IVA	511,7	0,0	NA	449.8	0.023	NA	517,1	0,0	NA
Σ PCDD/F (pg/g MF)		39.9	0,00	0.0E+00	52.4	0,00	0.0E+00	44.8	0,00	0.0E+00	730.0	0,0	0.0E+00	641.5	0,0	0.0E+00	739,7	0,0	0,0E+00
Σ PCDD/F- TEQ sans LQ	18%	1.17	ND	U,UETUU	1.69	ND	0,02700	1,42	ND	0,02700	28	ND	0,02700	24.6	ND	0,02700	28,1	ND	0,02700
Σ PCDD/F- TEQ sans EQ Σ PCDD/F- TEQ avec LQ	18%	1,17	0.02		2.33	0.027		2.1	0,019		28.6	0.0165		25.3	0.020		28,1	0.021	
			0,02		2,33	0,027		2,1	0,019		28,0	0,0105		25,3	0,020		28,7	0,021	
PCB-dl (12 congénères), Unité : ng/k PCB 77			.0.04	NA	9.82		NA	7.88		NA	112.00		NA	91.40	< 0.35	NA	105.00	< 0.37	NA
PCB 77 PCB 81	36% 37%	6,90 < 0.80	< 0,31 < 0,047	NA NA	9,82 < 0.83	< 0.48 < 0.071	NA NA	7,88 < 0.87	< 0.32	NA NA		< 0.29 < 0.043			< 0.35 < 0.053			< 0.37	
			2.38						< 0.049		1,97		0.03	2,20		0.03	3,36		0.03
PCB 105	33%	49,00	,	4,7E-01	68,20	3,25	3,7E-01	60,20	3,05	3,8E-01	732,00	2,20 0.11		639,00	2,85 0.12		727,00	2,78	
PCB 114	32%	< 0.96	0,12	NA 7.75.01	< 1	< 0.14	NA C 25 01	< 1.1	0,14	NA COF 01	8,81		0,11	6,36		0,14	7,81	< 0.11	NA 0.04
PCB 118 PCB 123	35% 33%	104,00	8,25	7,7E-01	151,00 3.37	12,40 0.12	6,3E-01	119,00 3.58	11,10 0.08	6,9E-01	1990,00 42.60	8,83 0.06	0,04	1810,00 43.80	10,60	0,04	2080,00 44.40	10,30	0,04
		3,11	< 0,069	NA NA			2,7E-01		-,	1,7E-01	,		0,01 NA		-,				0,02 NA
PCB 126	34%	7,29	< 0,043	NA	12,40	< 0.066	NA	9,85	< 0.045	NA	153,00	< 0.040	100	135,00	< 0.049	NA	154,00	< 0.052	
PCB 156	43%	59,20	< 0,38	NA NA	89,20	< 0.58	NA	73,50	< 0.40	NA NA	1130,00	< 0.35	NA NA	955,00	< 0.43	NA	1070,00	< 0.45	NA NA
PCB 157	43%	11,90	< 0,071		17,20	< 0.11	NA	12,50	< 0.074	NA	210,00	< 0.066		171,00	< 0.080	NA	196,00	< 0.085	
PCB 167	45%	44,60	< 0,19	NA	66,80	< 0.29	NA	51,10	< 0.20	NA	809,00	< 0.18	NA	692,00	< 0.21	NA	789,00	< 0.23	NA
PCB 169	33%	< 2.5	< 0,21	NA	< 2.5	< 0.32	NA	< 2.7	< 0.22	NA	17,00	< 0.19	NA	13,00	< 0.23	NA	19,30	< 0.25	NA
PCB 189	33%	10,70	< 0,069	NA	16,00	< 0.11	NA	12,60	< 0.072	NA	249,00	< 0.064	NA	198,00	< 0.078	NA	238,00	< 0.083	NA
Σ PCD-dl (pg/g MF)		296,7	10,8	3,5E-01	434,0	15,8	2,8E-01	350,2	14,4	3,0E-01	5455,4	11,2	1,8E-02	4756,8	13,7	2,2E-02	5433,9	13,2	2,1E-02
PCB-dI -TEQ sans LOQ	25%	1,17	0,0003		1,69	0,0005		1,42	0,0004		16	0,0003		14,1	0,0004		16,2	0,0004	
PCB-dI -TEQ avec LOQ	25%	1,79	0,01		2,33	0,02		2,10	0,01		16	0,0102		14,1	0,01		16,2	0,01	
Σ PCDD/F + PCB-dl (12 congénères),		l et pg/g MF																	
Σ PCDD/F + PCB-dl TEQ avec LQ	16%		0,029			0,044			0,030			0,027			0,032			0,034	
Σ PCDD/F + PCB-dl TEQ sans LQ	16%		0,0003			0,000472			0,000432			0,0003			0,0004			0,0004	
14	e:<0.01 s	substance déter	tán mais non quant	ifiéo															

légende : < 0,01 substance détectée mais non quantifiée
s : concentration dans le sol / vx: concentration dans le végétal
SD : standard déviation

BCF moyen: moyenne des valeurs BCF (tous réplicats et toutes mailles confondus, n ≤8)

Annexe: HARICOT - concentration en POP dans les sols (en MS) et dans les gousses (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

Ré	férence EUROFINS :		15G007845-001		15G003194-019	15G003194-020	15G003194-021		15G007845-002		15G003194-022	15G003194-023	15G003194-024		
	Référence Client : Matrice			P3-HA-R1-R2	-R3 (échantillon poo Csol R1	Csol R2	Csol R3			P4-HA-R1-R2- BCF	Csol R1	Csol R2	Csol R3		
2		S	vx	BCF	Csol R1	Csol R2	Csol R3	S	vx	BCF	Csol R1	Csol RZ	Csol R3		
Paramètres Biomasse (g MF)	Incertitude vx		136.8	1					118.0	1					
matière sèche		90.87	11.9		91.3	91,2	90,1	9.35E+01	12,2		93,3	94,0	93,2		
PCB indicateurs (6 ou 7 congénères), L	Inité · na/ka MS	30,07	11,5		31,3	32,2	50,1	3,332.101	12,2		33,3	3-1,0	33,2	BCF moyen	SD
PCB 28	60%		< 0.019	NA	< 82	< 83	< 79	92	< 0.019	NA	< 91	91,6	< 91	pas de BCF	30
PCB 52	42%	110	0,021	1,6E+00	98	129	103	358	0,024	5,49E-01	369	407	299	1,01E+00	3,99E-01
PCB 101	33%	793	< 0,019	NA	990	588	800	2617	< 0,019	NA	2680	3110	2060	7,44E-02	0,000
PCB 118		1251	0,00804	5,4E-02	1530	932	1290	2255	0,0116	4,2E-02	< 31	2310	2200	2,89E-01	3,40E-01
PCB 138	33%	4697	< 0,019	NA	5790	3660	4640	9217	< 0,019	NA	9390	9910	8350	pas de BCF	
PCB 153	33%	5180	< 0,019	NA	6380	4070	5090	11140	< 0,019	NA	11700	11900	9820	pas de BCF	
PCB 180	33%	2710	< 0,019	NA	3410	2060	2660	8097	< 0,019	NA	8360	8550	7380	pas de BCF	
Σ 7PCB sans LOQ	15%	14733	0,03		18200	11400	14600	32967	0,04		32500	36300	30100		
Σ 6 PCB (sauf PCB 118) avec LOQ	15%		0,10												
Dioxines et furanes PCDD/F (17 congér															_
2,3,7,8-TCDD	35%	1,3	< 0,0036	NA	1	1	2	4,3	< 0,0037	NA	4	5	4	pas de BCF	
1,2,3,7,8-PeCDD	35%	4,0	< 0,0047	NA	5	3	5	16,6	< 0,0048	NA	17	17	16	pas de BCF	
1,2,3,4,7,8-HxCDD	33%	5,1	< 0,0072	NA	6	3	6	20,4	< 0,0074	NA	21	20	20	pas de BCF	
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	34% 42%	11,4 6,7	< 0,0099 < 0,0093	NA NA	13 8	8	13 8	45,9	< 0,010 < 0,0095	NA NA	45 28	47 30	45 27	pas de BCF	
1,2,3,4,6,7,8-HpCDD	35%	89,4	< 0,015	NA NA	98	62	108	28,3 373,7	< 0,0095	NA NA	351	391	379	pas de BCF pas de BCF	
0CDD	33%	203,0	< 0,015	NA NA	226	144	239	674,0	< 0,016	NA NA	626	688	708	pas de BCF	
Somme dioxines	33/0	203,0	0.00	IVA	220	144	233	674,0	0.00	IVA	020	000	700	pas de BCr	
2,3,7,8-TCDF	35%	103,3	0,036	2.9F-03	175	107	170	267,3	0,078	2.4E-03	269	266	267	2,66E-03	3,79E-04
1,2,3,7,8-PeCDF	39%	88,5	0,014	1,3E-03	112	72	126	236,7	0,018	6,2E-04	226	236	248	9,77E-04	5,00E-04
2,3,4,7,8-PeCDF	36%	156,3	< 0.011	NA NA	98	63	105	240.3	< 0.011	NA NA	254	237	230	pas de BCF	3,002 04
1,2,3,4,7,8-HxCDF	38%	71,9	< 0,011	NA	168	109	192	378,7	< 0,011	NA	379	377	380	pas de BCF	
1,2,3,6,7,8-HxCDF	36%	-	< 0,010	NA	75	51	89	219,5	< 0,010	NA	< 0,44	213	226	pas de BCF	
1,2,3,7,8,9-HxCDF	35%	58,7	< 0,0076	NA	< 22,3	< 17,8	< 30,6		< 0,0078	NA	< 51,9	< 47,8	< 49,2	pas de BCF	
2,3,4,6,7,8-HxCDF	35%	265,3	< 0,0093	NA	66	42	69	294,3	< 0,0095	NA	290	288	305	pas de BCF	
1,2,3,4,7,8,9-HpCDF	40%	106,8	< 0,0074	NA	289	185	322	1127,7	< 0,0076	NA	983	1110	1290	pas de BCF	
1,2,3,4,6,7,8-HpCDF	45%	492,0	< 0,011	NA	112	74	134	277,3	< 0,011	NA	271	282	279	pas de BCF	
OCDF	35%		< 0,023	NA	523	349	604	1316,7	< 0,023	NA	1210	1330	1410	pas de BCF	
Somme furannes		4044	0,05		4000		2404	8440	0,10						
Σ PCDD/F (pg/g MF)	4000	1814	0,05		1975	1277	2191	5448	0,10		4975 280	5537 294	5834		
Σ PCDD/F- TEQ sans LQ Σ PCDD/F- TEQ avec LQ	18% 18%	121 124	0,004		117 119	74.3 76.1	125 128	289 294	0,008		280	294	294 299		
PCB-dl (12 congénères), Unité : ng/kg l		124	0,022		119	/0.1	128	294	0,027		285	299	299		
PCB 77	36%	136,8	< 0,34	NA	159	99	152	263,7	0,451	1,4E-02	260	301	230	1.40E-02	
PCB 81	37%	12,0	< 0,051	NA NA	14	7	15	34,5	< 0,052	NA NA	30	35	39	pas de BCF	
PCB 105	33%	483,3	2,29	4.0E-02	588	361	501	901,7	4	3.6E-02	884	967	854	1,73E-01	1,94E-01
PCB 114	32%	21,1	0,155	6.2E-02	23	13	27	35,0	0,211	4.9E-02	27	25	53	9,03E-02	4,18E-02
PCB 118	35%	1250,7	8,04	5,4E-02	1530	932	1290	2255,0	11,6	4,2E-02	< 31	2310	2200	2,89E-01	3,40E-01
PCB 123	33%	20,2	0,079	3,3E-02	25	16	20	52,3	0,08	1,3E-02	60	59	38	7,54E-02	1,02E-01
PCB 126	34%	90,2	0,115	1,1E-02	104	66	101	262,7	< 0,048	NA	250	284	254	1,07E-02	
PCB 156	43%	402,3	< 0,42	NA	491	300	416	875,7	0,575	5,4E-03	913	956	758	5,38E-03	
PCB 157	43%	91,0	< 0,078	NA	104	62	107	205,7	0,114	4,5E-03	189	213	215	4,54E-03	
PCB 167	45%	277,7	0,223	6,7E-03	343	217	273	623,0	0,386	5,1E-03	645	692	532	5,91E-03	1,18E-03
PCB 169	33%	14,4	< 0,23	NA	16	10	18	48,3	< 0,23	NA	43	46	56	pas de BCF	
PCB 189	33%	89,4	< 0,076	NA	101	65	102	219,7	< 0,078	NA	212	220	227	pas de BCF	
Σ PCD-dl (pg/g MF)		2889	10,9		3498	2148	3022	5025	13,4		3513	6108	5456		
PCB-dl -TEQ sans LOQ	25%		0,012		11	7	11		0,001		26	30	27		
PCB-dl -TEQ avec LOQ	25%		0,019	-	11	7	11		0,012	-	26	30	27		
Σ PCDD/F + PCB-dl (12 congénères), Un	nite : ng/kg MS s		0.041	-					0.04				 		
Σ PCDD/F + PCB-dl TEQ avec LQ Σ PCDD/F + PCB-dl TEQ sans LQ	16%		0,041						0,04						
légende			0,010	L		1	1		0,009	L	1	1			

<u>légende</u> : < 0,01

s : concentration SD : standard dé

BCF moyen: moy

Annexe: LAITUE 2014 - concentration en POP dans les sols (en MS) et dans les feuilles (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

	Référence EUROFINS	14G003326-032	14G005370-001		14G003326-033	14G005370-002		14G003326-034	14G005370-003		14G003326-044	14G008404-001		14G003326-045	14G005370-004		14G003326-046	14G008404-002	
	Référence Client		P1-L-R1			P1-L-R2			P1-L-R3			P2-L-R1			P2-L-R2			P2-L-R3	
	Matrice	s	vx	BCF	s	vx	BCF	s	vx	BCF	s	vx	BCF	s	vx	BCF	s	vx	BCF
Paramètres	Incertit	ude vx																	
biomasse récoltée (g MF)			100			100			70			66,5			80			80	
matière sèche		88,4	5,54		88,6	6,02		88,3	5,92		87,7	11,4		88,1	6,13		91	6,26	
PCB indicateurs (6 ou 7 congén	nères). Unité : ng/k	g MS sol et ng/	g MF végétaux												·				
PCB 28	60%		0,019	inf LO	< 93,4	0,026	inf LO	< 86,9	0,029	inf LQ	89,4	0,024	2,4E+00	< 86,7	<0,018	inf LQ	< 83,1	0,033	inf LQ
PCB 52	42%		0,065	inf LQ	< 69,5	0,099	inf LQ	< 64,6	0,091	inf LQ	143	0,080	4,9E+00	158	0,055	5,7E+00	151	0,104	1,1E+01
PCB 101	33%	203	0.048	4.3E+00	195	0.062	5.3E+00	194	0.056	4.9E+00	1960	0.062	2.8E-01	2290	0.031	2.2E-01	2120	0.077	5,8E-01
PCB 118		121	0,0275	4,1E+00	127	0,035	4,6E+00	132	0,031	4,0E+00	1570	0,034	1,9E-01	1800	0,015	1,4E-01	1670	0,042	4,0E-01
PCB 138	33%	1160	0,022	3,4E-01	1360	0,025	3,1E-01	939	0,023	4,1E-01	11400	0,052	4,0E-02	13300	0,023	2,8E-02	12200	0,041	5,3E-02
PCB 153	33%	1400	0,031	4,0E-01	1460	0,036	4,1E-01	1250	0,03	4,1E-01	13300	0,073	4,8E-02	13200	0,036	4,4E-02	12600	0,056	7,0E-02
PCB 180	33%	806	<0,013	inf LO	818	<0,012	inf LQ	742	<0,021	inf LO	8460	<0,0191	inf LQ	9910	<0.018	inf LQ	9510	<0.0272	inf LQ
Σ 7PCB sans LOQ	15%	3690	0,21	1,0E+00	3960	0,28	1,2E+00	3257	0,26	1,3E+00	36922	0,33	7,7E-02	40658	0,16	6,4E-02	38251	0,35	1,5E-01
Σ 6 ou 7PCB (sauf PCB 118) avec LC		3830	0,23	,	4120	0,30		3410	0,28	,	36900	0,35	7,7E-02	40700	0,20	7,9E-02	38300	0,38	1,6E-01
Dioxines et furanes PCDD/F (1		té : ng/kg MS so	l et pg/g MF végé	taux								•			·	-			
2,3,7,8-TCDD	35%		<0,002	inf LQ	< 0,21	<0,002	inf LQ	< 0,19	<0,004	inf LQ	0,3	< 0,004	inf LQ	0,32	<0,004	inf LQ	< 0,18	< 0,005	inf LQ
1,2,3,7,8-PeCDD	35%	< 0,24	<0,003	inf LQ	< 0,27	<0,003	inf LQ	< 0,25	<0,005	inf LQ	1,5	< 0,005	inf LQ	1,48	<0,005	inf LQ	1,37	< 0,007	inf LQ
1,2,3,4,7,8-HxCDD	33%		<0,005	inf LQ	< 0,55	<0,004	inf LQ	< 0,51	<0,008	inf LQ	1,68	< 0,007	inf LQ	2,03	<0,007	inf LQ	1,82	< 0,01	inf LQ
1,2,3,6,7,8-HxCDD	34%		<0,007	inf LQ	< 0,55	<0,007	inf LQ	< 0,51	<0,011	inf LQ	3,59	< 0,01	inf LQ	3,83	<0,010	inf LQ	3,47	< 0,01	inf LQ
1,2,3,7,8,9-HxCDD	42%	< 0,48	<0,006	inf LQ	< 0,55	<0,006	inf LQ	< 0,51	<0,011	inf LQ	2,38	< 0,009	inf LQ	2,36	<0,009	inf LQ	2,36	< 0,01	inf LQ
1,2,3,4,6,7,8-HpCDD	35%	3,64	<0,010	inf LQ	4,64	<0,010	inf LQ	4	<0,017	inf LQ	40,1	< 0,02	inf LQ	41,9	<0,015	inf LQ	37,7	< 0,02	inf LQ
OCDD	33%	12,6	<0,075	inf LQ	19	<0,072	inf LQ	13,9	<0,123	inf LQ	142	< 0,11	inf LQ	141	<0,108	inf LQ	129	< 0,16	inf LQ
Somme dioxines		16,2	0,00		23,6	0,00		17,9	0,00										
2,3,7,8-TCDF	35%	2,75	<0,019	inf LQ	3,11	<0,018	inf LQ	2,69	<0,032	inf LQ	39,9	0,03	6,6E-03	39	<0,028	inf LQ	36,6	0,03	1,3E-02
1,2,3,7,8-PeCDF	39%	1,49	0,007	8,5E-02	1,89	0,008	7,0E-02	1,56	<0,011	inf LQ	27,6	0,02	6,4E-03	27,4	<0,009	inf LQ	26	0,01	6,1E-03
2,3,4,7,8-PeCDF	36%	1,41	0,007	9,0E-02	1,82	<0,007	inf LQ	1,65	<0,012	inf LQ	25,6	< 0,01	inf LQ	23,7	<0,010	inf LQ	22,8	< 0,02	inf LQ
1,2,3,4,7,8-HxCDF	38%	2,61	<0,008	inf LQ	3,6	<0,007	inf LQ	2,81	<0,012	inf LQ	50,3	< 0,01	inf LQ	47	<0,011	inf LQ	47,3	< 0,02	inf LQ
1,2,3,6,7,8-HxCDF	36%		<0,007	inf LQ	1,59	<0,007	inf LQ	1,14	<0,011	inf LQ	20,7	< 0,01	inf LQ	21,9	<0,010	inf LQ	20	< 0,01	inf LQ
1,2,3,7,8,9-HxCDF	35%	< 0,40	<0,005	inf LQ	< 0,46	<0,004	inf LQ	< 0,42	<0,008	inf LQ	< 5,66	< 0,008	inf LQ	< 3,89	<0,007	inf LQ	< 3,74	< 0,01	inf LQ
2,3,4,6,7,8-HxCDF	35%		<0,006	inf LQ	1,37	<0,006	inf LQ	1,04	<0,011	inf LQ	16	< 0,009	inf LQ	16,2	<0,009	inf LQ	15,6	< 0,01	inf LQ
1,2,3,4,7,8,9-HpCDF	40%		<0,005	inf LQ	6,96	<0,004	inf LQ	6,1	<0,008	inf LQ	97,4	< 0,007	inf LQ	105	<0,007	inf LQ	103	< 0,01	inf LQ
1,2,3,4,6,7,8-HpCDF	45%		<0,007	inf LQ	2,07	<0,007	inf LQ	1,56	<0,012	inf LQ	27	0,01	3,2E-03	28,6	<0,010	inf LQ	27,5	< 0,02	inf LQ
OCDF	35%	- /	<0,015	inf LQ	11,4	<0,015	inf LQ	9,47	<0,025	inf LQ	167	< 0,02	inf LQ	173	<0,022	inf LQ	158	< 0,03	inf LQ
Somme furannes		27,3	0,01		33,8	0,01		28,0	0,00		471,5	0,06		481,8	0		456,8	0,04	
Σ PCDD/F (pg/g sans TEF) sans LQ		43,6	0,01	5,8E-03	57,5	0,01	2,3E-03	45,9	0,00	0,0E+00	471,5	0,06	1,1E-03	481,8		0,0E+00	456,8	0,04	1,4E-03
Σ PCDD/F- TEQ sans LQ		1,65	0,001		2,11	0,001		1,79	ND		31,1	0,003	8,5E-04		ND	inf LQ	28,5	0,003	1,7E-03
Σ PCDD/F- TEQ avec LQ		2,26	0,015		2,8	0,014		2,43	0,024		31,7	0,022	6,1E-03		0,021	inf LQ	29	0,029	1,6E-02
PCB-dl (12 congénères), Unité																			
PCB 77	36%		0,358	6,7E-01	10,6	0,468	7,3E-01	10,5	<0,382	inf LQ	91	0,49	4,7E-02	96,9	<0,335	inf LQ	85,4	0,69	1,3E-01
PCB 81	37%		<0,035	inf LQ	< 0,89	<0,034	inf LQ	< 0,83	<0,057	inf LQ	< 2,31	< 0,05	inf LQ	2,48	<0,050	inf LQ	2,2	< 0,07	inf LQ
PCB 105	33%	57,9	8,7	2,7E+00	64,3	10,5	2,7E+00	63,3	10,2	2,7E+00	575	10,7	1,6E-01	685	5,02	1,2E-01	632	13,6	3,4E-01
PCB 114	32%		0,437	inf LQ	< 1,07	0,722	inf LQ	1,22	0,61	8,4E+00	< 3,43	0,52	inf LQ	6,98	0,23	5,4E-01	6,08	0,75	2,0E+00
PCB 118	35%	121	27,5	4,1E+00	127	35	4,6E+00	132	31	4,0E+00	1570	33,9	1,9E-01	1800	15	1,4E-01	1670	41,9	4,0E-01
PCB 123	33%		0,593	3,7E+00	5,41	0,807	2,5E+00	2,67	0,61	3,9E+00	27,9	0,42	1,3E-01	36	0,436	2,0E-01	36,6	0,37	1,6E-01
PCB 126	34%		<0,032	inf LQ	6,11	<0,033	inf LQ	12,6	<0,076	inf LQ	122	0,09	6,5E-03	129	<0,047	inf LQ	121	< 0,07	inf LQ
PCB 156	43%		1,22	3,0E-01	73,8	1,49	3,4E-01	75,7	1,4	3,1E-01	846	2,64	2,7E-02	916	1,05	1,9E-02	852	2,25	4,2E-02
PCB 157	43%		0,266	3,3E-01	7,56	0,3	6,6E-01	16,5	0,307	3,1E-01	175	0,62	3,1E-02	172	0,237	2,2E-02	169	0,48	4,5E-02
PCB 167	45%		0,715	2,7E-01	54,7	0,753	2,3E-01	50,8	0,699	2,3E-01	585	1,79	2,7E-02	655	0,809	2,0E-02	613	1,34	3,5E-02
PCB 169	33%	,	<0,155	inf LQ	< 2,73	<0,151	inf LQ	< 2,54	<0,255	inf LQ	13,5	< 0,23	inf LQ	13,9	<0,224	inf LQ	16,8	< 0,33	inf LQ
PCB 189	33%	-7-	0,058	7,5E-02	12,4	0,052	7,0E-02	16,9	<0,085	inf LQ	192	0,22	1,0E-02	206	0,126	1,0E-02	186	0,14	1,2E-02
Σ PCB-dl (pg/g sans TEF) sans LQ		349,6	39,8	2,1E+00	361,9	50,1	2,3E+00	382,2	44,8	2,0E+00	4197,4	51,4	1,1E-01	4719,3	22,9	7,9E-02	4390,1	61,5	2,2E-01
PCB-dl -TEQ sans LOQ		0,881	0,001		0,623	0,002		1,28	0,001	1	12,7	0,011		13,5	0,001		12,7	0,002	
PCB-dl -TEQ avec LOQ		0,954	0,009		0,705	0,009		1,35	0,017		12,7	0,017		13,5	0,012		12,7	0,018	
Σ PCDD/F + PCB-dl (12 congéné	eres), Unité : ng/kg	IVIS sol et pg/g				0.024			0.044			0.000			0.022			0.047	
Σ PCDD/F + PCB-dl TEQ avec LQ			0,024			0,024			0,041			0,039			0,033			0,047	
Σ PCDD/F + PCB-dl TEQ sans LQ			0,001 ii substances détectée	I		0,026		1	0,001	1	l	0,014			0,001			0,005	

BCF moyen: moyenne des valeurs BCF (tous réplicats et toutes mailles confondus, n \leq 12)

P4-R1/R2/R3_B: culture avec densité de semis de 1 pied par bas au lieu de 2 pieds de laitue par bac

s : concentration dans le sol / vx: concentration dans le végétal SD : standard déviation

 $inf\ LQ:\ valeur\ de\ BCF\ non\ disponible\ car\ concentration < limite\ de\ quantification$

Annexe: LAITUE 2014 - concentration en POP dans les sols (en MS) et dans les feuilles (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

0,161

0,634

0,108

																		•	
14G003326-010	14G008404-003		14G003326-011	14G008404-004		14G003326-012	14G008404-005		14G003326-019	14G008728-001		14G003326-020			14G003326-021	14G008728-003			
	P3-L-R1			P3-L-R2			P3-L-R3			P4-L-R1_B			P4-L-R2-(R)		<u> </u>	P4-L-R3_B			
S	vx	BCF	S	vx	BCF	S	vx	BCF	S	vx	BCF	S	VX	BCF	S	VX	BCF		
	28,4			20,9			11,1			75,4			33,2			49,7			
89,8	6,4		90	10,6		90	22,2		85,1	4,88		85	7,32		85	4,49			
																		BCF moyen	SD
< 82,6	<0,061	inf LQ	< 80,1	<0,092	inf LQ	< 81,0	<0,347	inf LQ	< 76,7	0,02	inf LQ	< 83,1	< 0,04	inf LQ	< 82,0	0,02	inf LQ	2,4E+00	4.45.04
66,3 607	0,093 <0,061	2,2E+01 inf LQ	80,7 711	0,178 0,111	2,1E+01 1,5E+00	64,9 574	0,505 <0,347	3,5E+01 inf LQ	230 2010	0,06	5,3E+00 9,2E-01	301 2280	0,06	2,7E+00 3,0E-01	218 1890	0,07 0,11	7,2E+00 1.3E+00	1,3E+01 1,9E+00	1,1E+01 2,0E+00
977	0,028	4,5E-01	1100	0,111	1,5E+00 4,3E-01	890	0,163	8,2E-01	1800	0,09	9,2E-01 1,1E+00	2160	0,05	1,6E-01	1750	0,11	1,3E+00 1,6E+00	1,5E+00	2,0E+00 1,7E+00
3290	<0,061	inf LQ	3690	<0,0924	inf LQ	2710	<0,347	inf LQ	9050	0,05	1,1E-01	10400	< 0,04	inf LQ	8930	0,06	1,5E-01	1,8E-01	1,5E-01
3670	<0,061	inf LQ	4100	<0,0924	inf LQ	3600	<0,347	inf LQ	8720	0,06	1,4E-01	9800	0,04	5,6E-02	9230	0,07	1,7E-01	1,9E-01	1,6E-01
1690	<0.061	inf LQ	1970	<0.0924	inf LQ	1680	< 0.347	inf LQ	7140	< 0,01	inf LQ	7500	< 0.04	inf LQ	6760	< 0.02	inf LQ	pas de BCF	
10300	0,12	1,8E-01	11652	0,34	2,7E-01	9519	0,67	3,2E-01	28950	0,38	2,7E-01	32441	0,18	7,4E-02	28778	0,45	3,5E-01		.1
10400	0,43	6,4E-01	11700	0,80	6,5E-01	9590	2,40	1,1E+00	29000	0,39	2,7E-01	32500	0,30	1,2E-01	28900	0,47	3,6E-01		
1,02	< 0,01	inf LQ	1,2	< 0,02	inf LQ	0,99	< 0,07	inf LQ	2,4	< 0,003	inf LQ	2,65	< 0,007	inf LQ	2,74	< 0,004	inf LQ	pas de BCF	4
3,36	< 0,02	inf LQ	3,71	< 0,02	inf LQ	3,01	< 0,09	inf LQ	11,8	< 0,003	inf LQ	13,4	< 0,009	inf LQ	13,1	< 0,005	inf LQ	pas de BCF	4
4,37	< 0,02	inf LQ	5,04	< 0,04	inf LQ	4,09	< 0,13 < 0.18	inf LQ	17,2	< 0,005	inf LQ	18,9	< 0,01	inf LQ	18,6	< 0,007	inf LQ inf LQ	pas de BCF	
7,98 5,71	< 0.03 < 0.03	inf LQ inf LQ	9,71 6.71	< 0,05 < 0,05	inf LQ inf LQ	7,48 5.32	< 0,18	inf LQ inf LQ	33,7 21,6	< 0,007 < 0.006	inf LQ inf LQ	38,4 24.7	< 0,02 < 0.02	inf LQ inf LQ	37,6 24,4	< 0,01	inf LQ	pas de BCF pas de BCF	+
82	< 0,05	inf LQ	91,4	< 0,07	inf LQ	75,9	< 0,28	inf LQ	325	0,03	1,9E-03	323	< 0,02	inf LQ	346	0,04	2,6E-03	2,2E-03	4,8E-04
162	< 0,35	inf LQ	186	< 0,54	inf LQ	154	< 2,01	inf LQ	627	< 0,08	inf LQ	592	< 0,21	inf LQ	616	< 0,11	inf LQ	pas de BCF	4,62-04
102	10,33		100	10,54		154	12,01	20	027	1 0,00	iiii Eq	332	10,21	Eq	010	10,11	Eq	pas de Bei	
128	0,09	1,1E-02	140	0,11	7,4E-03	116	0,58	2,3E-02	216	0,04	3,8E-03	220	0,07	4,3E-03	198	0,04	4,5E-03	9,2E-03	6,3E-03
97,2	0,05	8,0E-03	109	0,05	4,3E-03	88,3	0,43	2,2E-02	201	0,02	2,0E-03	203	0,07	4,7E-03	185	0,02	2,4E-03	2,1E-02	3,0E-02
70,1	< 0,03	inf LQ	81,6	< 0,05	inf LQ	63,7	< 0,19	inf LQ	186	0,02	2,2E-03	190	0,03	2,2E-03	171	0,02	2,6E-03	2,4E-02	4,4E-02
137	< 0,04	inf LQ	159	< 0,05	inf LQ	129	0,27	9,4E-03	356	0,02	1,2E-03	365	0,05	1,9E-03	325	0,02	1,4E-03	3,5E-03	4,0E-03
55,5	< 0,03	inf LQ	64,6	< 0,05	inf LQ	50	< 0,19	inf LQ	192	0,01	1,1E-03	200	0,02	1,4E-03	197	0,01	1,1E-03	1,2E-03	1,6E-04
< 11,5 46,3	< 0,02 < 0,03	inf LQ inf LQ	< 16,1 50,9	< 0,04 < 0,05	inf LQ inf LQ	< 10,3 41,4	< 0,14 < 0,17	inf LQ inf LQ	< 53,3 216	< 0,005 0,009	inf LQ 8,5E-04	< 33,6 218	< 0,01 < 0,02	inf LQ inf LQ	< 29,0 206	< 0,008	inf LQ 1,1E-03	pas de BCF 9,7E-04	1,6E-04
265	< 0,03	inf LQ	295	< 0,03	inf LQ	243	< 0,17	inf LQ	1000	0,009	1,6E-04	985	< 0,02	inf LQ	976	< 0,007	inf LQ	1,6E-04	1,0E-U4
82.5	< 0.03	inf LQ	96.7	< 0.05	inf LQ	77.6	0.2	1.2E-02	235	0.04	3,5E-03	230	0.05	3,0E-03	245	0.04	3,6E-03	5.0E-03	3,7E-03
414	< 0,07	inf LQ	463	< 0,11	inf LQ	380	< 0,42	inf LQ	1250	0,04	6,6E-04	1140	< 0,04	inf LQ	1220	0,02	3,7E-04	5,1E-04	2,1E-04
																			-
1562	0,14	1,4E-03	1764	0,16	8,6E-04	1440	1,48	4,6E-03	4891	0,24	9,9E-04	4764	0,29	8,3E-04	4781	0,22	1,0E-03		
87,2	0,01	1,8E-03	99,7	0,013	1,2E-03	79,6	0,1	5,7E-03	238	0,015	1,3E-03	245	0,027	1,5E-03	227	0,015	1,5E-03		
88,3	0,069	1,2E-02	101	0,102	9,5E-03	80,6	0,414	2,3E-02	243	0,023	1,9E-03	248	0,051	2,8E-03	230	0,027	2,6E-03		
444	.4.40		424	.4.55		07.7			200	2.54	2 04	222	.0.64		400	2.02	255.04	2.75.04	2.05.04
111 11,6	< 1,10 < 0,16	inf LQ inf LQ	124 12	< 1,66 < 0,25	inf LQ inf LQ	97,7 9,11	< 6,25 < 0,94	inf LQ inf LQ	200 12,5	2,61 0,07	2,7E-01 1,1E-01	232 18,7	< 0,64 < 0,1	inf LQ inf LQ	190 20,9	3,02 0,07	3,5E-01 7,5E-02	3,7E-01 9,5E-02	2,8E-01 2,8E-02
368	8.82	3.7E-01	426	15.1	3.3E-01	372	53.6	6.5E-01	766	34.4	9.2E-01	859	9.14	1.5E-01	688	42.9	1.4E+00	1.0E+00	1,1E+00
23	0.42	2,9E-01	26,5	0.87	3,1E-01	20,1	3,27	7,3E-01	18	1,82	2.1E+00	28.4	0.43	2.1E-01	19.5	2,2	2.5E+00	1,9E+00	2,6E+00
977	28,1	4,5E-01	1100	50,2	4,3E-01	890	163	8,2E-01	1800	97,4	1,1E+00	2160	25,7	1,6E-01	1750	122	1,6E+00	1,5E+00	1,7E+00
14,4	0,39	4,2E-01	15,3	0,61	3,8E-01	13,6	< 1,39	inf LQ	56,4	1,27	4,6E-01	57	0,44	1,1E-01	57,3	1,58	6,1E-01	1,1E+00	1,5E+00
81,9	< 0,15	inf LQ	91,4	< 0,23	inf LQ	71,8	< 0,87	inf LQ	179	0,18	2,1E-02	195	0,09	6,3E-03	174	0,18	2,3E-02	1,4E-02	9,0E-03
314	1,57	7,8E-02	359	2,35	6,2E-02	284	10,2	1,6E-01	733	5,35	1,5E-01	783	1,61	2,8E-02	681	6,08	2,0E-01	1,4E-01	1,2E-01
82	0,36	6,9E-02	93,3	0,5	5,1E-02	76,1	2,39	1,4E-01	154	1,3	1,7E-01	163	0,35	2,9E-02	147	1,58	2,4E-01	1,8E-01	1,9E-01
210	0,97	7,2E-02	238	1,55	6,1E-02	189	6,36	1,5E-01	542	2,75	1,0E-01	571	1,09	2,6E-02	525	3,32	1,4E-01	1,1E-01	9,0E-02
14,4 79,6	< 0,73 < 0,24	inf LQ	17,7 87,9	< 1,11 < 0,37	inf LQ inf LQ	14,2 67,6	< 4,17	inf LQ inf LQ	40,8 176	< 0,16	inf LQ	36,1	< 0,42	inf LQ	34,5 161	< 0,23 0,17	inf LQ	pas de BCF	2,9E-02
79,6	< 0,24 40.63	inf LQ 2.8E-01	87,9 2591.1	< 0,37 71.2	2,6E-01	2105	< 1,39 238.82	5,1E-01	4678	0,14 147.3	1,6E-02 6.5E-01	184 5287	< 0,14 38,9	inf LQ 1.0E-01	4448	183.1	2,4E-02 9,2E-01	3,1E-02	2,9E-02
8.7	0.001	2,0E-U1	9,76	0.002	2,0E-U1	7.68	0.007	5,1E-U1	19.3	0.022	0,5E-UI	20.7	0.01	1,02-01	18.5	0.023	9,26-01	1	
8.7	0.039		9,76	0,059		7,68	0,007		19,3	0,022		20,7	0,01		18,5	0,023		1	
-,-	-,		-,	-,		.,	-,		,-	-,		,-	-,		,-	-,		1	

0,05

0,074

0,057

Annexe: LAITUE 2015 - concentration en POP dans les sols (en MS) et dans les feuilles (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

Référ	ence EUROFINS :	15G003194-001	15G005947-001		15G003194-002	15G005947-002		15G003194-003	15G005706-005		15G003194-004	15G005706-004		15G003194-005	15G005947-003		15G003194-006	15G005706-003	
F.	Référence Client :	P1-	AI-R1		P1-L	AI-R2		P1-LAI	I-R3		P2-I	.AI-R1		P2-I	LAI-R2		P2-L	AI-R3	
	Matrice	S	vx	BCF	S	vx	BCF	s	vx	BCF	S	vx	BCF	S	vx	BCF	S	vx	BCF
Paramètres	Incertitude vx																		
Biomasse (g MF)			119,5			47,2		4,7				64,9			56,4			23,2	
matière sèche		90,7	3,41		90,8	3,19		90,7	pas de	matière	94	3,35		92,6	3,17		92,9	3,89	
PCB indicateurs (6 ou 7 congénères), Unité : ng/kg MS sol e	etpg/g MF vé	gétaux																	
PCB 28	60%	< 81	10,20	NA	< 80	< 18	NA	< 89		NA	< 88	< 14	NA	86,8	16,10	5,9E+00	< 90	< 47	NA
PCB 52	42%	< 60	32,40	NA	< 59	21,30	NA	< 66		NA	103	25,20	7,3E+00	187	45,50	7,7E+00	118	60,90	1,3E+01
PCB 101	33%	211	23,70	3,3E+00	212	< 18	NA	223		NA	1710	18,50	3,2E-01	2210	33,90	4,8E-01	1710	< 47	NA
PCB 118		149	11,30	2,2E+00	143	6,12	1,3E+00	139		NA	1420	9,72	2,0E-01	1800	15,10	2,6E-01	1370	19,30	3,6E-01
PCB 138	33%		8,76	1,9E-01	1390	< 18	NA	1310		NA	11300	16,50	4,4E-02	13300	22,20	5,3E-02	10500	< 47	NA
PCB 153	33%		15,20	2,6E-01	1760	< 18	NA	1620		NA	12200	28,20	6,9E-02	15100	36,90	7,7E-02	11600	< 47	NA
PCB 180	33%		< 7,5	NA	1010	< 18	NA	908		NA	8660	< 14	NA	10200	< 15	NA	8070	< 47	NA
Σ 7PCB sans LOQ	15%	4296	101,56	6,9E-01	4515	27,42	1,9E-01	4200			35393	98,1	8,3E-02	42884	169,7	1,2E-01	33368	80,2	6,2E-02
Somme des 6 PCB (sauf le PCB 118) sans LOQ	15%		0,0902			0,0213						88,40			155,00			60,90	
Somme des 6 PCB (sauf le PCB 118) avec LOQ	9		0,0977			0,111						117,00			170,00	1		296,00	
Dioxines et furanes PCDD/F (17 congénères), Unité : ng/kg I	35%	.0.10	.0.0014	N/A	-0.10	.0.0024	N/A	.0.20		NA.	0.240	-0.0027	NA.	0.254	-0.0020	210	0.224	- 0 0000	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	35% 33%		< 0.0014 < 0.0019	NA NA	< 0.18 < 0.23	< 0.0034 < 0.0045	NA NA	< 0.20 < 0.26		NA NA	0,349 1,21	< 0.0027 < 0.0035	NA NA	0,354 1,46	< 0.0029 < 0.0038	NA NA	0,334 1,18	< 0.0089 < 0.012	NA NA
1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDD	33% 34%		< 0.0019	NA NA	< 0.23	< 0.0045	NA NA	< 0.26		NA NA		< 0.0035	NA NA	1,46	< 0.0038	NA NA	1,18	< 0.012	NA NA
1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD	34% 42%		< 0.0028	NA NA	< 0.47	< 0.0068	NA NA	< 0.52		NA NA	1,48 3,46	< 0.0053	NA NA	1,84 4,19	< 0.0058	NA NA	3,06	< 0.018	NA NA
1,2,3,6,7,8-HXCDD	35%	-	< 0.0039	NA NA	< 0.47	< 0.0093	NA NA	< 0.52		NA NA	1.93	< 0.0073	NA NA	2,52	< 0.0079	NA NA	1.95	< 0.024	NA NA
1,2,3,4,6,7,8-HpCDD	33%		< 0.0057	NA NA	6,54	< 0.014	NA NA	3.84		NA NA	36,1	< 0.0009	NA NA	44.7	< 0.012	NA NA	30,9	< 0.038	NA NA
OCDD	3370	15,5	< 0.043	NA NA	52	< 0.10	NA NA	14,3		NA NA	117	< 0.082	NA NA	169	< 0.012	NA	110	< 0.27	NΔ
Somme dioxines		19.47	0.00	1100	58.54	0.00	1474	18.14		100	161.53	0.0	144	224.06	0.0	1474	148.85	0.0	1424
2.3.7.8-TCDF	35%		< 0.0039	NA	3.1	< 0.0093	NA	2.94		NA	31.6	< 0.0073	NA	37.3	< 0.0079	NA	27.4	< 0.024	NA
1,2,3,7,8-PeCDF	39%		< 0.0027	NA NA	1,67	< 0.0065	NA	1,66		NA NA	21,1	< 0.0051	NA	27,8	< 0.0055	NA	21,3	< 0.017	NA
2,3,4,7,8-PeCDF	36%		< 0.0042	NA	1.87	< 0.010	NA	1.84		NA	21.5	< 0.0079	NA	25.6	< 0.0085	NA	20.7	< 0.026	NA
1,2,3,4,7,8-HxCDF	38%	2,85	< 0.0044	NA	2,89	< 0.011	NA	2,92		NA	38,7	< 0.0083	NA	47	< 0.0090	NA	37	< 0.028	NA
1,2,3,6,7,8-HxCDF	36%	1,27	< 0.0040	NA	1,28	< 0.0097	NA	1,26		NA	18,8	< 0.0076	NA	22,4	< 0.0082	NA	17,1	< 0.025	NA
1,2,3,7,8,9-HxCDF	35%	< 0.39	< 0.0030	NA	< 0.39	< 0.0072	NA	< 0.43		NA	< 3.90	< 0.0056	NA	< 5.72	< 0.0061	NA	< 3.66	< 0.019	NA
2,3,4,6,7,8-HxCDF	35%	1,25	< 0.0037	NA	1,23	< 0.0088	NA	1,19		NA	15,5	< 0.0069	NA	18,8	< 0.0074	NA	13,6	< 0.023	NA
1,2,3,4,7,8,9-HpCDF	40%		< 0.0029	NA	6,74	< 0.0070	NA	5,51		NA	74,6	< 0.0055	NA	101	< 0.0059	NA	78,9	< 0.018	NA
1,2,3,4,6,7,8-HpCDF	45%	1,62	0,00561	1,0E-01	1,77	< 0.010	NA	1,6		NA	26,9	< 0.0079	NA	31,1	0,01	1,2E-02	24	< 0.026	NA
OCDF	35%		0,0179	5,6E-02	11,8	< 0.022	NA	8,57		NA	142	< 0.017	NA	172	0,02	3,9E-03	132	< 0.056	NA
Somme furanes		28,43	0,024		32,35	0,00		27,49			391	0,0		483	0,03		372	0,0	
Σ PCDD/F (pg/g MF)		47,90	0,02	1,4E-02	90,89	0,00	0,0E+00	45,63			552,23		0,0E+00	707,06	0,03	1,5E-03	520,85		0,0E+00
Somme des dioxines (OMS 2005 PCDD/F- TEQ) sans LQ	18%										21,3	ND		25,6	0,00		19,9	ND	
Somme des dioxines (OMS 2005 PCDD/F- TEQ) avec LQ	18%										21,7	0,01		26,2	0,02		20,3	0,05	
PCB-dl (12 congénères), Unité : ng/kg MS sol et pg/g MF vé		0.00	0.40		0.70						70.0			05.0					
PCB 77 PCB 81	36%		< 0.13	NA NA	9,72	< 0.32	NA NA	9,5		NA NA	70,3	< 0.25	NA NA	95,3	< 0.27	NA NA	77,3	< 0.85	NA NA
PCB 105	37% 33%		< 0.020	NA 1.6E+00	< 0.76	< 0.048	NA 8.1E-01	< 0.85		NA NA	3,04 553	< 0.038	NA 1.6E-01	2,93 671	< 0.041 4.67	2.2E-01	2,75 508	< 0.13 5.83	3.0E-01
PCB 105 PCB 114	33% 32%		0,192	1,6E+00 NA	< 0.92	< 0.095	8,1E-01 NA	55,3 < 1.0		NA NA	10,7	3,04 0,11	1,6E-01 3.0E-01	11,7	0,20	2,2E-01 5.4E-01	7,87	5,83 < 0.25	3,0E-01 NA
PCB 114 PCB 118	35%	149	11,3	2,2E+00	143	6,12	1,3E+00	139		NA NA	1420	9,72	2,0E-01	1800	15,10	2,6E-01	1370	19,30	3,6E-01
PCB 118 PCB 123	33%		0.129	6.1E-01	5.1	< 0.072	1,3E+00 NA	6.88		NA NA	68	0.10	4.2E-02	81.8	0.15	5.6E-02	67.1	0.20	7.7E-02
PCB 125	34%		< 0.019	6,1E-01 NA	12,1	< 0.045	NA NA	11,5		NA NA	127	< 0.035	4,2E-02 NA	138	< 0.038	NA	109	< 0.12	7,7E-02 NA
PCB 156	43%		0,3	1,1E-01	87,1	< 0.39	NA NA	81,6		NA NA	846	0,61	2,1E-02	991	0,80	2,5E-02	796	< 1.0	NA NA
PCB 157	43%		0.0605	1,1E-01	15,5	< 0.073	NA NA	16,9		NA NA	161	0,14	2,5E-02	197	0,20	3.1E-02	164	< 0.19	NA NA
PCB 167	45%		0,221	1,1E-01	60,8	< 0.20	NA NA	58,7		NA NA	645	0,46	2,1E-02	715	0,56	2,5E-02	576	0,53	2,3E-02
PCB 169	33%	< 2.4	< 0.090	NA	< 2.3	< 0.22	NA	< 2.6		NA	14,7	< 0.17	NA	18,8	< 0.18	NA	14,3	< 0.56	NA NA
PCB 189	33%		< 0.030	NA	17	< 0.072	NA	15,7		NA	189	0,07	1,1E-02	235	0,06	8,6E-03	172	< 0.19	NA
Σ PCD-dl (pg/g MF)		412,64	15,56	1,1E+00	419,32	7,90	5,9E-01	406,08			4108	14,2	1,0E-01	4958	21,7	1,4E-01	3864	25,9	1,7E-01
PCB-dl -TEQ sans LOQ	25%		0,000468			0,000237						0,00			0,00			0,00	
PCB-dl -TEQ avec LOQ	25%		0,00506			0,0112						0,01			0,01			0,03	
Σ PCDD/F + PCB-dl (12 congénères), Unité : ng/kg MS sol et	pg/g MF végé	étaux				·													
Dioxine + PCB de type dioxine OMS 2005 TEQ avec LQ	16%				1,22			1,16				0,02			0,03			0,08	
Dioxine + PCB de type dioxine OMS 2005 TEQ sans LQ	16%	1,23			1,3			1,24				0,00			0,00			0,00	
légende :	< 0.01	substance détecte	e mais non quantifi	ée															

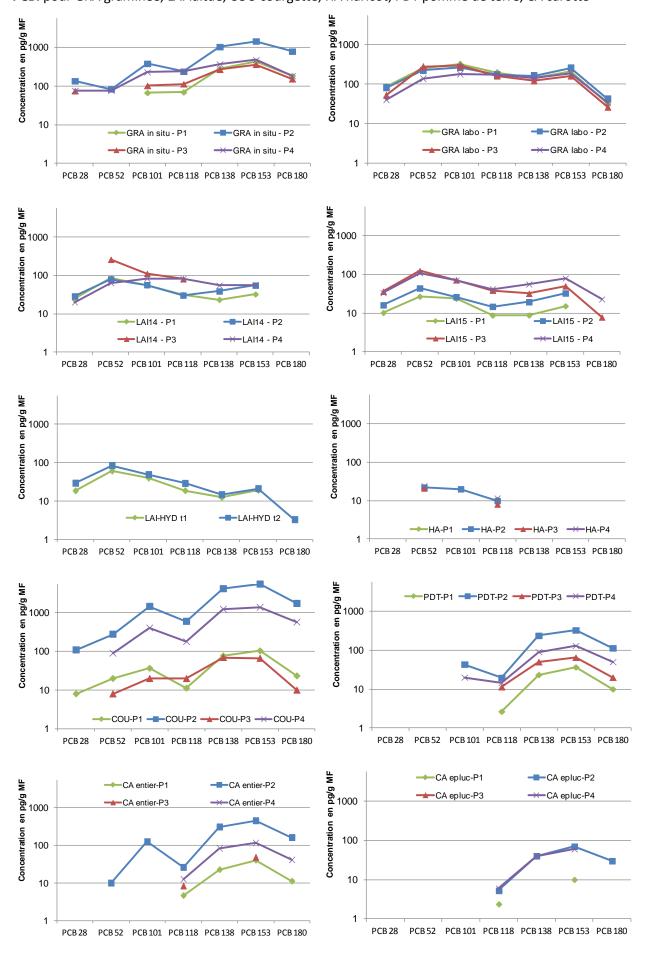
légende : < 0,01 substance détectée mais non quantifiée s : concentration dans le sol / vx: concentration dans le végétal SD : standard déviation

BCF moyen: moyenne des valeurs BCF (tous réplicats et toutes mailles confondus, №7)

Annexe: LAITUE 2015 - concentration en POP dans les sols (en MS) et dans les feuilles (en MF) - détermination du BCF sur la matière sèche (sol et végétal)

	15G006986-001		15G003194-007	15G003194-008	15G003194-009		15G006986-002		15G003194-010	15G003194-011	15G003194-012		
		P3-LAI-R1+R2-	+R3 (échantillon pool	é)				P4-LAI-R1+R2+F	R3 (échantillon poolé)			
Csol MOY	vx	BCF	Csol R1	Csol R2	Csol R3	Csol MOY	vx	BCF	Csol R1	Csol R2	Csol 53		
	29,9						25,6						
94,03	6,59		95,60	92,60	93,90	89,17	6,66		91,20	88,30	88,00	BCF moyen	SD
	36,1	NA	< 91	< 90	< 89	125,6	33,2	4.0E+00	< 91	90	161	4.91E+00	1,3E+00
	123,0	NA NA	< 68	< 67	< 66	327,7	109,0	5,0E+00	214	324	445	8,31E+00	3,5E+00
554,7	71,3	1.95E+00	643	619	402	2313,3	69,5	4.5E-01	1810	2260	2870	1,30E+00	1,3E+00
790.0	38,6	7.41E-01	946	814	610	2373,3	41,7	2.6E-01	1710	2420	2990	7,72E-01	7,6E-01
3453,3	31,9	1,40E-01	4010	3480	2870	9846,7	55,5	8,5E-02	7980	9360	12200	1,03E-01	6,4E-02
3700,0	49,8	2,04E-01	4170	4110	2820	11480,0	79,0	1,0E-01	8840	11400	14200	1,43E-01	8,6E-02
1746,7	7,8	6,79E-02	2060	1790	1390	8336,7	22,8	4,1E-02	6530	7980	10500	5,4E-02	1,9E-02
10230	358,51	5,32E+02	11800	10800	8090	34767	411	1,8E-01	27100	33800	43400	7,6E+01	
	3,20E+02						3,69E+02						
	3,20E+02						3,69E+02						
0,81	< 0.013	NA	0.93	0,86	0,63	3,5	< 0.0095	NA	2,44	3,79	4,38	pas de BCF	
2,55	< 0.013	NA NA	3,0	2,8	1,9	3,5 14,9	< 0.0095	NA NA	2,44 10,8	3,79 14,6	4,38 19,4	pas de BCF	
3,11	< 0.017	NA NA	3,5	3,5	2,3	20,1	< 0.013	NA NA	14,5	19,5	26,4	pas de BCF	
6,73	< 0.034	NA NA	7,7	7,4	5,0	44,8	< 0.026	NA NA	31,9	44,5	58,1	pas de BCF	
4,33	< 0.034	NA	5,1	4,6	3,3	26,8	< 0.025	NA	19,9	26,2	34,2	pas de BCF	
50,4	< 0.029	NA	59	55	37	371,7	< 0.040	NA	250	345	520	pas de BCF	
109,0	< 0.21	NA	134	114	79	955,0	< 0.29	NA	541	674	1650	pas de BCF	
	0,00						0,00E+00						
93,03	0,06	1,02E-02	108	98	73	226,7	0,17	1,1E-02	177	220	283	1,06E-02	5,4E-04
60,43	0,06	1,54E-02	69	69	43	219,0	0,09	5,9E-03	155	225	277	1,07E-02	6,7E-03
52,17	0,04	1,11E-02 8,71E-03	59 98	59 99	39 65	211,7	0,07	5,3E-03	148 273	211 366	276 463	8,17E-03	4,1E-03
87,50 39,80	< 0.028	8,71E-03 NA	98 45	45	30	367,3 199,0	0,09	3,6E-03 3.1E-03	146	203	248	6,17E-03 3.12E-03	3,6E-03
33,00	< 0.028	NA NA	< 10,7	< 13,9	< 7,65	155,0	< 0.020	NA	< 39,9	< 49,7	< 59,1	pas de BCF	
31,4	< 0.028	NA	38	34	23	248,7	< 0.025	NA NA	164	250	332	pas de BCF	
153,3	< 0.027	NA	185	165	110	1037,3	< 0.020	NA	732	1050	1330	pas de BCF	
55,0	0,03	9,46E-03	62	62	41	260,0	0,09	5,0E-03	190	262	328	3,2E-02	4,6E-02
256,0	< 0.057	NA	303	277	188	1300,7	< 0.060	NA	982	1280	1640	3,0E-02	3,7E-02
	0,25						5,44E-01						
1006	0,25		1181	1096	739	5507	1		3838	5195	7489		
50,1	0,025		58	55	37	219,3	0,056		157	219	282		
51,2	0,074		59	57	38	224,3	0,090		161	224	288		
84,9	< 0.64	NA	94,8	100,0	59,9	243,3	< 0.90	NA	164,0	257,0	309,0	pas de BCF	
8.2	< 0.085	NA NA	8.3	10.1	6,3	32.8	< 0.12	NA NA	22.6	30.4	45,5	pas de BCF	
323,0	13,60	6,39E-01	362,0	362,0	245,0	956,3	16,60	2,6E-01	713,0	946,0	1210,0	5,64E-01	5,00E-01
13,5	0,93	1,05E+00	14,7	14,7	11,1	42,1	0,76	2,7E-01	30,3	43,0	53,1	5,40E-01	3,61E-01
790,0	38,60	7,41E-01	946,0	814,0	610,0	2373,3	41,70	2,6E-01	1710,0	2420,0	2990,0	7,72E-01	7,57E-01
32,5	0,75	3,51E-01	37,9	36,2	23,3	106,7	0,83	1,2E-01	70,2	124,0	126,0	2,10E-01	2,29E-01
59,7	< 0.082	NA	69,6	65,5	44,0	240,7	0,15	9,3E-03	176,0	241,0	305,0	9,30E-03	
296,3	2,19	1,12E-01	348,0	332,0	209,0	895,3	3,61	6,1E-02	675,0	881,0	1130,0	6,57E-02	4,37E-02
65,7 204,0	0,53 1,46	1,22E-01 1,09E-01	81,4 244,0	67,7 218,0	47,9 150,0	219,7 635,0	0,86 2,70	5,9E-02 6,4E-02	169,0 515,0	209,0 607,0	281,0 783,0	6,91E-02 5,87E-02	4,41E-02 4,24E-02
9,2	1,46	1,09E-01 NA	10,5	10,0	7,0	48,3	< 0.60	6,4E-02 NA	515,0 35,7	45,2	783,0 64,0	pas de BCF	4,24E-02
57,3	0,16	4,27E-02	68,5	59,0	44,3	232,7	0,51	3,3E-02	173,0	231,0	294,0	2,38E-02	1,68E-02
1944	58.23	4,272-02	2286	2089	1458	6026	68	3,32-02	4454	6035	7591	2,301-02	1,000-02
6,3	0,00		7,4	6,9	4,7	25,7	0,02		18,8	25,7	32,7		
6,3	0,02		7,4	6,9	4,7	25,7	0,04	1	18,8	25,7	32,7		
			,		,						,		
	9,70E-02						1,25E-01						
	2,66E-02						7,24E-02			1			

Annexe : LAITUE 2015 - concentration en POP dans les laitues cultivées en solution hydroponique


	Référence E	UROFINS :	15G006986-003	15G005029-001	15G005029-002	en attente	en attente
	Référen	ce Client :	LAI-HYD-P1C	LAI-HYD-P2	LAI-HYD-P4	LAI-HYD-P1	LAI-HYD-P3
	Date pre	élèvement	01/09/2015	30/06/2015	30/06/2015	28/07/2015	28/07/2015
Paramètres	Incertitude vx	LQ vx	·			-	•
Biomasse (g MF)				72,7	105,95	109,2	97,1
matière sèche		%	6,33	4,09	4,59		
PCB indicateurs (6 ou 7 congénères), Ur	nité : ng/kg MS s	ol et ng		,,,,	/		
PCB 28	60%	0,07	0,0293	0,0216	0,0154		
PCB 52	42%	0,07	0,0842	0,0505	0,0704		
PCB 101	33%	0,07	0,049	0,0348	0,0444		
PCB 118	3373	0,0.	0,0289	0,0184	0.0189		
PCB 138	33%	0,07	0,0147	0,0124	0,0125		
PCB 153	33%	0,07	0,0211	0,0124	0,0125		
PCB 180	33%	0,07	0,00329	< 0.0064	< 0.0071		
Σ 7PCB sans LOQ	15%	0,07	0,00323	0,14	0,16		
Σ 6 PCB (sauf PCB 118) avec LOQ	15%	0,4	0,201	0,144	0,169		
· ,		,	,		0,109		
Dioxines et furanes PCDD/F (17 congéné					< 0.0014		
2,3,7,8-TCDD	35%	0,01	< 0.0024	< 0.0012			
1,2,3,7,8-PeCDD	35%	0,02	< 0.0032	< 0.0016	< 0.0018		
1,2,3,4,7,8-HxCDD	33%	0,03	< 0.0048	< 0.0024	< 0.0027		
1,2,3,6,7,8-HxCDD	34%	0,03	< 0.0066	< 0.0033	< 0.0037		
1,2,3,7,8,9-HxCDD	42%	0,03	< 0.0062	< 0.0031	< 0.0035		
1,2,3,4,6,7,8-HpCDD	35%	0,05	< 0.010	< 0.0051	< 0.0057		
OCDD	33%	0,39	< 0.074	< 0.037	< 0.041		
2,3,7,8-TCDF	35%	0,03	< 0.0066	0,00616	0,0103		
1,2,3,7,8-PeCDF	39%	0,02	< 0.0046	0,00254	0,0049		
2,3,4,7,8-PeCDF	36%	0,04	< 0.0071	< 0.0036	< 0.0040		
1,2,3,4,7,8-HxCDF	38%	0,04	< 0.0075	< 0.0038	< 0.0042		
1,2,3,6,7,8-HxCDF	36%	0,04	< 0.0068	< 0.0035	< 0.0038		
1,2,3,7,8,9-HxCDF	35%	0,03	< 0.0051	< 0.0026	< 0.0028		
2,3,4,6,7,8-HxCDF	35%	0,03	< 0.0062	< 0.0031	< 0.0035		
1,2,3,4,7,8,9-HpCDF	40%	0,03	< 0.0049	< 0.0025	< 0.0028		
1,2,3,4,6,7,8-HpCDF	45%	0,04	< 0.0071	< 0.0036	< 0.0040		
OCDF	35%	0,08	< 0.015	< 0.0077	< 0.0085		
Σ PCDD/F (pg/g MF)			0,00	0,01	0,02		
Σ PCDD/F- TEQ sans LQ	18%	0,07	ND	0,000692	0,00117		
Σ PCDD/F- TEQ avec LQ	18%	0,07	0,0131	0,00691	0,00806		
PCB-dl (12 congénères), Unité : ng/kg M	S sol et pg/g M	F végéta	ux				
PCB 77	36%	1,2	0,284	0,204	0,18		
PCB 81	37%	0,2	< 0.030	< 0.017	< 0.019		
PCB 105	33%	2,6	9,67	5,14	5,9		
PCB 114	32%	0,3	0,578	0,211	0,221		
PCB 118	35%	9,3	28,9	18,4	18,9		
PCB 123	33%	0,3	0,371	0,113	0,142		
PCB 126	34%	0,2	< 0.029	< 0.016	< 0.018		
PCB 156	43%	1,5	0,851	0,453	0,464		
PCB 157	43%	0,3	0,191	0,0832	0,0935		
PCB 167	45%	0,7	0,462	0,273	0,317		
PCB 169	33%	0,8	< 0.15	< 0.077	< 0.085		
PCB 189	33%	0,3	< 0.051	< 0.026	< 0.028		
Σ PCD-dl (pg/g MF)		,	41,31	24,88	26,22		
PCB-dl -TEQ sans LOQ	25%	0,04	0,00126	0,000762	0,0008		
PCB-dl -TEQ avec LOQ	25%	0,04	0,00875	0,00469	0,00514		
Σ PCDD/F + PCB-dl (12 congénères), Uni				.,	-,		
Σ PCDD/F + PCB-dl TEQ avec LQ	16%	60/ 6	0,0218	0,0116	0,0132		
Σ PCDD/F + PCB-dl TEQ avec EQ	16%		0,00126	0,00145	0,00197		
légende :		cubetane	détectée mais non d		-,		

<u>légende</u>: < 0,01 substance détectée mais non quantifiée

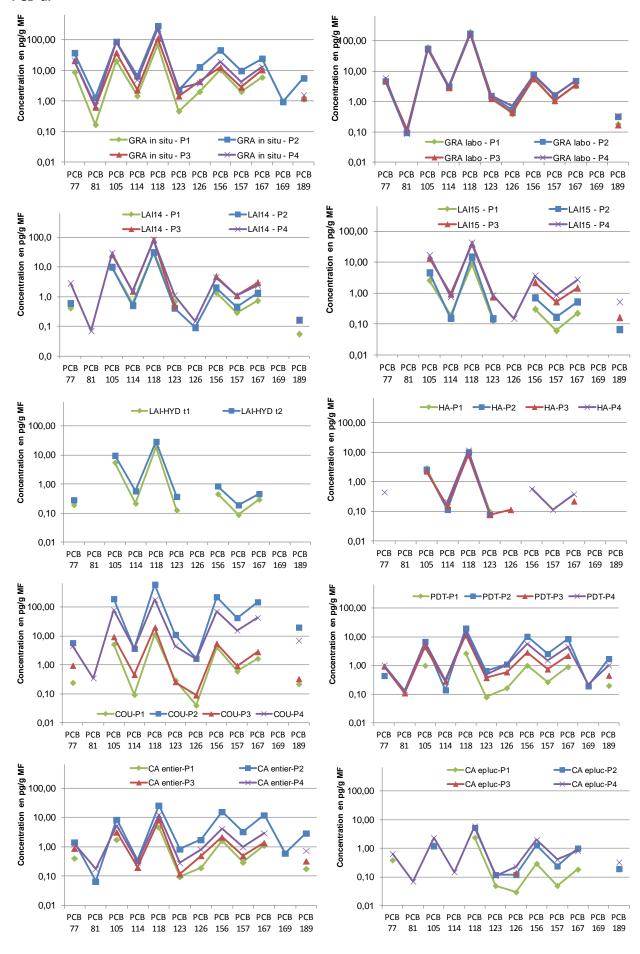
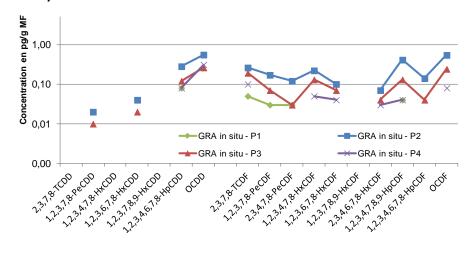
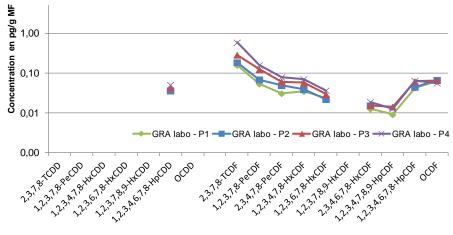
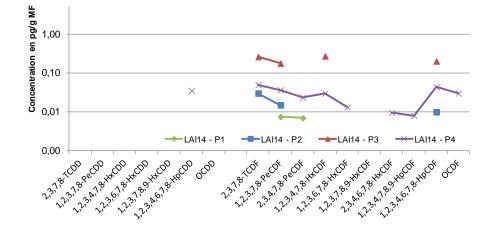
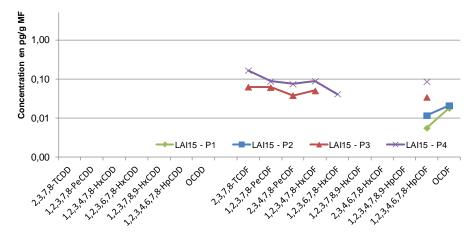

Annexe 10:

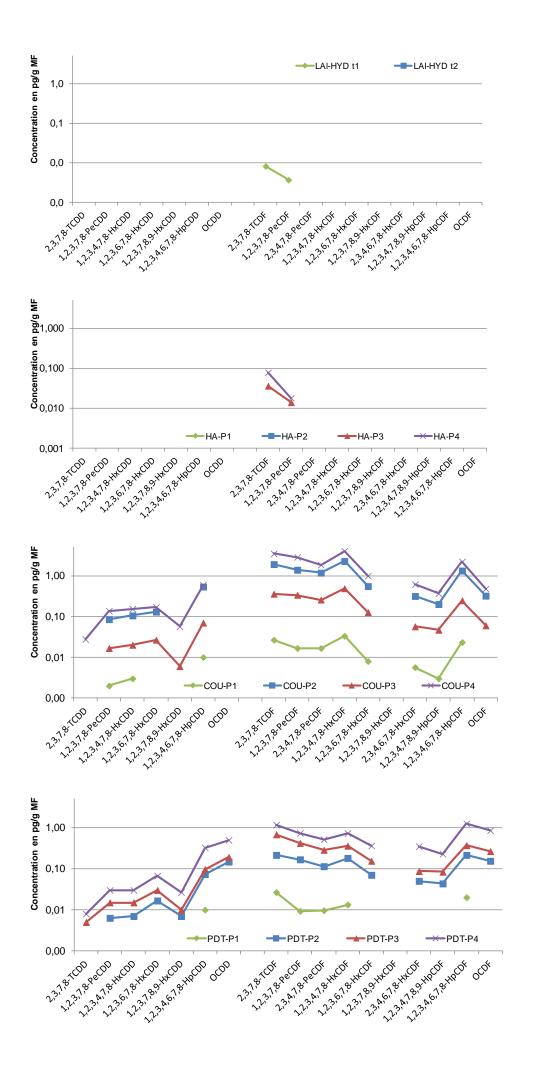
Planche des concentrations exprimées en matière fraîche dans les végétaux selon les mailles testées

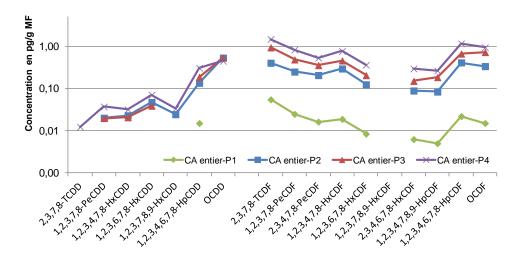

Annexe : concentrations des POPs dans les végétaux, exprimées en MF sur les 4 mailles PCBi pour GRA graminée, LAI laitue, COU courgette, HA haricot, PDT pomme de terre, CA carotte

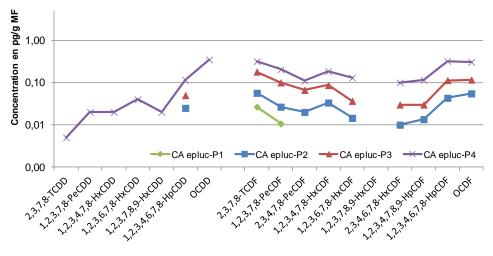



PCB-dl









Annexe 11:

Tableau récapitulatif des gammes de valeurs BCF pour les végétaux

Annexe: valeurs BCFmoyen pour chaque végétal (toutes mailles condondues) avec gamme BCFmin-BCFmax obtenus expérimentalement (1/2)

		GRA In situ 2014			GRA 2015			PDT			CAW			САР	
Espèce végétale															
Substance	BCFmoyen	BCFmin	BCFmax	BCFmoyen	BCFmin	BCFmax	BCFmoyen	BCFmin	BCFmax	BCFmoyen	BCFmin	BCFmax	BCFmoyen	BCFmin	BCFmax
PCB 28	2,7E+00	1,7E+00	3,7E+00	4,0E+00	2,6E+00	5,5E+00	pas de BCF			pas de BCF			pas de BCF		
PCB 52	1,2E+00	9,5E-01	1,4E+00	6,8E+00	2,1E+00	1,4E+01	pas de BCF	1.05.00	4.65.00	5,9E-01	2.05.02	5.05.04	pas de BCF	4.75.00	4.05.04
PCB 77	1,5E+00	3,4E-01	3,6E+00	8,2E-01	1,0E-01	2,9E+00	2,9E-02	1,9E-02	4,6E-02	1,4E-01	3,8E-02	5,0E-01	2,2E-01	1,7E-02	4,2E-01
PCB 81	6,3E-01	1,3E-01	1,5E+00	8,4E-02	1,2E-02	1,7E-01	3,7E-02	1,1E-02	6,0E-02	1,0E-01	4,1E-02	1,7E-01	1,7E-02		
PCB 101	7,3E-01	3,8E-01	1,4E+00	3,7E+00	3,3E-01	1,2E+01	7,5E-02	3,4E-02	1,2E-01	6,0E-01			pas de BCF		
PCB 105	6,4E-01	3,8E-01	1,3E+00	1,9E+00	2,2E-01	7,1E+00	6,2E-02	3,2E-02	1,1E-01	1,2E-01	4,3E-02	2,7E-01	1,0E-01	1,1E-02	3,3E-01
PCB 114	2,0E+00	4,1E-01	5,3E+00	4,2E+00	2,3E-01	2,2E+01	5,0E-02	3,3E-02	6,9E-02	1,2E-01	5,1E-02	1,9E-01	3,8E-02		
PCB 118	9,0E-01	4,4E-01	2,2E+00	2,6E+00	2,9E-01	9,9E+00	6,6E-02	2,9E-02	1,4E-01	1,4E-01	3,8E-02	3,3E-01	8,9E-02	1,9E-02	1,9E-01
PCB 123	3,3E-01	2,0E-01	5,7E-01	7,4E-01	7,9E-02	3,1E+00	1,1E-01	4,5E-02	2,0E-01	1,6E-01	4,0E-02	5,8E-01	6,6E-02	1,8E-02	1,6E-01
PCB 126	3,5E-01	6,8E-02	7,9E-01	6,3E-02	1,3E-02	2,1E-01	5,6E-02	1,9E-02	1,5E-01	7,7E-02	2,4E-02	2,3E-01	1,0E-02	4,4E-03	1,8E-02
PCB 138	4,5E-01	1,5E-01	1,1E+00	2,9E-01	6,5E-02	1,0E+00	9,4E-02	4,2E-02	1,5E-01	1,8E-01	4,6E-02	5,9E-01	2,8E-02	1,8E-02	4,3E-02
PCB 153	5,5E-01	1,8E-01	1,3E+00	3,2E-01	5,4E-02	1,1E+00	1,1E-01	5,2E-02	1,7E-01	2,1E-01	5,0E-02	7,4E-01	4,9E-02	2,9E-02	7,3E-02
PCB 156	2,5E-01	9,4E-02	5,9E-01	1,7E-01	3,1E-02	6,4E-01	5,8E-02	2,9E-02	8,7E-02	1,1E-01	2,9E-02	3,7E-01	2,0E-02	7,6E-03	4,0E-02
PCB 157	2,4E-01	8,7E-02	5,7E-01	1,3E-01	2,8E-02	4,9E-01	7,1E-02	3,0E-02	1,3E-01	1,1E-01	3,1E-02	3,4E-01	1,7E-02	7,4E-03	2,6E-02
PCB 167	2,3E-01	9,0E-02	4,9E-01	1,4E-01	3,5E-02	4,7E-01	7,3E-02	3,1E-02	1,2E-01	1,2E-01	3,1E-02	4,0E-01	1,8E-02	8,7E-03	3,6E-02
PCB 169	1,7E-01			pas de BCF			3,8E-02	2,2E-02	5,3E-02	2,8E-01			pas de BCF		
PCB 180	4,3E-01	9,5E-02	1,0E+00	7,5E-02	1,7E-02	2,7E-01	5,7E-02	2,4E-02	8,1E-02	1,5E-01	3,7E-02	4,1E-01	2,8E-02		
PCB 189	1,3E-01	3,0E-02	3,2E-01	1,9E-02	5,7E-03	7,2E-02	4,8E-02	1,6E-02	9,9E-02	7,5E-02	1,8E-02	2,6E-01	9,7E-03	5,2E-03	1,7E-02
2,3,7,8-TCDD	pas de BCF			pas de BCF			1,5E-02	1,1E-02	2,3E-02	2,5E-02	1,1E-02	4,2E-02	4,0E-03		
1,2,3,7,8-PeCDD	2,8E-02	1,1E-02	4,4E-02	pas de BCF			1,8E-02	6,0E-03	2,9E-02	4,9E-02	9,9E-03	1,3E-01	4,9E-03		
1,2,3,4,7,8-HxCDD	pas de BCF			pas de BCF			1,5E-02	4,6E-03	2,7E-02	3,9E-02	7,1E-03	1,2E-01	4,8E-03		
1,2,3,6,7,8-HxCDD	2,1E-02	9,2E-03	3,3E-02	pas de BCF			1,6E-02	4,6E-03	2,9E-02	3,8E-02	7,9E-03	1,1E-01	4,8E-03		
1,2,3,7,8,9-HxCDD	pas de BCF			pas de BCF			7,4E-03	1,8E-03	1,4E-02	3,3E-02	6,9E-03	8,2E-02	3,3E-03		
1,2,3,4,6,7,8-HpCDD	2,8E-02	8,1E-04	8,4E-02	1,5E-02	5,4E-04	7,7E-02	8,0E-03	1,7E-03	1,5E-02	2,0E-02	3,6E-03	5,4E-02	3,5E-03	8,7E-04	5,9E-03
OCDD	6,3E-03	1,6E-03	1,1E-02	pas de BCF			4,1E-03	1,1E-03	7,2E-03	1,4E-02	2,9E-03	3,4E-02	2,8E-03	2,8E-03	2,8E-03
2,3,7,8-TCDF	2,7E-02	1,7E-03	7,9E-02	9,5E-02	8,9E-03	4,3E-01	3,6E-02	1,9E-02	7,0E-02	9,4E-02	3,4E-02	1,9E-01	3,3E-02	2,4E-03	1,8E-01
1,2,3,7,8-PeCDF	3,3E-02	2,8E-03	7,7E-02	5,4E-02	3,2E-03	2,8E-01	2,7E-02	1,4E-02	4,2E-02	6,7E-02	1,7E-02	1,5E-01	2,1E-02	1,6E-03	1,2E-01
2,3,4,7,8-PeCDF	3,2E-02	1,6E-03	7,9E-02	3,1E-02	1,6E-03	1,6E-01	2,5E-02	8,3E-03	4,3E-02	5,6E-02	1,2E-02	1,6E-01	6,6E-03	7,8E-04	1,4E-02
1,2,3,4,7,8-HxCDF	6,0E-03	5,2E-04	1,4E-02	2,0E-02	7,6E-04	1,1E-01	1,8E-02	6,3E-03	3,9E-02	3,7E-02	9,1E-03	1,0E-01	4,9E-03	7,1E-04	1,0E-02
1,2,3,6,7,8-HxCDF	6,8E-03	6,9E-04	1,5E-02	2,3E-02	7,7E-04	1,3E-01	1,4E-02	5,0E-03	2,3E-02	3,9E-02	6,6E-03	1,1E-01	5,6E-03	1,9E-03	8,5E-03
1,2,3,7,8,9-HxCDF															
2,3,4,6,7,8-HxCDF	5,7E-03	4,4E-04	1,3E-02	1,1E-02	3,4E-04	6,6E-02	1,1E-02	3,3E-03	1,8E-02	3,2E-02	5,0E-03	9,4E-02	4,4E-03	1,1E-03	7,0E-03
1,2,3,4,7,8,9-HpCDF	1,0E-02	1,2E-04	2,8E-02	1,9E-03	6,1E-05	8,6E-03	1,5E-03	5,2E-04	2,5E-03	5,2E-03	9,6E-04	1,3E-02	9,6E-04	2,7E-04	1,5E-03
1,2,3,4,6,7,8-HpCDF	8,1E-03	1,8E-03	1,4E-02	4,0E-02	1,0E-03	2,5E-01	3,7E-02	9,9E-03	8,1E-02	8,2E-02	1,9E-02	2,4E-01	1,1E-02	1,7E-03	2,3E-02
OCDF	4,2E-03	2,3E-04	1,0E-02	5,9E-03	1,2E-04	3,1E-02	3,9E-03	1,3E-03	6,1E-03	1,3E-02	3,1E-03	3,6E-02	2,3E-03	3,3E-04	3,6E-03
	: BCFmoyen: valeur	movenne des BC		t tous sals confon	dus sans considó	ration dos conco	, ,	,		· · ·				,	,

<u>légende</u>: BCFmoyen: valeur moyenne des BCF tous réplicats et tous sols confondus - **sans considération des concentrations < LQ**BCFmin-BCFmax: valeur déterminée individuellement tous réplicats et tous sols confondus

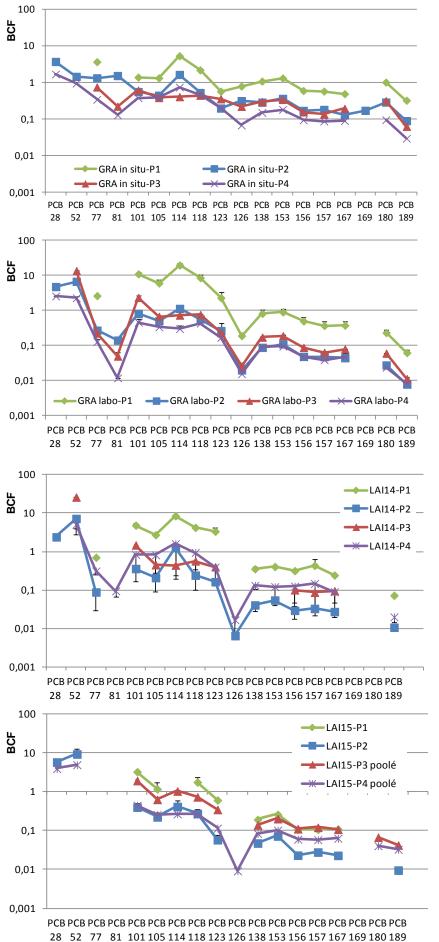
cellule vide si une seule valeur de BCF est disponible absence de valeurs BCF

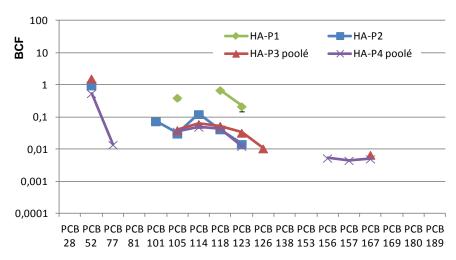
Annexe: valeurs BCFmoyen pour chaque végétal (toutes mailles condondues) avec gamme BCFmin-BCFmax obtenus expérimentalement (2/2)

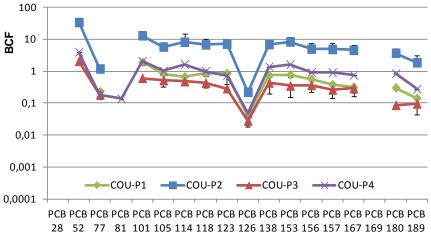
		cou			НА			LAI2014			LAI2015	
Substance	BCFmoyen	BCFmin	BCFmax									
PCB 28	pas de BCF			pas de BCF			2,4E+00			4,9E+00	4,0E+00	5,9E+00
PCB 52	1,5E+01	8,0E-01	3,5E+01	1,0E+00	5,5E-01	1,6E+00	1,3E+01	2,7E+00	3,5E+01	8,3E+00	5,0E+00	1,3E+01
PCB 77	3,8E-01	7,3E-02	1,4E+00	1,4E-02			3,7E-01	4,7E-02	7,3E-01	pas de BCF		
PCB 81	1,4E-01			pas de BCF			9,5E-02	7,5E-02	1,1E-01	pas de BCF		
PCB 101	3,9E+00	3,7E-01	1,6E+01	7,4E-02			1,9E+00	2,2E-01	5,3E+00	1,3E+00	3,2E-01	3,3E+00
PCB 105	1,7E+00	2,5E-01	7,4E+00	1,7E-01	2,6E-02	4,7E-01	1,0E+00	1,2E-01	2,7E+00	5,6E-01	1,6E-01	1,6E+00
PCB 114	2,6E+00	3,6E-01	1,3E+01	9,0E-02	4,9E-02	1,4E-01	1,9E+00	2,1E-01	8,4E+00	5,4E-01	2,7E-01	1,0E+00
PCB 118	1,8E+00	2,4E-01	9,0E+00	2,9E-01	3,8E-02	7,7E-01	1,5E+00	1,4E-01	4,6E+00	7,7E-01	2,0E-01	2,2E+00
PCB 123	1,8E+00	1,6E-01	8,2E+00	7,5E-02	1,3E-02	2,7E-01	1,1E+00	1,1E-01	3,9E+00	2,1E-01	4,2E-02	6,1E-01
PCB 126	8,0E-02	7,8E-03	2,4E-01	1,1E-02			1,4E-02	6,3E-03	2,3E-02	9,3E-03		
PCB 138	1,9E+00	2,8E-01	8,1E+00	pas de BCF			1,8E-01	2,8E-02	4,1E-01	1,0E-01	4,4E-02	1,9E-01
PCB 153	2,3E+00	1,9E-01	1,1E+01	pas de BCF			1,9E-01	4,4E-02	4,1E-01	1,4E-01	6,9E-02	2,6E-01
PCB 156	1,4E+00	2,5E-01	6,7E+00	5,4E-03			1,4E-01	1,9E-02	3,4E-01	6,6E-02	2,1E-02	1,1E-01
PCB 157	1,3E+00	1,6E-01	6,7E+00	4,5E-03			1,8E-01	2,2E-02	6,6E-01	6,9E-02	2,5E-02	1,2E-01
PCB 167	1,2E+00	2,0E-01	6,0E+00	5,9E-03	5,1E-03	6,7E-03	1,1E-01	2,0E-02	2,7E-01	5,9E-02	2,1E-02	1,1E-01
PCB 169	pas de BCF											
PCB 180	1,2E+00	8,6E-02	4,7E+00	pas de BCF			pas de BCF			5,4E-02	4,1E-02	6,8E-02
PCB 189	4,8E-01	5,8E-02	2,7E+00	pas de BCF			3,1E-02	1,0E-02	7,5E-02	2,4E-02	8,6E-03	4,3E-02
2,3,7,8-TCDD	1,1E-01	3,5E-02	2,5E-01	pas de BCF			pas de BCF			pas de BCF		
1,2,3,7,8-PeCDD	3,5E-01	3,2E-02	1,5E+00	pas de BCF			pas de BCF			pas de BCF		
1,2,3,4,7,8-HxCDD	3,4E-01	3,1E-02	1,7E+00	pas de BCF			pas de BCF			pas de BCF		
1,2,3,6,7,8-HxCDD	2,1E-01	1,6E-02	9,2E-01	pas de BCF			pas de BCF			pas de BCF		
1,2,3,7,8,9-HxCDD	2,1E-02	8,7E-03	4,7E-02	pas de BCF			pas de BCF			pas de BCF		
1,2,3,4,6,7,8-HpCDD	5,6E-02	3,2E-03	3,2E-01	pas de BCF			2,2E-03	1,9E-03	2,6E-03	pas de BCF		
OCDD	pas de BCF											
2,3,7,8-TCDF	2,7E-01	4,5E-02	1,3E+00	2,7E-03	2,4E-03	2,9E-03	9,2E-03	3,8E-03	2,3E-02	1,1E-02	1,0E-02	1,1E-02
1,2,3,7,8-PeCDF	2,7E-01	4,9E-02	1,4E+00	9,8E-04	6,2E-04	1,3E-03	2,1E-02	2,0E-03	8,5E-02	1,1E-02	5,9E-03	1,5E-02
2,3,4,7,8-PeCDF	2,4E-01	3,1E-02	1,2E+00	pas de BCF			2,4E-02	2,2E-03	9,0E-02	8,2E-03	5,3E-03	1,1E-02
1,2,3,4,7,8-HxCDF	2,4E-01	3,8E-02	1,3E+00	pas de BCF			3,5E-03	1,2E-03	9,4E-03	6,2E-03	3,6E-03	8,7E-03
1,2,3,6,7,8-HxCDF	1,3E-01	1,6E-02	6,8E-01	pas de BCF			1,2E-03	1,1E-03	1,4E-03	3,1E-03		
1,2,3,7,8,9-HxCDF												
2,3,4,6,7,8-HxCDF	9,0E-02	9,1E-03	5,0E-01	pas de BCF			9,7E-04	8,5E-04	1,1E-03	pas de BCF		
1,2,3,4,7,8,9-HpCDF	9,7E-03	1,0E-03	5,2E-02	pas de BCF			1,6E-04			pas de BCF		
1,2,3,4,6,7,8-HpCDF	2,3E-01	2,7E-02	1,2E+00	pas de BCF			5,0E-03	3,0E-03	1,2E-02	3,2E-02	5,0E-03	1,0E-01
OCDF	1,1E-02	9,2E-04	4,9E-02	pas de BCF			5,1E-04	3,7E-04	6,6E-04	3,0E-02	3,9E-03	5,6E-02

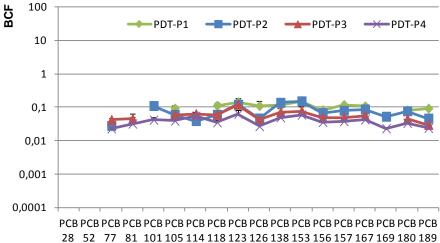
<u>légende</u>: BCFmoyen: valeur moyenne des BCF tous réplicats et tous sols confondus - sans considération des concentrations < LQ BCFmin-BCFmax: valeur déterminée individuellement tous réplicats et tous sols confondus

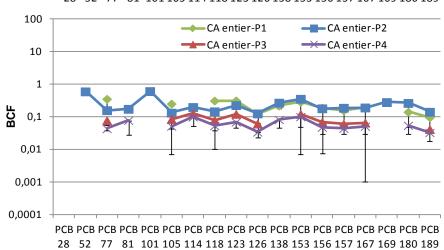
cellule vide si une seule valeur de BCF est disponible

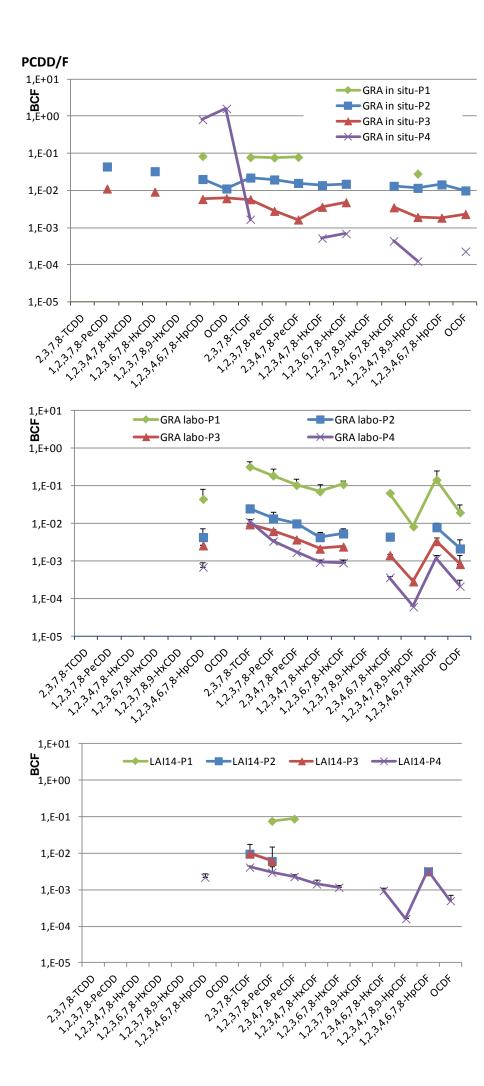

absence de valeurs BCF

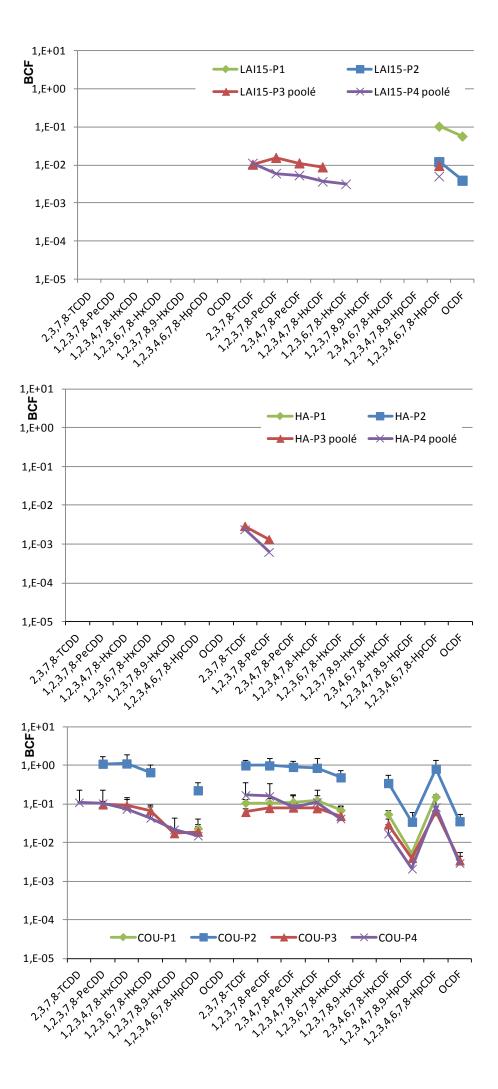

Annexe 12:

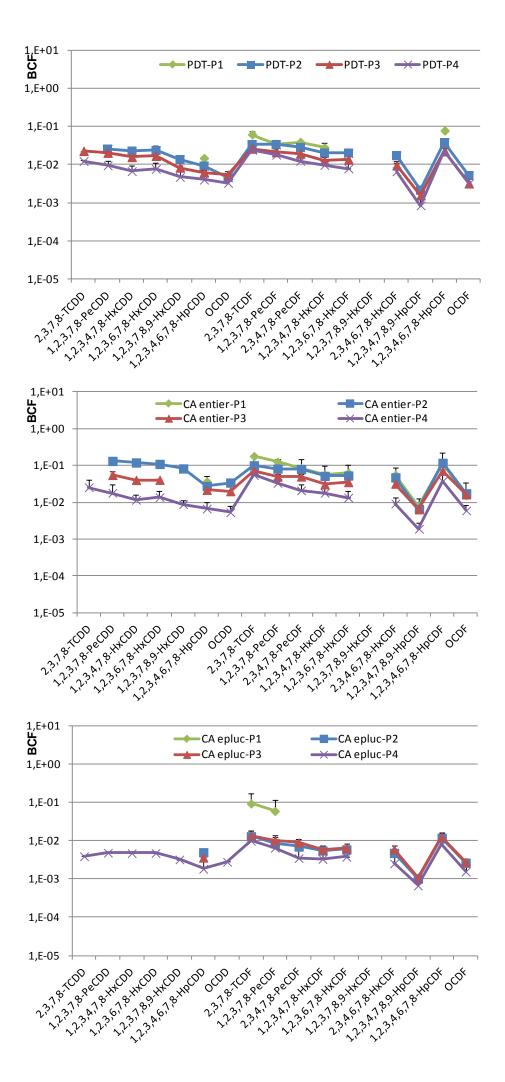

Planche des valeurs BCF pour les végétaux selon les mailles testées

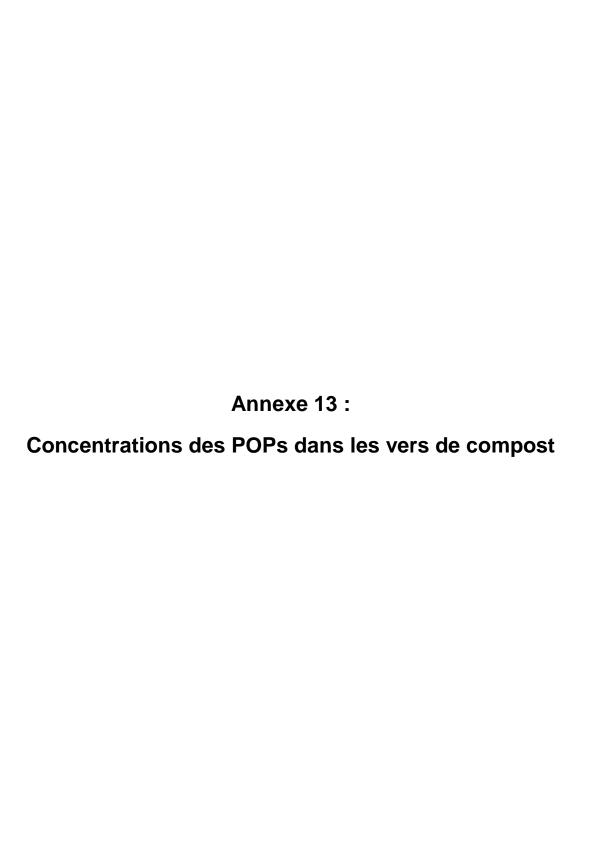

Annexe : valeurs BCFpour les POPS dans les végétaux, sur les 4 mailles sans considération des concentrations <LQ


PCBi et PCB-dl GRA graminée, LAI laitue, COU courgette, HA haricot, PDT pomme de terre, CA carotte









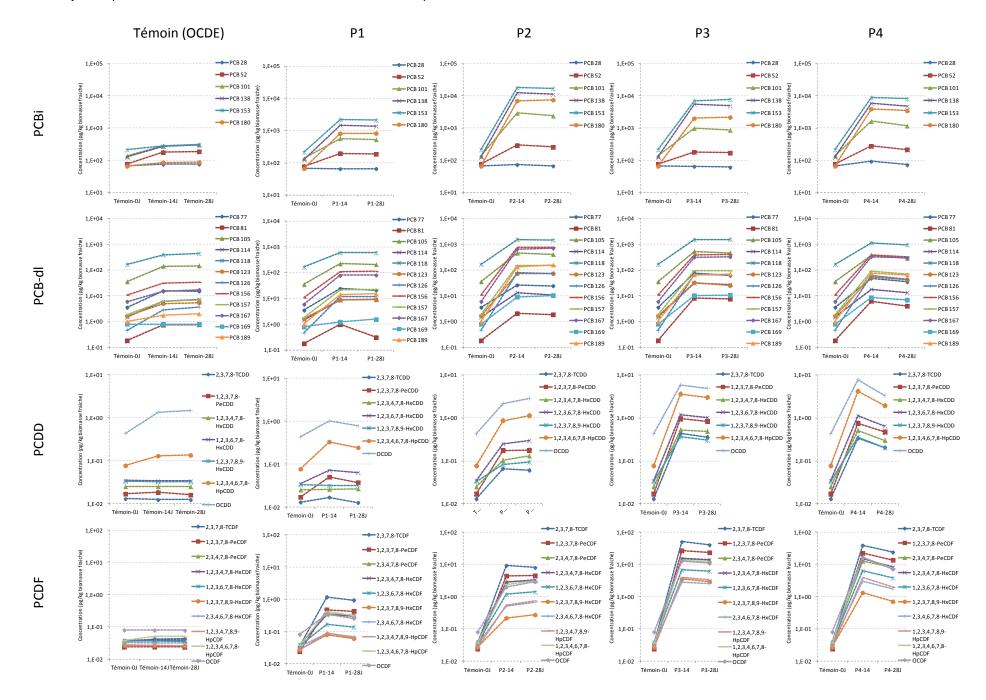
Annexe 13 : Concentrations (moyenne des 3 réplicats ± ec-type) mesurées dans la chair des vers exposés après 14 jours et 28 jours d'exposition aux sols des mailles P1, P2, P3, P4. Les valeurs indiquées en rouge correspondent aux LQ respectives et indiquent que la substance n'a pas été quantifiée.

	T1	-14J	T2	-14J	P1	-14	P2	-14	P3	3-14	P4	l-14	Unitó
	moy.	ec-type	moy.	ec-type	moy.	ec-type	moy.	ec-type	moy.	ec-type	moy.	ec-type	Unité
PCB 28	140,0	12,1	75,7	3,2	65,3	1,2	74,0	8,0	65,3	0,6	94,0	32,4	pg/g (biomasse fraich
PCB 52	443,3	50,8	179,7	9,0	197,7	10,6	296,7	4,9	181,7	17,6	278,3	22,1	pg/g (biomasse fraich
PCB 101	507,0	36,0	279,7	1,2	572,0	15,1	2923,3	109,7	987,0	105,1	1643,3	65,1	pg/g (biomasse fraich
PCB 118	537,0	34,7	385,0	21,5	597,0	20,8	1516,7	90,2	1496,7	251,7	1116,7	80,8	pg/g (biomasse fraich
PCB 138	363,3	14,0	270,3	9,3	1490,0	112,7	12266,7	321,5	5443,3	965,5	5853,3	301,7	pg/g (biomasse fraich
PCB 153	424,7	45,8	284,3	8,6	2210,0	318,0	17933,3	723,4	7016,7	1014,8	8930,0	1017,7	pg/g (biomasse fraich
PCB 180	186,3	16,1	86,0	4,0	811,0	79,8	7090,0	379,9	2010,0	290,0	3956,7	135,8	pg/g (biomasse fraich
PCB 77	12,9	2,0	15,5	1,2	24,4	2,1	25,8	1,1	76,7	10,9	47,4	2,8	pg/g (biomasse fraich
PCB 81	0,7	0,1	0,7	0,1	1,0	1,3	2,1	0,1	8,1	0,8	6,1	0,9	pg/g (biomasse fraich
PCB 105	161,7	14,2	139,7	10,7	223,7	9,1	448,7	30,3	521,3	71,6	374,0	23,5	pg/g (biomasse fraich
PCB 114	8,7	0,9	6,1	0,3	8,7	2,4	13,4	0,6	30,2	4,5	18,0	1,6	pg/g (biomasse fraich
PCB 118	537,0	34,7	385,0	21,5	597,0	20,8	1516,7	90,2	1496,7	251,7	1116,7	80,8	pg/g (biomasse fraich
PCB 123	10,3	2,1	5,0	0,5	8,7	2,2	72,0	11,8	32,3	2,9	53,3	1,8	pg/g (biomasse fraich
PCB 126	1,0	0,1	2,8	0,3	11,6	3,0	79,8	5,5	66,9	8,3	60,6	1,5	pg/g (biomasse fraich
PCB 156	43,2	2,1	30,6	2,1	109,0	5,6	754,3	63,4	378,0	51,6	384,0	18,4	pg/g (biomasse fraich
PCB 157	8,8	0,7	6,1	0,3	21,7	1,4	151,0	14,1	92,0	11,6	90,3	4,8	pg/g (biomasse fraich
PCB 167	21,5	0,5	14,8	0,5	79,1	4,8	650,0	39,9	314,3	46,3	330,0	12,1	pg/g (biomasse fraich
PCB 169	0,8	0,0	0,8	0,0	1,2	0,3	9,1	0,9	10,2	1,4	8,5	0,4	pg/g (biomasse fraich
PCB 189	3,5	0,5	1,7	0,1	14,1	2,1	133,0	8,9	64,6	6,7	75,1	5,0	pg/g (biomasse fraich
2,3,7,8-TCDD	0,013	0,001	0,012	0,001	0,017	0,004	0,066	0,005	0,434	0,112	0,335	0,024	pg/g (biomasse fraich
1,2,3,7,8-PeCDD	0,017	0,001	0,018	0,004	0,050	0,011	0,175	0,005	0,959	0,160	0,754	0,024	pg/g (biomasse fraich
1,2,3,4,7,8-HxCDD	0,025	0,000	0,025	0,000	0,026	0,002	0,103	0,006	0,529	0,034	0,512	0,006	pg/g (biomasse fraich
1,2,3,6,7,8-HxCDD	0,034	0,000	0,034	0,000	0,072	0,009	0,251	0,007	1,203	0,050	1,120	0,010	pg/g (biomasse fraich
1,2,3,7,8,9-HxCDD	0,032	0,000	0,032	0,000	0,032	0,001	0,083	0,003	0,363	0,018	0,361	0,005	pg/g (biomasse fraich
1,2,3,4,6,7,8-HpCDD	0,141	0,002	0,129	0,007	0,329	0,065	0,862	0,046	3,593	0,441	4,173	0,107	pg/g (biomasse fraich
OCDD	1,713	0,049	1,330	0,168	1,007	0,255	2,167	0,152	5,860	1,485	7,797	0,200	pg/g (biomasse fraich
2,3,7,8-TCDF	0,034	0,000	0,042	0,008	1,157	0,106	9,243	0,307	50,333	8,460	39,167	1,762	pg/g (biomasse fraich
1,2,3,7,8-PeCDF	0,024	0,001	0,024	0,000	0,458	0,037	4,437	0,078	26,600	4,957	22,333	0,777	pg/g (biomasse fraich
2,3,4,7,8-PeCDF	0,037	0,001	0,037	0,000	0,357	0,033	2,940	0,010	15,133	1,904	12,567	0,252	pg/g (biomasse fraich
1,2,3,4,7,8-HxCDF	0,039	0,001	0,039	0,000	0,330	0,031	2,807	0,157	15,267	2,411	14,733	0,289	pg/g (biomasse fraich
1,2,3,6,7,8-HxCDF	0,036	0,001	0,036	0,001	0,165	0,013	1,177	0,031	6,750	0,908	6,347	0,012	pg/g (biomasse fraich
1,2,3,7,8,9-HxCDF	0,026	0,001	0,026	0,001	0,080	0,004	0,215	0,008	3,507	0,404	1,323	0,337	pg/g (biomasse fraich
2,3,4,6,7,8-HxCDF	0,032	0,000	0,032	0,000	0,088	0,002	0,513	0,015	2,797	0,285	2,950	0,095	pg/g (biomasse fraich
1,2,3,4,7,8,9-HpCDF	0,026	0,001	0,027	0,001	0,090	0,007	0,552	0,016	3,990	0,672	3,900	0,070	pg/g (biomasse fraich
1,2,3,4,6,7,8-HpCDF	0,037	0,001	0,050	0,005	0,414	0,045	2,397	0,096	13,533	1,563	16,500	0,608	pg/g (biomasse fraicl
OCDF	0,079	0,001	0,079	0,000	0,346	0,042	1,997	0,168	12,670	2,572	16,533	0,723	pg/g (biomasse fraich

	T1-28J		T2-28J		P1-28J		P2-28J		P3-28J		P4-28J		
	moy.	ec-type	moy.	ec-type	moy.	ec-type	moy.	ec-type	moy.	ec-type	moy.	ec-type	Unité
PCB 28	72,7	4,9	76,7	4,2	66,0	0,0	67,3	0,6	61,3	2,1	73,3	12,7	pg/g (biomasse fraiche)
PCB 52	220,7	12,1	189.0	14,7	187,7	14,3	259.0	24,3	172,0	4,4	216,0	12,1	pg/g (biomasse fraiche)
PCB 101	292,7	26,3	304,3	36,0	529,0	40,6	2403,3	230,7	869,7	29,9	1180,0	65,6	pg/g (biomasse fraiche)
PCB 118	312,0	43,0	433,0	38,6	595,7	32,0	1436,7	145,0	1536,7	198,6	937,0	16,7	pg/g (biomasse fraiche)
PCB 138	208,0	25,4	303,0	25,9	1383,3	185,0	11216,7	2052,0	4893,3	1098,7	4733,3	189,0	pg/g (biomasse fraiche)
PCB 153	267,7	33,7	307,7	15,7	2110,0	229,1	16900,0	2771,3	7793,3	525,4	8146,7	930,1	pg/g (biomasse fraiche)
PCB 180	121,0	13,5	88,0	6,9	826,3	88,0	7546,7	993,5	2186,7	115,9	3493,3	273,0	pg/g (biomasse fraiche)
PCB 77	8,5	2,0	15,0	1,5	20,9	1,0	24,1	1,6	60,9	3,1	34,7	2,6	pg/g (biomasse fraiche)
PCB 81	0,4	0,1	0,8	0,3	0,3	0,1	1,8	0,3	7,5	1,7	4,0	0,1	pg/g (biomasse fraiche)
PCB 105	87,5	10,3	146,3	14,4	209,3	14,2	401,0	35,8	463,3	23,4	284,3	12,6	pg/g (biomasse fraiche)
PCB 114	3,5	0,8	7,2	1,0	9,0	1,1	10,8	1,8	27,4	4,9	13,2	0,9	pg/g (biomasse fraiche)
PCB 118	312,0	43,0	433,0	38,6	595,7	32,0	1436,7	145,0	1536,7	198,6	937,0	16,7	pg/g (biomasse fraiche)
PCB 123	4,6	1,0	5,4	0,6	8,9	2,1	72,9	13,6	25,0	7,9	41,6	2,9	pg/g (biomasse fraiche)
PCB 126	0,7	0,2	3,6	0,4	11,7	1,5	73,2	5,6	63,2	2,7	43,3	2,1	pg/g (biomasse fraiche)
PCB 156	25,4	1,8	33,5	3,7	113,6	12,4	767,0	76,0	393,0	21,8	325,7	27,5	pg/g (biomasse fraiche)
PCB 157	4,9	0,6	7,0	0,4	22,7	2,7	149,3	14,2	93,0	8,1	70,1	6,6	pg/g (biomasse fraiche)
PCB 167	12,3	1,3	16,9	1,9	81,2	8,3	696,3	61,1	323,3	24,9	293,0	22,3	pg/g (biomasse fraiche)
PCB 169	0,8	0,0	0,8	0,0	1,6	0,1	10,4	0,8	10,6	1,6	6,9	0,6	pg/g (biomasse fraiche)
PCB 189	2,5	0,5	2,0	0,3	15,4	2,1	156,0	14,1	70,8	6,8	65,0	5,9	pg/g (biomasse fraiche)
2,3,7,8-TCDD	0,013	0,000	0,012	0,001	0,013	0,001	0,060	0,001	0,359	0,005	0,206	0,026	pg/g (biomasse fraiche)
1,2,3,7,8-PeCDD	0,017	0,000	0,016	0,000	0,037	0,010	0,177	0,008	0,839	0,075	0,469	0,004	pg/g (biomasse fraiche)
1,2,3,4,7,8-HxCDD	0,025	0,000	0,025	0,000	0,027	0,003	0,131	0,008	0,491	0,028	0,301	0,006	pg/g (biomasse fraiche)
1,2,3,6,7,8-HxCDD	0,034	0,001	0,034	0,000	0,063	0,017	0,296	0,007	1,028	0,064	0,648	0,040	pg/g (biomasse fraiche)
1,2,3,7,8,9-HxCDD	0,034	0,002	0,032	0,000	0,032	0,000	0,094	0,006	0,305	0,036	0,201	0,027	pg/g (biomasse fraiche)
1,2,3,4,6,7,8-HpCDD	0,142	0,006	0,134	0,029	0,242	0,045	1,130	0,056	3,010	0,589	1,930	0,420	pg/g (biomasse fraiche)
OCDD	2,417	0,535	1,450	0,269	0,773	0,074	2,870	0,173	4,830	1,149	3,333	0,797	pg/g (biomasse fraiche)
2,3,7,8-TCDF	0,034	0,001	0,042	0,003	0,929	0,173	7,987	0,443	40,400	5,351	23,933	1,343	pg/g (biomasse fraiche)
1,2,3,7,8-PeCDF	0,024	0,000	0,024	0,001	0,418	0,065	4,500	0,275	23,300	3,387	13,700	0,755	pg/g (biomasse fraiche)
2,3,4,7,8-PeCDF	0,037	0,000	0,037	0,001	0,316	0,058	3,107	0,153	13,500	1,253	8,037	0,196	pg/g (biomasse fraiche)
1,2,3,4,7,8-HxCDF	0,039	0,000	0,039	0,001	0,296	0,049	3,343	0,159	13,867	1,498	8,230	0,203	pg/g (biomasse fraiche)
1,2,3,6,7,8-HxCDF	0,036	0,000	0,035	0,001	0,137	0,029	1,390	0,040	6,190	0,701	3,773	0,031	pg/g (biomasse fraiche)
1,2,3,7,8,9-HxCDF	0,027	0,001	0,026	0,000	0,060	0,014	0,273	0,015	2,910	0,312	0,707	0,050	pg/g (biomasse fraiche)
2,3,4,6,7,8-HxCDF	0,034	0,002	0,032	0,000	0,069	0,014	0,669	0,017	2,530	0,243	1,737	0,142	pg/g (biomasse fraiche)
1,2,3,4,7,8,9-HpCDF	0,026	0,000	0,025	0,001	0,063	0,015	0,735	0,012	3,297	0,516	1,980	0,357	pg/g (biomasse fraiche)
1,2,3,4,6,7,8-HpCDF	0,037	0,000	0,050	0,005	0,305	0,070	3,130	0,070	11,967	1,750	7,630	1,152	pg/g (biomasse fraiche)
OCDF	0,080	0,001	0,078	0,001	0,253	0,057	2,917	0,065	10,810	2,392	7,153	1,877	pg/g (biomasse fraiche)

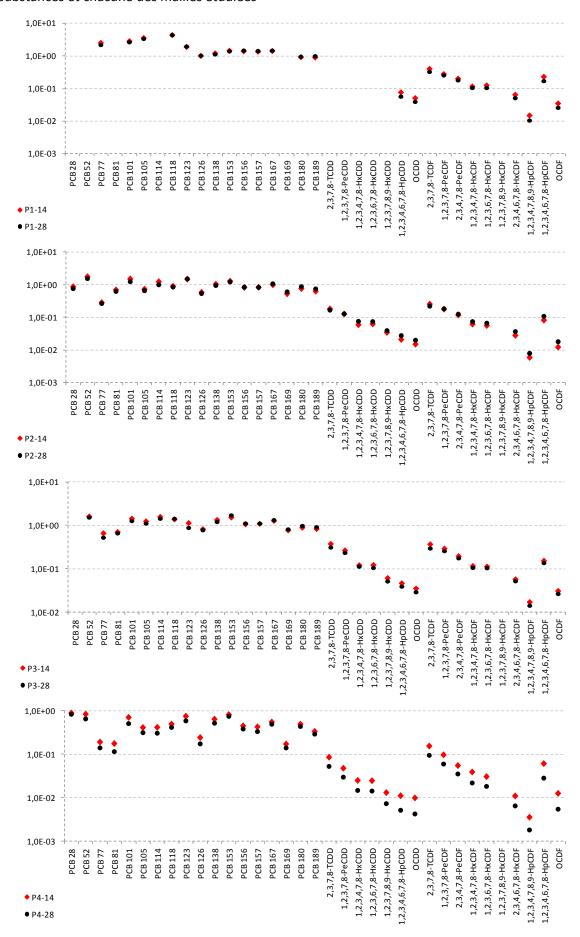
Annexe 14:

Concentrations des POPs dans le sol OCDE et la bouse de vache


Annexe 14 : Concentrations en PCB et PCDD/F mesurées dans le sol artificiel OCDE (sol de référence) et la bouse de vache (nourriture)

			ISO	BdVache
	PCB 28	ng/kg	< 83	214
+	PCB 52	ng/kg	< 62	685
PCBi - 6 Indicateurs + PCB118	PCB 101	ng/kg	< 99	758
Bi 381	PCB 118	ng/kg	< 28	619
O gigo	PCB 138	ng/kg	< 73	441
<u> </u>	PCB 153	ng/kg	< 120	400
	PCB 180	ng/kg	< 30	122
			ISO	BdVache
	PCB 77	ng/kg	< 3.6	25
	PCB 81	ng/kg	< 0.79	< 1.6
ent	PCB 105	ng/kg	10.3	246
kine	PCB 114	ng/kg	< 0.95	5.82
Ö ÜÜ	PCB 118	ng/kg	< 28	619
viro	PCB 123	ng/kg	< 0.81	4.56
en typ	PCB 126	ng/kg	< 1.0	< 2.1
PCB de type dioxine / 12 WHO (environnement)	PCB 156	ng/kg	< 4.5	45.7
₩. M.	PCB 157	ng/kg	< 0.91	11.4
2 v	PCB 167	ng/kg	< 2.2	20.4
-	PCB 169	ng/kg	< 2.4	< 5.0
	PCB 189	ng/kg	< 0.81	1.89
			ISO	BdVache
	2,3,7,8-TCDD	ng/kg	< 0.18	< 0.38
	1,2,3,7,8-PeCDD	ng/kg	< 0.24	< 0.50
	1,2,3,4,7,8-HxCDD	ng/kg	< 0.49	< 1.0
<u> </u>	1,2,3,6,7,8-HxCDD	ng/kg	< 0.49	< 1.0
Suc	1,2,3,7,8,9-HxCDD	ng/kg	< 0.49	< 1.0
ŏ	1,2,3,4,6,7,8-HpCDD	ng/kg	3.13	7.58
(1)	OCDD	ng/kg	99.3	36
J/F	2,3,7,8-TCDF	ng/kg	< 0.32	< 0.67
Ö	1,2,3,7,8-PeCDF	ng/kg	< 0.45	< 0.92
PC	2,3,4,7,8-PeCDF	ng/kg	< 0.45	< 0.92
Dioxines - PCDD/F (17 cong.)	1,2,3,4,7,8-HxCDF	ng/kg	< 0.40	< 0.84
ë L	1,2,3,6,7,8-HxCDF	ng/kg	< 0.40	< 0.84
<u>×</u> 0	1,2,3,7,8,9-HxCDF	ng/kg	< 0.40	< 0.84
Ō	2,3,4,6,7,8-HxCDF	ng/kg	< 0.40	< 0.84
	1,2,3,4,6,7,8-HpCDF	ng/kg	< 0.53	1.69
	1,2,3,4,7,8,9-HpCDF	ng/kg	< 0.38	< 0.80
	OCDF	ng/kg	< 3.2	< 6.7

Concentrations des POPs dans les vers de compost selon le temps d'exposition et les mailles testées


Annexe 15: Concentrations au cours du temps des différentes substances recherchés dans la chair des vers exposés au sol artificiel de référence et aux sols des mailles P1, P2, P3, P4. La valeur à T=0j correspond aux concentrations mesurées dans les vers avant exposition.

Annexe 16:

Planche des valeurs BCF pour les vers de compost pour chacun des congénères selon les mailles testées

Annexe 16 : BCF calculés à l'aide des résultats obtenus à 14 jours et 28 jours pour chacune des substances et chacune des mailles étudiées

Annexe 17:

Valeurs BCF calculées et estimées pour les vers de compost pour les deux temps d'exposition

Annexe 17 : Valeurs de BCF [vers.MF] calculées et estimées après 14 et 28 jours d'exposition des vers aux sols des mailles P1, P2, P3 et P4.

BCF après 14 jours d'exposition

	P1-R1	P1-R2	P1-R3	Moyenne	Ecart-type	P2-R1	P2-R2	P2-R3	Moyenne	Ecart-type	P3-R1	P3-R2	P3-R3	Moyenne	Ecart-type	P4-R1	P4-R2	P4-R3	Moyenne	Ecart-type
PCB 28	NE	NE	NE	NE	-	0,81	0,36	0,89	0,69	0,29	NE	NE	NE	NE	-	1,21	0,62	0,79	0,87	0,30
PCB 52	6,63	5,97	6,22	6,28	0,34	1,74	1,73	1,69	1,72	0,03	1,67	1,44	1,75	1,62	0,16	0,75	0,85	0,87	0,82	0,07
PCB 77	2,41	2,41	2,79	2,54	0,22	0,29	0,28	0,27	0,28	0,01	0,71	0,56	0,73	0,67	0,09	0,18	0,20	0,18	0,19	0,01
PCB 81	6,02	0,55	0,70	2,42	3,12	0,73	0,67	0,63	0,68	0,05	0,79	0,68	0,66	0,71	0,07	0,19	0,18	0,14	0,17	0,03
PCB 101	2,87	2,78	2,93	2,86	0,08	1,54	1,44	1,44	1,47	0,06	1,45	1,29	1,60	1,45	0,15	0,67	0,72	0,69	0,69	0,03
PCB 105	3,43	3,72	3,61	3,59	0,15	0,77	0,71	0,67	0,72	0,05	1,26	1,08	1,42	1,25	0,17	0,39	0,43	0,39	0,40	0,03
PCB 114	11,42	18,75	19,81	16,66	4,57	1,27	1,19	1,16	1,21	0,06	1,71	1,31	1,74	1,59	0,24	0,37	0,42	0,44	0,41	0,04
PCB 118	4,30	4,58	4,32	4,40	0,15	0,93	0,87	0,83	0,88	0,05	1,42	1,14	1,61	1,39	0,23	0,45	0,52	0,49	0,49	0,04
PCB 123	2,47	1,71	1,56	1,91	0,49	1,72	1,28	1,35	1,45	0,24	1,19	1,03	1,22	1,15	0,10	0,76	0,71	0,75	0,74	0,03
PCB 126	0,73	1,25	1,05	1,01	0,26	0,59	0,59	0,52	0,57	0,04	0,85	0,72	0,92	0,83	0,10	0,24	0,24	0,23	0,24	0,01
PCB 138	1,31	1,16	1,15	1,21	0,09	1,02	1,03	0,98	1,01	0,03	1,36	1,10	1,58	1,35	0,24	0,67	0,61	0,61	0,63	0,03
PCB 153	1,49	1,65	1,23	1,46	0,21	1,28	1,29	1,20	1,26	0,05	1,57	1,31	1,76	1,55	0,22	0,74	0,91	0,76	0,80	0,09
PCB 156	1,39	1,48	1,34	1,41	0,07	0,88	0,79	0,75	0,81	0,07	1,07	0,93	1,23	1,08	0,15	0,43	0,47	0,43	0,44	0,02
PCB 157	1,33	1,46	1,30	1,36	0,09	0,90	0,80	0,75	0,82	0,08	1,11	0,95	1,23	1,10	0,14	0,42	0,44	0,40	0,42	0,02
PCB 167	1,47	1,49	1,33	1,43	0,09	1,02	0,99	0,91	0,97	0,06	1,36	1,08	1,44	1,29	0,19	0,55	0,56	0,52	0,54	0,02
PCB 169	0,77	1,30	0,95	1,01	0,27	0,50	0,57	0,47	0,51	0,05	0,81	0,67	0,87	0,78	0,10	0,17	0,16	0,18	0,17	0,01
PCB 180	0,87	1,04	0,88	0,93	0,09	0,75	0,78	0,70	0,74	0,04	0,90	0,77	1,03	0,90	0,13	0,49	0,49	0,47	0,48	0,02
PCB 189	0,85	1,06	0,81	0,91	0,14	0,63	0,65	0,57	0,62	0,04	0,82	0,76	0,93	0,84	0,09	0,34	0,35	0,30	0,33	0,02
2,3,7,8-TCDD	NE	0,21	NE	0,21	-	0,19	0,18	0,16	0,18	0,01	0,45	0,27	0,42	0,38	0,10	0,08	0,09	0,08	0,08	0,01
1,2,3,7,8-PeCDD	0,34	0,37	0,50	0,40	0,09	0,12	0,12	0,13	0,12	0,00	0,29	0,22	0,30	0,27	0,04	0,05	0,05	0,05	0,05	0,00
1,2,3,4,7,8-HxCDD	NE	0,11	NE	0,11	-	0,05	0,06	0,06	0,06	0,00	0,13	0,11	0,13	0,12	0,01	0,02	0,02	0,02	0,02	0,00
1,2,3,6,7,8-HxCDD	0,25	0,32	0,31	0,29	0,04	0,06	0,06	0,06	0,06	0,00	0,12	0,12	0,13	0,12	0,01	0,02	0,02	0,02	0,02	0,00
1,2,3,7,8,9-HxCDD	NE	NE	NE	NE	-	0,03	0,03	0,03	0,03	0,00	0,06	0,06	0,06	0,06	0,00	0,01	0,01	0,01	0,01	0,00
1,2,3,4,6,7,8-HpCDD	0,06	0,09	0,08	0,08	0,02	0,02	0,02	0,02	0,02	0,00	0,04	0,05	0,05	0,05	0,01	0,01	0,01	0,01	0,01	0,00
OCDD	0,04	0,07	0,05	0,05	0,01	0,01	0,01	0,02	0,01	0,00	0,03	0,03	0,04	0,04	0,01	0,01	0,01	0,01	0,01	0,00
2,3,7,8-TCDF	0,40	0,45	0,37	0,41	0,04	0,25	0,25	0,24	0,25	0,01	0,38	0,30	0,43	0,37	0,06	0,15	0,16	0,14	0,15	0,01
1,2,3,7,8-PeCDF	0,26	0,30	0,28	0,28	0,02	0,18	0,18	0,17	0,17	0,00	0,30	0,24	0,35	0,29	0,05	0,09	0,10	0,09	0,10	0,00
2,3,4,7,8-PeCDF	0,20	0,22	0,18	0,20	0,02	0,11	0,12	0,12	0,12	0,00	0,20	0,17	0,22	0,20	0,02	0,05	0,06	0,05	0,05	0,00
1,2,3,4,7,8-HxCDF	0,12	0,13	0,11	0,12	0,01	0,06	0,06	0,06	0,06	0,00	0,12	0,10	0,14	0,12	0,02	0,04	0,04	0,04	0,04	0,00
1,2,3,6,7,8-HxCDF	0,13	0,14	0,12	0,13	0,01	0,06	0,05	0,05	0,05	0,00	0,11	0,10	0,13	0,11	0,02	0,03	0,03	0,03	0,03	0,00
1,2,3,7,8,9-HxCDF	NE	NE	NE	NE	-	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2,3,4,6,7,8-HxCDF	0,06	0,07	0,06	0,06	0,00	0,03	0,03	0,03	0,03	0,00	0,05	0,06	0,06	0,06	0,01	0,01	0,01	0,01	0,01	0,00
1,2,3,4,7,8,9-HpCDF	0,01	0,02	0,02	0,02	0,00	0,01	0,01	0,01	0,01	0,00	0,01	0,02	0,02	0,02	0,00	0,00	0,00	0,00	0,00	0,00
1,2,3,4,6,7,8-HpCDF	0,21	0,26	0,22	0,23	0,02	0,08	0,08	0,08	0,08	0,00	0,14	0,15	0,17	0,16	0,02	0,06	0,06	0,06	0,06	0,00
OCDF	0,03	0,04	0,03	0,04	0,00	0,01	0,01	0,01	0,01	0,00	0,02	0,03	0,04	0,03	0,01	0,01	0,01	0,01	0,01	0,00

	d'exposition

	P1-R1	P1-R2	P1-R3	Moyenne	Ecart-type	P2-R1	P2-R2	P2-R3	Moyenne	Ecart-type	P3-R1	P3-R2	P3-R3	Moyenne	Ecart-type	P4-R1	P4-R2	P4-R3	Moyenne	Ecart-type
PCB 28	NE	NE	NE	NE	-	0,37	0,37	0,74	0,49		NE	NE	NE	NE		0,31	0,82	0,31	0,48	
PCB 52	5,46	6,06	6,35	5,96	0,45	1,41	1,43	1,66	1,50	0,14	1,51	1,52	1,58	1,53	0,04	0,63	0,68	0,61	0,64	0,04
PCB 77	2,06	2,23	2,25	2,18	0,10	0,28	0,26	0,24	0,26	0,02	0,53	0,50	0,55	0,53	0,03	0,13	0,14	0,15	0,14	0,01
PCB 81	0,99	0,61	0,71	0,77	0,19	0,63	0,68	0,51	0,61	0,09	0,57	0,58	0,83	0,66	0,15	0,11	0,11	0,11	0,11	0,00
PCB 101	2,47	2,61	2,87	2,65	0,20	1,29	1,26	1,08	1,21	0,12	1,27	1,24	1,32	1,27	0,04	0,47	0,50	0,52	0,50	0,03
PCB 105	3,09	3,51	3,46	3,36	0,23	0,69	0,65	0,58	0,64	0,06	1,07	1,09	1,18	1,11	0,06	0,29	0,31	0,32	0,31	0,01
PCB 114	16,46	15,92	19,81	17,40	2,10	1,13	0,99	0,80	0,97	0,17	1,40	1,20	1,72	1,44	0,26	0,32	0,28	0,29	0,30	0,02
PCB 118	4,13	4,46	4,58	4,39	0,24	0,91	0,83	0,74	0,83	0,08	1,37	1,28	1,64	1,43	0,18	0,41	0,42	0,40	0,41	0,01
PCB 123	1,57	2,47	1,82	1,95	0,47	1,65	1,60	1,15	1,47	0,27	0,67	0,78	1,20	0,88	0,28	0,61	0,58	0,53	0,58	0,04
PCB 126	0,89	1,04	1,14	1,02	0,13	0,55	0,54	0,48	0,52	0,04	0,79	0,74	0,81	0,78	0,03	0,16	0,18	0,17	0,17	0,01
PCB 138	0,97	1,12	1,27	1,12	0,15	1,01	1,03	0,73	0,93	0,17	1,19	0,95	1,50	1,21	0,27	0,49	0,53	0,52	0,51	0,02
PCB 153	1,23	1,43	1,52	1,39	0,15	1,30	1,30	0,96	1,19	0,19	1,74	1,59	1,82	1,72	0,12	0,65	0,81	0,73	0,73	0,08
PCB 156	1,29	1,51	1,60	1,47	0,16	0,90	0,82	0,74	0,82	0,08	1,09	1,08	1,19	1,12	0,06	0,34	0,40	0,38	0,37	0,03
PCB 157	1,23	1,49	1,56	1,43	0,17	0,88	0,82	0,72	0,81	0,08	1,09	1,03	1,22	1,11	0,10	0,29	0,35	0,33	0,33	0,03
PCB 167	1,30	1,53	1,57	1,47	0,15	1,13	1,05	0,95	1,04	0,09	1,26	1,28	1,45	1,33	0,10	0,44	0,51	0,49	0,48	0,04
PCB 169	1,14	1,27	1,37	1,26	0,12	0,62	0,60	0,54	0,59	0,04	0,74	0,75	0,96	0,82	0,12	0,13	0,15	0,13	0,14	0,01
PCB 180	0,83	1,00	1,01	0,95	0,10	0,85	0,85	0,34	0,68	0,30	0,93	0,97	1,04	0,98	0,05	0,39	0,46	0,43	0,43	0,03
PCB 189	0,84	1,02	1,11	0,99	0,14	0,79	0,71	0,66	0,72	0,07	0,90	0,84	1,02	0,92	0,09	0,26	0,31	0,28	0,29	0,03
2,3,7,8-TCDD	NE	NE	NE	NE	-	0,16	0,16	0,16	0,16	0,00	0,31	0,32	0,31	0,31	0,00	0,05	0,06	0,05	0,05	0,01
1,2,3,7,8-PeCDD	0,23	0,28	0,38	0,30	0,08	0,13	0,12	0,12	0,12	0,01	0,23	0,22	0,26	0,24	0,02	0,03	0,03	0,03	0,03	0,00
1,2,3,4,7,8-HxCDD	NE	NE	NE	0,12	-	0,08	0,07	0,07	0,07	0,00	0,12	0,11	0,11	0,11	0,01	0,01	0,01	0,01	0,01	0,00
1,2,3,6,7,8-HxCDD	0,20	0,24	0,33	0,26	0,07	0,07	0,07	0,07	0,07	0,00	0,11	0,10	0,11	0,11	0,01	0,01	0,01	0,01	0,01	0,00
1,2,3,7,8,9-HxCDD	NE	NE	NE	NE	-	0,04	0,04	0,04	0,04	0,00	0,06	0,05	0,05	0,05	0,01	0,01	0,01	0,01	0,01	0,00
1,2,3,4,6,7,8-HpCDD	0,05	0,06	0,07	0,06	0,01	0,03	0,03	0,03	0,03	0,00	0,05	0,03	0,04	0,04	0,01	0,01	0,00	0,00	0,01	0,00
OCDD	0,04	0,04	0,04	0,04	0,00	0,02	0,02	0,02	0,02	0,00	0,04	0,02	0,03	0,03	0,01	0,01	0,00	0,00	0,00	0,00
2,3,7,8-TCDF	0,26	0,33	0,39	0,33	0,06	0,22	0,22	0,20	0,21	0,01	0,28	0,27	0,34	0,30	0,04	0,09	0,10	0,10	0,09	0,01
1,2,3,7,8-PeCDF	0,21	0,26	0,29	0,26	0,04	0,19	0,18	0,17	0,18	0,01	0,25	0,23	0,30	0,26	0,04	0,06	0,06	0,06	0,06	0,00
2,3,4,7,8-PeCDF	0,15	0,18	0,21	0,18	0,03	0,13	0,12	0,12	0,12	0,01	0,18	0,16	0,19	0,18	0,02	0,03	0,04	0,03	0,03	0,00
1,2,3,4,7,8-HxCDF	0,09	0,11	0,12	0,10	0,02	0,08	0,07	0,07	0,07	0,00	0,11	0,09	0,12	0,11	0,01	0,02	0,02	0,02	0,02	0,00
1,2,3,6,7,8-HxCDF	0,08	0,10	0,13	0,10	0,02	0,07	0,06	0,06	0,06	0,00	0,11	0,09	0,11	0,10	0,01	0,02	0,02	0,02	0,02	0,00
1,2,3,7,8,9-HxCDF	NE	NE	NE	NE	-	NE	NE	NE	NE		NE	NE	NE	NE		NE	NE	NE	NE	
2,3,4,6,7,8-HxCDF	0,04	0,05	0,06	0,05	0,01	0,04	0,03	0,04	0,04	0,00	0,06	0,05	0,06	0,05	0,01	0,01	0,01	0,01	0,01	0,00
1,2,3,4,7,8,9-HpCDF	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,00	0,02	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00
1,2,3,4,6,7,8-HpCDF	0,13	0,17	0,21	0,17	0,04	0,11	0,10	0,10	0,10	0,00	0,16	0,12	0,14	0,14	0,02	0,03	0,03	0,03	0,03	0,00
OCDF	0,02	0,03	0,03	0,03	0,01	0,02	0,02	0,02	0,02	0,00	0,03	0,02	0,03	0,03	0,01	0,01	0,00	0,00	0,01	0,00

Annexe 18:

Valeurs BCF calculées et estimées, exprimées en taux de matière grasse, pour les vers de compost

Annexe 18 : BCF calculés ou estimés en considérant les teneurs en POPs rapportées au taux de matière grasse mesuré chez les vers.

Substance	P1*	P2*	P3*	P4*	Moyenne	Ecart-type
PCB 28	NE	28,70	NE	36,79	32,74	11,00
PCB 52	302,06	72,31	73,05	35,23	120,66	110,96
PCB 77	122,84	11,63	29,88	8,02	43,09	49,63
PCB 81	110,51	28,37	32,34	7,36	44,64	71,48
PCB 101	138,12	61,82	65,23	29,62	73,70	41,90
PCB 105	173,07	30,00	56,32	17,27	69,17	64,83
PCB 114	813,29	50,75	71,24	17,52	238,20	366,28
PCB 118	212,10	36,72	62,42	20,79	83,01	79,75
PCB 123	90,97	60,60	51,72	31,48	58,69	23,66
PCB 126	49,18	23,95	37,30	10,17	30,15	16,45
PCB 138	58,10	42,52	60,41	26,82	46,96	14,26
PCB 153	69,91	52,86	69,42	34,28	56,62	15,80
PCB 156	67,76	33,80	48,42	18,85	42,21	19,03
PCB 157	65,64	34,19	49,53	17,87	41,81	18,71
PCB 167	68,77	40,81	58,11	23,14	47,71	18,19
PCB 169	48,64	21,64	35,18	7,22	28,17	17,18
PCB 180	44,90	31,24	40,53	20,65	34,33	10,06
PCB 189	43,60	25,93	37,85	14,06	30,36	12,26
2,3,7,8-TCDD	10,03	7,41	16,88	3,58	9,36	5,74
1,2,3,7,8-PeCDD	19,64	5,19	12,05	2,00	9,72	7,53
1,2,3,4,7,8-HxCDD	5,44	2,43	5,55	1,05	3,25	2,05
1,2,3,6,7,8-HxCDD	14,17	2,57	5,64	1,03	5,85	5,43
1,2,3,7,8,9-HxCDD	NE	1,41	2,81	0,55	1,59	0,99
1,2,3,4,6,7,8-HpCDD	3,74	0,86	2,15	0,47	1,80	1,40
OCDD	2,47	0,62	1,61	0,41	1,28	0,92
2,3,7,8-TCDF	19,50	10,43	16,62	6,47	13,26	5,40
1,2,3,7,8-PeCDF	13,49	7,33	13,20	4,07	9,52	4,25
2,3,4,7,8-PeCDF	9,75	4,85	8,94	2,31	6,46	3,20
1,2,3,4,7,8-HxCDF	5,61	2,55	5,27	1,64	3,77	1,80
1,2,3,6,7,8-HxCDF	6,05	2,30	5,14	1,28	3,69	2,06
1,2,3,7,8,9-HxCDF	NE	NE	NE	NE	NE	-
2,3,4,6,7,8-HxCDF	3,13	1,15	2,63	0,46	1,84	1,14
1,2,3,4,7,8,9-HpCDF	0,73	0,24	0,79	0,15	0,48	0,31
1,2,3,4,6,7,8-HpCDF	11,17	3,37	7,05	2,56	6,04	3,65
OCDF	1,70	0,50	1,39	0,53	1,03	0,58

Annexe 1-:

Valeurs BCF calculées et estimées, exprimées en taux de matière g,, W Y pour les vers de compost

Annexe 19 : BCF calculés ou estimés en considérant les teneurs en POPs rapportées au taux de matière sèche mesuré chez les vers.

Substance	P1	P2	P3	P4	Mean	EC-type
PCB 28	NE	4,04	NE	5,13	4,59	0,77
PCB 52	36,91	10,12	9,52	4,84	15,35	14,57
PCB 77	14,93	1,63	3,91	1,10	5,39	6,47
PCB 81	14,25	3,98	4,18	1,02	5,86	5,78
PCB 101	16,84	8,66	8,51	4,08	9,52	5,32
PCB 105	21,10	4,21	7,37	2,38	8,76	8,48
PCB 114	98,00	7,11	9,33	2,41	29,21	45,95
PCB 118	25,89	5,15	8,19	2,86	10,52	10,47
PCB 123	11,24	8,53	6,74	4,34	7,71	2,91
PCB 126	5,96	3,35	4,87	1,40	3,90	1,98
PCB 138	7,11	5,95	7,93	3,71	6,17	1,84
PCB 153	8,58	7,40	9,09	4,72	7,45	1,95
PCB 156	8,28	4,74	6,33	2,60	5,49	2,41
PCB 157	8,02	4,80	6,47	2,47	5,44	2,38
PCB 167	8,42	5,72	7,61	3,19	6,24	2,32
PCB 169	5,92	3,03	4,60	0,99	3,63	2,12
PCB 180	5,48	4,37	5,30	2,85	4,50	1,20
PCB 189	5,33	3,63	4,93	1,94	3,96	1,53
2,3,7,8-TCDD	1,24	1,04	2,23	0,49	1,25	0,73
1,2,3,7,8-PeCDD	2,37	0,73	1,58	0,28	1,24	0,93
1,2,3,4,7,8-HxCDD	0,67	0,34	0,72	0,14	0,47	0,28
1,2,3,6,7,8-HxCDD	1,72	0,36	0,73	0,14	0,74	0,70
1,2,3,7,8,9-HxCDD	NE	0,20	0,36	0,08	0,21	0,14
1,2,3,4,6,7,8-HpCDD	0,45	0,12	0,28	0,06	0,23	0,17
OCDD	0,30	0,09	0,21	0,06	0,16	0,11
2,3,7,8-TCDF	2,39	1,46	2,18	0,89	1,73	0,68
1,2,3,7,8-PeCDF	1,64	1,03	1,73	0,56	1,24	0,55
2,3,4,7,8-PeCDF	1,19	0,68	1,17	0,32	0,84	0,42
1,2,3,4,7,8-HxCDF	0,69	0,36	0,69	0,23	0,49	0,24
1,2,3,6,7,8-HxCDF	0,74	0,32	0,67	0,18	0,48	0,27
1,2,3,7,8,9-HxCDF	NE	NE	NE	NE	NE	-
2,3,4,6,7,8-HxCDF	0,38	0,16	0,34	0,06	0,24	0,15
1,2,3,4,7,8,9-HpCDF	0,09	0,03	0,10	0,02	0,06	0,04
1,2,3,4,6,7,8-HpCDF	1,36	0,47	0,91	0,35	0,78	0,46
OCDF	0,21	0,07	0,18	0,07	0,13	0,07

L'ADEME EN BREF

L'Agence de l'Environnement et de la Maîtrise de l'Énergie (ADEME) participe à la mise en œuvre des politiques publiques dans les domaines de l'environnement, de l'énergie et du développement durable. Elle met ses capacités d'expertise et de conseil à disposition des entreprises, des collectivités locales, des pouvoirs publics et du grand public, afin de leur permettre de progresser dans leur démarche environnementale. L'Agence aide en outre au financement de projets, de la recherche à la mise en œuvre et ce, dans les domaines suivants : la gestion des déchets, la préservation des sols, l'efficacité énergétique et les énergies renouvelables, les économies de matières premières, la qualité de l'air, la lutte contre le bruit, la transition vers l'économie circulaire et la lutte contre le gaspillage alimentaire.

L'ADEME est un établissement public sous la tutelle conjointe du ministère de la Transition Écologique et Solidaire et du ministère de l'Enseignement Supérieur, de la Recherche et de l'Innovation.

LES COLLECTIONS

DE L'ADEME

∰ ILS L'ONT FAIT

L'ADEME catalyseur: Les acteurs témoignent de leurs expériences et partagent leur savoir-faire.

EXPERTISES

L'ADEME expert : Elle rend compte des résultats de recherches, études et réalisations collectives menées sous son regard.

FAITS ET CHIFFRES

L'ADEME référent: Elle fournit des analyses objectives à partir d'indicateurs chiffrés régulièrement mis à jour.

CLÉS POUR AGIR

L'ADEME facilitateur: Elle élabore des guides pratiques pour aider les acteurs à mettre en œuvre leurs projets de façon méthodique et/ou en conformité avec la réglementation.

HORIZONS

L'ADEME tournée vers l'avenir : Elle propose une vision prospective et réaliste des enjeux de la transition énergétique et écologique, pour un futur désirable à construire ensemble.

TROPHé

LIVRABLES N°1 ET 2 -Synthèse des travaux expérimentaux menés sur le transfert des POPs dans les végétaux et les vers de compost

Résumé Les polychlorobiphényles (PCB) et les dioxines/furannes (PCDD/PCDF) présentent un potentiel important d'accumulation dans les sols, les sédiments et les graisses animales. Leur transfert dans les végétaux potagers notamment et la chaine trophique terrestre est peu documenté.

Les livrables 1 et 2 portent sur les travaux expérimentaux menés in situ sur un ancien site industriel et en laboratoire pour déterminer les facteurs de bioconcentration (BCF), à la fois pour les végétaux potagers (pomme de terre, carotte, salade, haricot, courgette), les graminées et les vers de compost. Ces résultats ont permis de conduire ultérieurement une évaluation des risques sanitaires pour l'Homme (ERS), et une évaluation des risques pour les écosystèmes (éRé).

L'accumulation des polluants organiques persistants (POP) diffère selon la famille chimique avec un transfert davantage marqué pour les PCB par rapport aux PCDD/PCDF. Elle diffère aussi selon les végétaux cultivés et/ou le degré de chloration des composés, mettant en évidence un transfert gazeux des composés les plus légers vis-à-vis des légumes-feuilles. Concernant la chaine trophique terrestre, l'accumulation des composés suit les mêmes tendances que dans les végétaux, avec des transferts plus marqués dans les vers du fait de leur contact avec le sol et de leur alimentation.

Essentiel à retenir

Les valeurs des facteurs de bioconcentration (BCF) sont globalement plus élevées pour les PCB que pour les PCDD/F à la fois pour les végétaux et les invertébrés terrestres - valeurs moyennes de BCF comprises entre 10-2 et 2 pour les vers de compost, et entre 10-4 et 1 pour les végétaux potagers. Quelques valeurs moyennes de BCF sont comprises entre 1 et 15 pour les PCB les moins chlorés (moins de 5 atomes de chlore) au niveau des laitues, et pour la majorité des PCB au niveau des courgettes. Plus de 134 valeurs de BCF ont été obtenues expérimentalement pour les végétaux.

www.ademe.fr

