

Guide pratique Prévention du risque ATEX

« ATmosphère EXplosive »

Octobre 2025

REMERCIEMENTS

Auteurs:

Ont contribué à la rédaction de ce guide lors des travaux initiés par la DGT en 2019 :

DREETS

CHEVALIER Fabien (DDETS Seine Maritime) CHEVALLIER Raphaël (DREETS PACA) FERRAND Laurence (DREETS Grand Est) RICHARD Vincent (DREETS Normandie)

MINISTÈRE DU TRAVAIL ET DES SOLIDARITÉS

CALVEZ Olivier (DGT/CT2) NARDIN Julie (DGT/DASIT1) TOUZALIN Gwennaëlle (DGT/CT3)

MINISTÈRE DE L'AGRICULTURE, DE L'AGROALIMENTAIRE ET DE LA SOUVERAINETÉ ALIMENTAIRE CAUËT Jérôme (SG/BRCTA)

INERIS

CEDARD Laurent (IDE/ATEX) COTTIN Olivier (IDE/ATEX) DEBRAY Bruno (SCI/CERN)

INRS

MARC Florian (ECT) SALLÉ Benoît (ECT)

N.B.: les numéros d'articles mentionnés dans ce guide renvoient tous au Code du travail, sauf mention contraire.

Éditorial

La prévention des risques liés aux atmosphères explosives (ATEX) constitue un enjeu majeur pour la sécurité des travailleurs et la protection de l'environnement. Ces risques, présents dans de nombreux secteurs d'activité, exigent une vigilance accrue et une action concertée de la part de tous les acteurs impliqués.

Au cours des dernières années, de nombreux retours d'expérience ont mis en lumière la persistance des accidents graves liés aux ATEX. Ces incidents, souvent lourds de conséquences, nous rappellent l'importance de la prévention et la nécessité d'une sensibilisation continue. Il est essentiel de partager les leçons apprises et de renforcer les dispositifs de sécurité pour éviter que de tels événements ne se reproduisent.

Dans cette optique, le présent guide a été conçu comme un outil pratique pour accompagner les entreprises, les travailleurs et tous les professionnels concernés par la prévention de ce risque. Il s'appuie sur une expertise technique solide et des retours d'expérience concrets pour offrir des recommandations claires et opérationnelles.

L'amélioration continue de la sécurité dans les environnements à risque ATEX repose sur une démarche collective. Chacun, dans son rôle – employeur, salarié ou prestataire – contribue à la prévention des risques et à la mise en oeuvre de solutions adaptées : l'employeur en tant que responsable de l'évaluation et de la prévention des risques, et les salariés ainsi que les prestataires par leur vigilance et leur implication quotidienne.

Directeur général du Travail Pierre RAMAIN **Directeur général de l'INRS** Stéphane PIMBERT **Directeur général de l'Ineris** Raymond COINTE

Introduction

Le risque d'explosion peut être d'origine nucléaire, électrique, lié aux effets de la surpression dans une installation ou un équipement, à l'utilisation de produits ou de substances chimiques instables ou incompatibles entre elles, ou bien encore lié à la présence d'une atmosphère explosive.

Le risque d'explosion associé à la présence d'une atmosphère explosive (ATEX), dénommé « risque ATEX », concerne de nombreux secteurs d'activité tels que la chimie de synthèse, l'agroalimentaire, la pétrochimie, la plasturgie, la transformation du métal ou du bois, l'utilisation de peinture, de colle, d'adhésif, ou encore le nucléaire. Ce risque d'explosion peut être présent lors de la production, l'utilisation et le stockage d'un produit, mais aussi lors des opérations de maintenance des équipements ou installations.

Les lieux et les activités où une ATEX est susceptible de se former font l'objet d'une réglementation particulière issue de textes européens.

Deux directives encadrent aujourd'hui les dispositions à prendre concernant le risque d'explosion associé à la présence d'atmosphères explosives : la directive 1999/92/CE et la directive 2014/34/UE.

La directive 2014/34/UE fixe les conditions de fabrication et de mise sur le marché des appareils et systèmes de protection destinés à être utilisés en atmosphères explosives. Elle a été transposée en droit français dans le Code de l'environnement (cf. art. L. 557-1 et suivants, R. 557-7-1 à 9 du Code de l'environnement).

La directive 1999/92/CE concerne les prescriptions minimales visant à améliorer la protection en matière de sécurité et de santé des travailleurs susceptibles d'être exposés aux risques associés aux atmosphères explosives. Elle a été transposée dans le Code du travail aux articles R. 4216-31 et R. 4227-42 à 54.

Le retour d'expérience de ces dernières années a conduit l'administration et les préventeurs à rédiger le présent guide dans l'objectif d'accompagner les employeurs dans la mise en oeuvre des dispositions du Code du travail, pour ce qui concerne notamment :

- la prise en compte effective du risque d'incendie et d'explosion, au sein du document unique d'évaluation des risques professionnels (DUERP), accompagné, lorsque la réglementation ATEX est applicable, d'un document relatif à la prévention contre les risques d'explosion comprenant une évaluation du risque explosion spécifique;
- la définition des modalités de circulation et d'intervention des personnels internes et externes en zone ATEX du point de vue organisationnel et technique (équipements de protections adaptés, détection, mesures en ventilation);
- la définition des compétences requises pour superviser ou réaliser des opérations de maintenance sur les installations électriques et non électriques (ex : pompes, compresseurs, agitateurs...) ou sur les équipements de travail situés en zone ATEX.

Aussi, il doit être regardé comme un document utile à l'ensemble des acteurs concernés par la prévention du risque ATEX, que ce soit les fabricants de matériels ATEX, les intégrateurs, les maîtres d'ouvrage, les employeurs et les salariés d'établissements où des activités générant une ATEX sont présentes, des organismes délivrant des formations sur le risque ATEX et leur maîtrise, mais aussi les services d'inspection en charge du contrôle des établissements où un risque ATEX est présent.

Sommaire

1. I	Le risque ATEX	8
1. 1	Le champ d'application de la réglementation ATEX (Code du travail)	8
1. 2	Qu'est-ce qu'une ATEX ou ATmosphère EXplosive ?	13
1. 3	Acteurs et autres réglementations	17
2.	La démarche de prévention du risque ATEX dans les lieux de travail	20
2.1	Introduction	20
2.2	Formalisation du déroulement de la démarche de prévention du risque ATEX	23
2.3	Identification des produits mis en œuvre ou émis au sein de procédés	24
2.4	Analyse du risque ATEX	
2.5	Définition des mesures techniques et organisationnelles	34
2.6	Élaboration du document relatif à la protection contre les explosions – DRPCE	37
3.	Formation des travailleurs dans le domaine ATEX	39
3.1	Introduction	39
3.2	Définition des différents niveaux d'exigence des formations	41
3.3	Identification et niveau de formation acceptable pour divers postes de travail en relation	
	avec le risque d'explosion	48
3.4	Accueil visiteur et information à l'entrée du site	50
3.5	Compétence des formateurs	50
4.	Interventions en zone ATEX	51
4.1	Introduction	51
4.2	Personne en charge d'une intervention en zone ATEX	52
4.3	Analyse de risque liée à l'intervention en zone ATEX	52
4.4	Les opérations de maintenance	57
4.5	Le contrôle de l'atmosphère avant/pendant/après l'intervention	59
5.	Les appareils ATEX	62
5.1	Sélection et installation d'équipements en zone ATEX	
5.2	Résumé et chronologie de la réglementation	65
5.3	Matériels hors champ d'application de la directive n° 2014/34/UE	80
5.4	Cas particuliers d'application de la directive n° 2014/34/UE	
5.5	Installation du matériel en zone ATEX	
5.6	Inspection initiale et périodique des appareils ATEX et de leur installation	
5.7	Entretien et réparation du matériel ATEX	
5.8	Synthèse	90

ANNEXES	93
Annexe 1 - Tableau récapitulatif des principaux modes de protection	94
Annexe 2 – Exemple de DRPCE	96
I. Description de la société, du site, des procédés et des activités	96
Description des lieux et emplacements de travail	96
II. Évaluation du risque d'explosion	96
La définition des zones	96
Prévention du risque incendie et explosion, sources d'inflammation potentielles, règles de protection adoptées	97
III. Règles d'exploitations	98
Règles de gestion du parc matériel	98
Règles de conception : travaux neufs et modifications	98
Politique d'achat	99
Règles d'entretien et de maintenance	99
Entreprises sous-traitantes	99
IV. Évaluation et mise en conformité des installations existantes	99
L'évaluation de la conformité	99
Règles d'évaluation de la conformité du matériel existant	99
Matériel de protection/détection	99
Annexe 3 – Glossaire	100

1.1 Le champ d'application de la réglementation ATEX (Code du travail)

La réglementation encadrant les activités pouvant être à l'origine d'une atmosphère explosive (ATEX) concerne les employeurs, mais également les maîtres d'ouvrage.

Afin de comprendre le cadre réglementaire dans lequel s'inscrivent les exigences de la réglementation ATEX, il est important de rappeler les exigences générales techniques et organisationnelles concernant les risques d'incendie et d'explosion (hors ATEX) qui incombent:

- au maître d'ouvrage dès lors que la destination des locaux de travail est clairement définie (ex : activité de soudage, fabrication/formulation de produits chimiques...);
- à l'employeur qui va utiliser les locaux de travail mis à sa disposition dans le respect des conditions techniques et organisationnelles définies par/avec le maître d'ouvrage.

a. Dispositions générales :

En application du Code du travail, le maître d'ouvrage qui entreprend la construction ou l'aménagement de bâtiments destinés à recevoir des travailleurs, dont l'usage présente un risque d'incendie ou d'explosion, est soumis en particulier aux articles :

- R. 4216-21 et 31 qui prescrivent que ces bâtiments sont conçus et réalisés de manière à respecter les dispositions relatives à la prévention des explosions, déclinées aux articles R. 4227-42 à 54 (exigences de la réglementation ATEX);
- R. 4215-12 qui impose que les installations électriques tiennent compte de ce risque, dès leurs conceptions;
- R. 4216-22 qui demande que les locaux ou les emplacements dans lesquels doivent être entreposées ou manipulées des substances ou

préparations classées explosives, comburantes ou extrêmement inflammables, ainsi que des matières dans un état physique susceptible d'engendrer des risques d'explosion ou d'inflammation instantanée, disposent **d'une** ventilation permanente appropriée.

L'employeur a, quant à lui, des obligations « générales » à respecter en matière de prévention du risque d'incendie ou d'explosion dont notamment l'article R. 4227-22 qui prévoit que « les locaux ou les emplacements dans lesquels sont entreposées ou manipulées des substances ou préparations classées explosives, comburantes ou extrêmement inflammables, ainsi que des matières dans un état physique susceptible d'engendrer des risques d'explosion ou d'inflammation instantanée, ne contiennent aucune source d'ignition telle que foyer, flamme, appareil pouvant donner lieu à production extérieure d'étincelles ni aucune surface susceptible de provoquer par sa température une auto-inflammation des substances, préparations ou matières précitées. Ces locaux disposent d'une ventilation permanente appropriée.»

Les exigences de la réglementation ATEX viennent compléter les dispositions réglementaires précitées afin de tenir compte de la particularité des produits pouvant être à l'origine d'une ATEX.

b. Dispositions spécifiques ATEX:

Les employeurs mentionnés à l'article L. 4111-1 du Code du travail (qui peuvent également être maîtres d'ouvrage), effectuant des activités impliquant une ou des substance(s) susceptible(s) de générer une atmosphère explosive, sont soumis, en particulier, aux dispositions issues de la transposition de la directive 1999/92/CE du 16 décembre 1999 concernant les prescriptions minimales visant à améliorer la protection en matière de sécurité et de santé des travailleurs susceptibles d'être exposés au risque d'atmosphères explosives :

 articles R. 4227-42 à 57 (cf. section VI du chapitre VII du titre II du livre II de la quatrième partie du Code du travail);

- arrêté du 8 juillet 2003 relatif à la protection des travailleurs susceptibles d'être exposés à une atmosphère explosive;
- arrêté du 8 juillet 2003 complétant l'arrêté du 4 novembre 1993 relatif à la signalisation de sécurité et de santé au travail;
- arrêté du 28 juillet 2003 relatif aux conditions d'installation des matériels électriques dans les emplacements où des atmosphères explosives peuvent se présenter.

Afin de déterminer si un employeur est soumis ou non à ces dispositions, il est nécessaire d'expliciter plusieurs notions notamment celles d'atmosphère explosive, de substance inflammable/combustible et de sources d'inflammation (cf. § 1.2.1) et de tenir compte de l'ensemble des articles relatifs aux champs d'application (cf. art. L. 4221-1, R. 4221-1, R. 4227-1 et R. 4227-421).

Les dispositions réglementaires relatives au risque ATEX s'appliquent aux **lieux de travail** tels que définis à l'article R. 4221-1² y compris dans les mines, carrières et leurs dépendances³. Tout lieu où exerce un travailleur doit par conséquent faire l'objet d'une évaluation des risques et notamment celle du risque ATEX s'il y a lieu.

En plus des dispositions applicables aux employeurs et aux maîtres d'ouvrage, la réglementation ATEX concerne aussi les fabricants de matériels et d'équipements de sécurité destinés à être utilisés en atmosphère explosive. Les dispositions applicables sont issues de la directive 2014/34/UE du 26 février 2014 relative à l'harmonisation des législations des États membres concernant les appareils et les systèmes de protection destinés à être utilisés en atmosphères explosibles.

Cette directive a été transposée en droit français dans le Code de l'environnement (cf. art. L. 557-1 et suivants, R. 557-7-1 à 9 du Code de l'environnement).

1.1.1 Les activités concernées

De très nombreux domaines d'activité sont concernés par le risque ATEX. Il est donc impossible d'en dresser une liste exhaustive. Les industries chimique et pétrochimique sont naturellement concernées, mais des risques de formation d'ATEX existent aussi, par exemple dans l'industrie agroalimentaire, associés aux pulvérulents combustibles (farine, lait en poudre, sucre en poudre, arômes...) ou aux liquides inflammables (alcool), dans l'industrie pharmaceutique, dans l'industrie de transformation des métaux (poussières métalliques issues de ponçage), dans l'industrie papetière, dans l'industrie du bois, dans l'industrie nucléaire et dans le recyclage des déchets notamment de matières plastiques...

Par ailleurs, certaines TPE, telles que les boulangeries et salons de coiffure, ont déjà été confrontées à des explosions en raison de la présence de farine en suspension pour l'un et de l'utilisation d'un générateur d'aérosol inflammable de laque pour l'autre. En ce sens, l'évaluation du risque ATEX doit être réalisée par tous les employeurs concernés quelle que soit la taille de l'établissement. À cet effet, ils peuvent se rapprocher des services de prévention de santé au travail, des Carsat et autres préventeurs pour les accompagner dans la réalisation de cette évaluation.

¹ L. 4121-1 : Lieu de travail – Hygiène, salubrité.

R. 4227-1: Risques incendie/explosion – Champ d'application.

 $R.\ 4227-42: Risques\ incendie/explosion-Pr\'{e}vention\ des\ explosions-Champ\ d'application.$

² R. 4221-1: On entend par « lieux de travail » les lieux destinés à recevoir des postes de travail situés ou non dans les bâtiments de l'établissement, ainsi que tout autre endroit compris dans l'aire de l'établissement auquel le travailleur a accès dans le cadre de son travail. Les champs, bois et autres terrains faisant partie d'un établissement agricole ou forestier, mais situés en dehors de la zone bâtie d'un tel établissement, ne sont pas considérés comme des lieux de travail.

³ Depuis 2009, la quatrième partie du Code du travail s'applique aux mines, aux carrières et à leurs dépendances (cf article L. 4111-4). Les titres Grisou et Poussières inflammables du RGIE sont également toujours en vigueur à la date de publication du guide.

1.1.2 Les exclusions

Certains lieux de travail ou activités énumérés ci-dessous ne relèvent pas des articles R. 4227-42 à 54 du Code du travail. Pour autant, cela ne signifie pas que l'employeur réalisant ces activités n'a pas à respecter d'autres exigences de sécurité.

Sont exemptés, au titre de l'article R. 4227-42, les lieux de travail ou les activités suivants :

> 1° zones servant directement au traitement médical de patients et pendant celui-ci

La première exclusion concerne les lieux servant au traitement médical et pendant celui-ci, c'est-à-dire l'ensemble des mesures appliquées par un professionnel de santé à une personne vis-à-vis d'une maladie, afin de l'aider à guérir, de soulager ses symptômes, ou encore d'en prévenir l'apparition. Il s'agit, par exemple, de la salle d'opération. Certaines substances utilisées pour soigner des patients sont inflammables ou combustibles. Cette activité est soumise à des règles particulières.

A contrario, toutes les zones ne servant pas au traitement des patients, par exemple le stockage de produits de nettoyage, la pharmacie, la stérilisation, la salle de préparation des traitements, la chaufferie... relèvent de la réglementation ATEX.

> 2° utilisation des appareils à gaz

L'utilisation des appareils à gaz visée par la directive 2009/142/CE (venue remplacer la directive 90/396/CEE) concernant les appareils à gaz est également exclue de l'application de la réglementation ATEX.

Sont concernés par cette exclusion : l'utilisation des appareils brûlant des combustibles gazeux utilisés pour la cuisson, la réfrigération, la climatisation, le chauffage, la production d'eau chaude, l'éclairage ou le lavage, ainsi que les brûleurs à air soufflé et les corps de chauffe équipés de ces brûleurs.

Néanmoins, la directive 2009/142/CE excluant de son champ d'application les appareils spécifiquement « destinés à un usage dans des processus industriels utilisés dans des établissements industriels » (tels que les fours ou chaudières industriels), l'utilisation de ces équipements est par conséquent soumise aux dispositions de la réglementation ATEX.

Il en ressort que les emplacements contenant des appareils à gaz soumis à la directive 2009/142/CE et installés conformément à la notice technique ne sont pas soumis à la réglementation ATEX sous réserve que l'environnement de l'appareil à gaz (par exemple le raccordement de gaz, le réseau d'alimentation des vannes...), après analyse du risque, ne génère pas d'ATEX et que ces emplacements n'abritent pas d'autres activités susceptibles de générer un risque de formation d'ATEX.

> 3° fabrication, maniement, utilisation, stockage et transport d'explosifs et de substance chimiques instables

La dernière exclusion mentionnée à l'article R. 4227-42 concerne la fabrication, le maniement, l'utilisation, le stockage et le transport d'explosifs et de substances chimiques instables. Les explosifs sont des substances ou objets destinés à être utilisés pour les effets de leur explosion. La fabrication, le stockage et le transport interne de ces explosifs sont des activités soumises aux articles R. 4462-1 à 36 du Code du travail relatifs à la prévention du risque pyrotechnique. En ce qui concerne l'utilisation d'explosifs, il existe des règles spécifiques pour leur utilisation dans le BTP (notamment dans le cadre des travaux souterrains) ou le domaine agricole (cf. décret n° 87-231 du 27 mars 1987 concernant les prescriptions particulières de protection relatives à l'emploi des explosifs dans les travaux du bâtiment, les travaux publics et les travaux agricoles).

Des informations complémentaires sur les activités pyrotechniques sont disponibles dans l'instruction DGT/CT3/2017/235 du 26 juillet 2017 relative à l'application du chapitre II du titre VI du livre IV de la quatrième partie du Code du travail : « Prévention du risque pyrotechnique ».

Pour autant, au sein d'un établissement réalisant la fabrication, le maniement, l'utilisation, le stockage et le transport d'explosifs et de substances chimiques instables, les activités et zones impliquant le stockage ou la manipulation de substances inflammables ou combustibles relèvent de la réglementation ATEX. L'article R. 4462-13 précise, en ce sens, que les installations présentant un risque caractérisé d'incendie ou d'explosion non pyrotechnique, telles que les dépôts de produits inflammables n'entrant pas dans la fabrication des substances ou objets explosifs, dépôts de bois

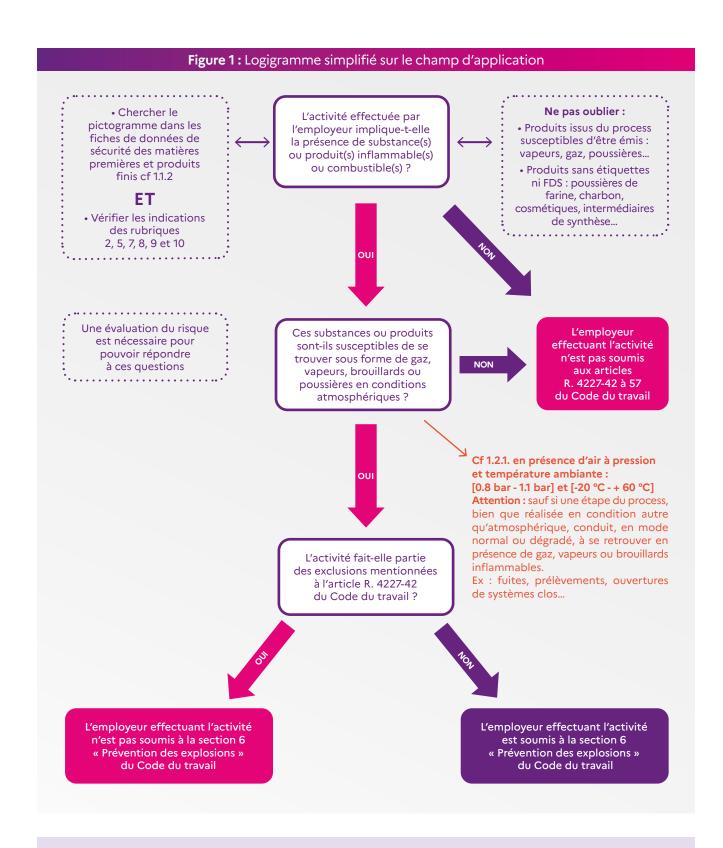
ou de papiers, de pneumatiques et de cartons, menuiseries, dépôts de gaz comprimés, sont situées hors de l'enceinte pyrotechnique ou disposées de telle sorte que tout incident survenant dans l'une de ces installations n'affecte pas les conditions de sécurité dans l'enceinte pyrotechnique⁴.

La directive 1999/92/CE mentionne d'autres exclusions, qui n'ont pas été reprises explicitement dans l'article R. 4227-42 bien qu'elles soient effectivement applicables. Ainsi, les dispositions des articles R. 4227-42 à 54 ne s'appliquent pas à l'utilisation de moyens de transport par terre, mer, voies navigables et air auxquels s'appliquent les dispositions pertinentes des accords internationaux (par exemple ADNR, ADR, OACI, OMI, RID) et les directives communautaires qui donnent effet à ces accords. L'utilisation de ces moyens est soumise au niveau national à des dispositions prévues dans des arrêtés tels que celui du 29 mai 2009 modifié, relatif aux transports de marchandises dangereuses par voies terrestres dit « arrêté TMD ».

En revanche, les moyens de transport destinés à être utilisés dans une atmosphère explosive ne sont pas exclus. Ainsi, un hydrocureur destiné à aspirer des eaux ou des matières polluées par des hydrocarbures pourrait être soumis à la réglementation ATEX du fait que l'emplacement où il sera utilisé est susceptible d'être un emplacement dangereux au titre de la réglementation ATEX (« Zone ATEX »).

Pour terminer, dans le cas où l'atmosphère explosive est générée au sein d'une machine telle que définie à l'article R. 4311-4⁵, le fabricant de la machine prend en compte la présence du risque d'explosion au sein de la machine et la conçoit pour éviter l'explosion. Pour ce faire, les exigences mentionnées à l'annexe 1 de l'article R. 4312-1⁶ et en particulier les exigences 1.5.6 et 1.5.7 s'appliquent (ex : broyeur de cacao ou de sucre où le risque d'explosion existe en interne de l'équipement mais dans lequel, habituellement et en dehors de tout défaut, il n'existe pas de source d'ignition).

En revanche, la réglementation ATEX doit être mise en œuvre dans l'espace autour de la machine si une ATEX est présente ou générée par la machine elle-même (ex : installation d'un équipement à proximité de l'évent d'une machine, d'un réacteur, d'une étuve... rejetant des émissions combustibles dans l'air).


1.1.3 Logigramme simplifié sur le champ d'application

Le logigramme simplifié suivant permet de déterminer si un employeur est ou non soumis aux articles R. 4227-42 et suivants.

⁴ À noter que dans le cadre de l'instruction des études de sécurité du travail (EST), l'inspecteur des Poudres et Explosifs (IPE) peut identifier des « facteurs aggravants » ou « sources d'agression » comme des poussières, vapeurs ou solvants inflammables issus du process ou dans l'environnement du process qui peuvent initier ou enflammer un explosif (ex : passage de granulats de substances explosives à travers des trémis pour ensachage qui émet des poussières, vapeurs de solvants issues du process de fabrication des explosifs...). Dans ce cas, l'IPE exigera que des mesures de prévention spécifiques soient indiquées dans l'EST et que la réglementation ATEX, sans rentrer dans le détail de celle-ci, soit considérée afin de couvrir ce « risque aggravant ». La non-considération de ce dernier peut conduire l'IPE à donner un avis négatif dans le cadre de la demande d'approbation de l'EST.

⁵ R. 4311-4 : Équipements de travail en conception : équipements de travail visés/soumis aux règles de mise sur le marché.

⁶ R. 4312-1 : Équipements de travail en conception : règles techniques **pour équipements neufs/considérés comme neufs** (renvoi aux prescriptions techniques à l'annexe I de la partie IV du livre III du titre I du Code du travail).

À noter que soumis ou non à l'application de la réglementation ATEX, le maître d'ouvrage et/ou l'employeur n'est nullement dispensé de ses autres obligations relatives à la prévention des risques d'incendies et d'explosions pour lesquelles d'autres règles en matière de sécurité des travailleurs restent applicables. On pourra citer notamment les articles L. 4121-2 et L. 4121-3⁷, R. 4121-1⁸, R. 4215-1 et suivants (risque électrique), R. 4216-18 (chauffage des locaux), R. 4412-1 et suivants du Code du travail⁹.

⁷ L. 4121-2 et 3 : Principes généraux de prévention – Obligations de l'employeur.

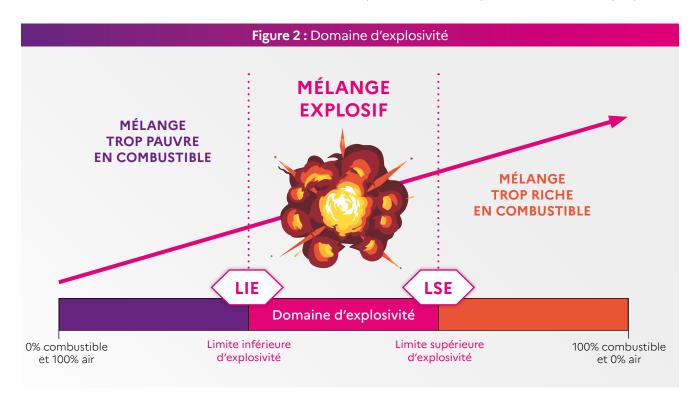
⁸ R. 4121-1: Résultat de l'évaluation des risques transcrit au sein d'un document unique d'évaluation des risques professionnels (DUERP).

⁹ R. 4412-17 et 18 Risque chimique – Mesures et moyens de prévention – Stockage, manutention et isolement des agents chimiques incompatibles – Gestion des sources d'ignition et atténuation des effets d'une explosion ou d'un incendie.

1.2 Qu'est-ce qu'une ATEX ou ATmosphère EXplosive?

1.2.1 Définition

Une atmosphère explosive (ATEX) est un mélange avec l'air, dans les conditions atmosphériques, de substances inflammables ou combustibles sous forme de gaz, vapeurs, brouillards ou poussières, dans lequel, après inflammation, la combustion se propage à l'ensemble du mélange non brûlé (cf. art. R. 4227-43).


L'explosion, à la différence de l'incendie, est une combustion quasiment instantanée. Elle provoque un effet de souffle accompagné de flammes et de chaleur.

En conséquence, on parlera d'atmosphère « explosible » dès lors qu'un mélange mélange en combustible/air n'a pas atteint une concentration idéale de chacun de ses constituants pour qu'une explosion puisse survenir.

Quatre éléments de définition doivent être respectés pour être en présence d'une atmosphère explosive :

> 1^{er} élément : présence de substances combustibles ou inflammables sous forme de gaz, brouillards, vapeurs ou poussières en suspension

L'arrêté du 8 juillet 2003 précise que « les substances inflammables ou combustibles sont considérées comme des substances pouvant donner lieu à la formation d'une atmosphère explosive, à moins qu'il ne soit avéré, après examen de leurs propriétés,

Elle est à distinguer d'une atmosphère explosible, qui est une atmosphère susceptible de devenir explosive par suite de conditions locales et opérationnelles, notamment lorsque les concentrations atteintes dans le milieu sont suffisantes (cf. art. 2 de la directive 2014/24/UE). En effet, lorsqu'un gaz ou des poussières inflammables sont en suspension dans l'air, ce mélange combustible/air n'est pas forcément explosif tant que n'est pas atteinte une certaine limite de concentration combustible/air qui rend l'atmosphère potentiellement explosive (au contact d'une source d'ignition).

qu'elles ne sont pas en mesure de propager en elles-mêmes une explosion lorsqu'elles sont mélangées avec l'air ».

Ainsi, les substances à prendre en considération sont non seulement les substances définies réglementairement comme inflammables dans le règlement n° 1272/2008 dit « CLP » relatif à la classification, à l'étiquetage et à l'emballage des substances et des mélanges mais aussi les substances combustibles qui, du fait des conditions dans lesquelles elles sont mises en œuvre, peuvent former un mélange inflammable avec l'air.

Par exemple, une poudre combustible (farine de blé, poussière de bois...) peut ne pas être un solide inflammable au sens du règlement CLP, et pour autant, elle forme une ATEX lorsqu'elle est mise en suspension dans l'air.

Il en va de même d'une huile hydraulique et de certaines huiles minérales composées essentiellement d'hydrocarbures dont le point d'éclair peut être élevé, ce qui les rendent non inflammables au sens du règlement CLP mais qui, mises sous forme d'un brouillard ou chauffées par un équipement ou à proximité d'un feu, peuvent former une ATEX.

Ainsi, sont concernés en particulier :

- > les substances et mélanges classés inflammables au titre du règlement CLP
 - les gaz et mélanges de gaz inflammables au sens du règlement CLP, par exemple le méthane, le propane, le butane, le monoxyde de carbone, l'hydrogène, le sulfure d'hydrogène;
 - •les liquides inflammables au sens du règlement CLP, par exemple l'éthanol, l'acétone, le pentane;
 - les solides classés inflammables selon le règlement CLP, par exemple le phosphore rouge, le pentachlorobenzène...

Définitions du règlement n° 1272/2008 dit « CLP » :

- gaz inflammable (§ 2.2.1 du règlement) : un gaz ou un mélange de gaz ayant un domaine d'inflammabilité en mélange avec l'air à 20 °C et à une pression normale de 101,3 kPa;
- liquide inflammable (§ 2.6.1 du règlement) : un liquide ayant un point d'éclair ne dépassant pas 60 °C;
- matière solide inflammable (§ 2.7.1 du règlement): une substance ou un mélange solide qui est facilement inflammable, ou qui peut provoquer ou aggraver un incendie en s'enflammant par frottement. Les matières solides facilement inflammables sont des substances ou mélanges pulvérulents, granulaires ou pâteux, qui sont dangereux s'ils peuvent prendre feu facilement au contact bref d'une source d'inflammation, telle qu'une allumette qui brûle, et si la flamme se propage rapidement.

- > les substances et mélanges combustibles impactés par les conditions d'un procédé
 - les liquides combustibles qui, du fait des conditions dans lesquelles ils sont mis en œuvre ou de dysfonctionnements du procédé, sont susceptibles de former des vapeurs ou brouillards, par exemple les liquides combustibles utilisés sous haute pression dans un procédé pouvant conduire à leur fractionnement (spray, fuite d'huile de lubrification sur une machine tournante...) qui peuvent créer une ATEX en cas de fuite dans l'environnement immédiat de cette dernière;
 - les autres liquides combustibles si les conditions de mise en œuvre incluant des dysfonctionnements prévisibles peuvent conduire à une élévation de leur température au-delà de leur point d'éclair (cf. figure 7 sur la notion de point d'éclair);
 - les solides combustibles finement divisés, par exemple les poussières de bois, d'amidon, de farine, de charbon, de coton ou de métal comme l'aluminium. On considère que le risque de formation d'ATEX diminue fortement lorsque le diamètre médian des particules est supérieur à 500 µm (0,5 mm). Néanmoins, le risque doit être apprécié en fonction du contexte de mise en œuvre. Par exemple, le blé (diamètre médian de quelques millimètres) mélangé à des poussières de blé peut former une ATEX lorsqu'il est déversé dans un silo. Dans ce cas, ce sont les particules fines issues du blé qui, restant en suspension, forment l'ATEX.

Ces deux catégories de substances et mélanges inflammables et combustibles sont des agents chimiques dangereux au sens de l'article R. 4412-3 du Code du travail. Les matières inflammables à considérer sont donc non seulement celles mises en œuvre ou produites dans l'entreprise, mais aussi celles résultant de dérives possibles du procédé, de défaillances ou de réactions parasites (cf. § 2.2.2). Il conviendra, par exemple, de considérer l'hydrogène potentiellement produit lors de réactions entre des acides et des métaux (ex : poussières métalliques) ou généré par électrolyse (ex : zone de chargement des batteries au plomb de chariots automoteurs) ou le biogaz (mélange composé majoritairement de méthane et de dioxyde de carbone) résultant notamment d'une fermentation de matière organique (ex: traitement par méthanisation des boues de stations d'épurations).

> 2e élément : présence d'air

L'oxygène de l'air est un comburant. C'est-à-dire une substance qui va favoriser la réaction de combustion. Sur le plan réglementaire, les mélanges formés par une substance inflammable avec des comburants autres que l'oxygène de l'air (par exemple des peroxydes ou du protoxyde d'azote) n'entrent pas dans le champ de la réglementation ATEX. Pour autant, l'employeur n'est pas dispensé d'évaluer le risque d'explosion associé et de mettre en œuvre les mesures appropriées afin de le maîtriser (cf. la partie Prévention du risque chimique R. 4412-3 et suivants du Code du travail et notamment le R. 4412-17 concernant les conditions de stockage des comburants et produits inflammables).

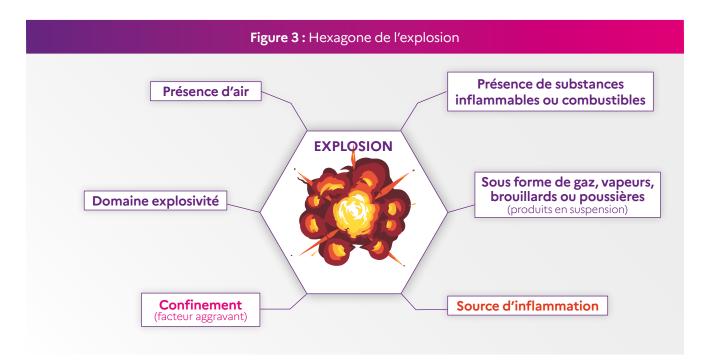
Cependant, en cas de présence simultanée d'air et d'un autre comburant, les exigences de la réglementation ATEX s'appliqueront en tenant compte de l'effet combiné de ces deux derniers.

> 3° élément : être dans les conditions atmosphériques

Cela concerne la température et la pression du mélange de la substance inflammable ou combustible dans l'air. Les températures et pressions limites caractérisant des conditions atmosphériques ne sont pas définies dans le Code du travail. Le guide d'application de la directive 2014/34/UE précise qu'une température comprise entre -20 °C et 60 °C et une pression comprise entre 0,8 bar et 1,1 bar correspondent à des conditions atmosphériques. Ces limites ne doivent pas être considérées dans un sens trop restrictif, en particulier en ce qui concerne la température, et impliquent des considérations complémentaires telles que les situations figurant dans l'encadré.

La formation d'une ATEX peut être aussi issue de **conditions non atmosphériques**. Par exemple :

• le chauffage d'un produit ayant un point d'éclair au-delà de 60 °C qui va émettre des vapeurs susceptibles de s'enflammer (alors qu'à température ambiante il n'en émettrait pas en quantité suffisante pour être dans son domaine d'explosivité). Si ce dernier se retrouve ensuite sous forme de vapeurs dans les conditions atmosphériques, il créera une ATEX au sens de ladite réglementation et les obligations inhérentes à cette dernière devront être mises en œuvre;


- le fuel qui se trouve à 300 °C dans un procédé générera une ATEX s'il se retrouve, en cas de fuite, à l'extérieur dans les conditions atmosphériques ambiantes;
- dans le cas d'un procédé effectué au sein d'un réacteur fermé à une pression de 3 bars (conditions non atmosphériques) comprenant un mélange de substances inflammables et d'air, ce procédé ne sera pas en tant que tel visé par la réglementation ATEX. Néanmoins, en cas d'ouverture ou de fuites, le dégagement de vapeurs de produits inflammables dans l'air ambiant (conditions atmosphériques) conduira immanquablement à la formation d'une ATEX et par conséquent à l'application de ladite réglementation;
- dans le cas d'un bac de gasoil (point d'éclair d'environ 55 °C), si la température interne dépasse occasionnellement dans l'année les 55 °C du fait des conditions météorologiques, le risque ATEX doit être évalué et un zonage doit être défini.

Dans tous les cas, le fait qu'un mélange d'une substance inflammable ou combustible et d'oxygène de l'air soit dans des conditions non atmosphériques ne dispense pas l'employeur d'évaluer le risque et de mettre en œuvre des mesures en vue de le maîtriser.

> 4° élément : après inflammation, la combustion se propage à l'ensemble du mélange

Le mélange doit donc être dans son domaine d'explosivité ou d'inflammabilité (cf. figure 2).

En résumé, la présence d'une substance inflammable/combustible en suspension et en mélange dans l'air à une concentration située dans le domaine d'explosivité, d'une source d'inflammation et d'un éventuel confinement (facteur aggravant) constitue l'hexagone de l'explosion (cf. figure 3). Le confinement n'est pas une condition nécessaire pour générer une explosion mais un facteur aggravant les conséquences de l'explosion.

1.2.2 Comment repérer un risque ATEX? Qu'est-ce qui doit alerter?

À moins qu'il ne soit avéré, après examen de leurs propriétés, qu'elles ne sont pas en mesure de propager en elles-mêmes une explosion, les substances combustibles ou inflammables mélangées avec l'air sont considérées comme pouvant donner lieu à la formation d'ATEX.

Pour les substances et mélanges répondant à l'obligation de rédaction d'une fiche de données de sécurité (FDS) telle que prévue à l'article 31 et l'annexe II du règlement n° 1907/2006 dit « REACH », les informations intéressant la mise en œuvre de la réglementation ATEX sont notamment disponibles au sein de la FDS des produits aux rubriques :

- 2 « Identification des dangers » et 3 « Composition/Informations sur les composants »;
- 5 « Mesures de lutte contre l'incendie » ;
- 7 « Manipulation et stockage » : les mesures techniques, les précautions à prendre, les conseils d'utilisation, de stockage, les matières incompatibles...;
- 8 « Contrôle de l'exposition et protection individuelle » : présence de mesures d'ordre technique telles que la ventilation générale du local, les installations électriques antidéflagrantes, les équipements de protection individuelle spécifiques...;

- 9 « Propriétés physiques et chimiques » : état physique, point d'éclair, limites inférieure et supérieure d'inflammabilité ou d'explosivité (LII, LSI ou LIE, LS)...;
- 10 « Stabilité-réactivité » : conditions ambiantes telles que lumière, chaleur, chocs, flammes... ou produits de décomposition dangereux (cf. rubrique 10.6).

Le risque ATEX ne faisant pas partie des classes de danger au sens du règlement CLP, il n'y a donc pas de classification ni d'étiquetage des substances ou mélanges pouvant être à l'origine d'une ATEX. Cependant, sans être suffisante, la présence du pictogramme inflammable et des mentions de danger associées doit alerter sur ce risque ATEX (cf. rubrique 2):

- H220 Gaz extrêmement inflammable;
- H221 Gaz inflammable;
- H224 Liquide et vapeurs extrêmement inflammables;
- H225 Liquide et vapeurs très inflammables ;
- H228 Matière solide inflammable.

Figure 4: pictogramme flamme (SGH 02) et exemples de mentions de danger associées

Le risque ATEX peut être indiqué de façon plus ou moins explicite dans la fiche de données de sécurité (FDS) d'un produit à différentes rubriques (les rubriques 5, 7, 8, 9 et 10). Les formulations peuvent être variées :

- peut former des mélanges explosibles dans l'air (c'est la formulation la plus explicite);
- sensible à l'électricité statique ;
- maintenir loin de toute source d'inflammation en cas de formation de vapeurs;
- utiliser du matériel antidéflagrant ;
- mettre à la terre lors de transferts.

En ce qui concerne les poussières émises au cours d'un process: en dehors des matières premières en poudre fine connues qui sont classées « H228 Matière solide inflammable », identifiées par un pictogramme inflammable et pour lesquelles il existe des informations spécifiques au sein des FDS, il sera indispensable de déterminer les dangers et risques spécifiques des autres poussières combustibles en investiguant la littérature associée au risque d'explosion des poussières.

Pour les autres substances et mélanges ne faisant pas l'objet de l'obligation de rédaction d'une FDS (produits alimentaires, pharmaceutiques, cosmétiques...) ou issus d'un procédé (poussières métalliques, poussières de bois...), une recherche bibliographique et technique se révélera nécessaire pour ne pas négliger le risque ATEX dans le cadre de l'évaluation des risques.

On pourra, en ce sens, trouver appui auprès des organismes de préventions (Carsat et INRS, OPPBTP, MSA, Service de prévention et de santé au travail...), des préventeurs spécialisés (Ineris, LCIE...) et des représentants de la profession.

Les caractéristiques d'explosivité sont évaluées au moyen d'essais normalisés. Il s'agit, par exemple, pour les gaz, des limites inférieures et supérieures d'explosivité (LIE, LSE), pour les liquides, du point d'éclair, pour les poussières, de la concentration minimale d'explosion (CME).

Les conditions minimales pour qu'un produit (sous forme de gaz, liquide ou poussières) puisse former une ATEX et s'enflammer sont :

LIE ≤ Concentration de **GAZ** ≤ LSE Concentration de **POUSSIÈRES** en SUSPENSION ≥ CME Température du **LIQUIDE** ≥ point d'éclair

Pour plus de détails, voir § 2.3.1 du présent guide.

Remarque importante: la prise en considération des informations des FDS et, plus largement, la connaissance exhaustive des émissions potentielles issues des process et de leurs dangerosités intrinsèques sont essentielles à la démarche d'évaluation du risque ATEX. Au même titre que le risque chimique, biologique ou liés aux rayonnements ionisants, la caractérisation du danger constitue la base fondamentale de toute évaluation des risques permettant de définir les mesures de prévention et de protection adaptées. Dans bien des cas, une approche globale du risque ne pourra se suffire à elle-même.

1.3 Acteurs et autres réglementations

1.3.1 Acteurs

> Rôle de la représentation du personnel (CSE et CSSCT)

Le comité social et économique ou CSE (L. 2311-1 et suivants) participe à la préparation de la formation à la sécurité (cf. art. R. 4143-1) et donne son avis sur les rapports et programmes annuels, donc notamment sur la mise en œuvre de la démarche ATEX (cf. art. L. 2312-27). Il est consulté sur la liste des postes liés à la sécurité de certaines installations (cf. art. L. 4523-2 et R. 4523-1) et avant toute décision de sous-traiter une activité à une entreprise extérieure appelée à réaliser une interventi on pouvant présenter des risques particuliers en raison de sa nature ou de la proximité de l'installation (cf. art. L. 4523-2). Il peut consulter le document unique (cf. art. R. 4121-1) et par conséquent le DRPCE qui lui est annexé comprenant l'évaluation du risque ATEX.

Dans les entreprises comptant au moins 50 salariés, le CSE, peut également décider de recourir à un expert habilité lorsqu'un risque grave, identifié et actuel, révélé ou non par un accident du travail, une maladie professionnelle ou à caractère professionnel, est constaté dans l'établissement et en cas d'introduction de nouvelles technologies ou de projet important modifiant les conditions de santé et de sécurité ou les conditions de travail.

La Commission santé, sécurité et conditions de travail (CSSCT), mise en place obligatoirement au sein des entreprises et établissements (distincts ou à établissements multiples) d'au moins 300 salariés et dans les établissements mentionnés à l'article L. 4521-1, dont les établissements Seveso Seuil Haut ou sur demande de l'inspection du travail, dispose, par délégation du CSE, de tout ou partie des attributions relatives à la santé, à la sécurité et aux conditions de travail à l'exception du recours à un expert et des attributions consultatives du comité (la CSSCT ne peut émettre un avis à la place du CSE) (cf. art. L. 2315-36 à 44).

Ces commissions contribuent à promouvoir la santé, la sécurité et les conditions de travail dans l'entreprise. Si le DRPCE, tout comme le DUERP, sont finalisés sous la responsabilité de l'employeur, il est recommandé de les associer à la rédaction de ces documents.

Comme le précise l'article L. 4644-1, si les compétences dans l'entreprise ne permettent pas d'organiser ces activités, l'employeur peut faire appel, après avis du CSE, aux intervenants en prévention des risques professionnels (IPRP) appartenant au service de prévention et de santé au travail interentreprises auquel il adhère ou dûment enregistrés auprès de l'autorité administrative compétente (Dreets) disposant de compétences dans le domaine de la prévention des risques professionnels et de l'amélioration des conditions de travail

> Salarié désigné compétent

Le Code du travail (cf. art. L. 4644-1 et R. 4644-1) impose à l'employeur de désigner un ou plusieurs salariés compétents pour s'occuper des activités de protection et de prévention des risques professionnels de l'entreprise (PPRP).

Bien évidemment, l'employeur ne dispose pas toujours de structures ou d'instances spécifiques internes, notamment quand l'entreprise est petite (effectif inférieur à 50 salariés).

Par ailleurs, l'article L. 4644-1 du Code du travail rend obligatoire la formation du salarié désigné compétent en santé et sécurité au travail. Le Code du travail définit également le cadre réglementaire de cette formation (cf. art. L. 2315-16 à L. 2315-18) et lui fixe sa durée minimale à 5 jours.

Si l'approche du risque ATEX nécessite des compétences spécifiques, ce salarié pourra être une ressource importante pour évaluer ce risque de manière globale et apporter son éclairage quant à la nécessité de faire appel à des personnes qualifiées. Il pourra notamment suivre une formation telle que présentée au chapitre 3 du présent guide.

> Médecin du travail et intervenants en prévention des risques professionnels (IPRP)

Le médecin du travail (appartenant à un service de prévention et de santé au travail interentreprises ou à un service autonome) est associé à l'élaboration des actions de formation (cf. art. R. 4141-6) et comme il dispose d'une voix consultative au CSE (cf. art. L. 2316-4), il a connaissance des rapports et programmes annuels, portant notamment sur la mise en œuvre de la démarche ATEX (cf. art. L. 2312-27).

De plus, il a pour mission de conseiller l'employeur, les travailleurs et les représentants du personnel sur la protection des travailleurs contre l'ensemble des nuisances, et notamment sur les risques d'accident du travail ou d'exposition à des agents chimiques dangereux (cf. art. R. 4623-1).

Au besoin, le médecin du travail pourra faire appel aux intervenants en prévention des risques professionnels (IPRP) appartenant à son service de prévention pour l'appuyer techniquement dans sa mission de conseil.

> Dreal (directions régionales de l'environnement, de l'aménagement et du logement)

Les activités impliquant des substances inflammables ou combustibles sont souvent présentes au sein d'installations classées pour la protection de l'environnement (ICPE) dont certaines sont classées Seveso. L'inspection de l'environnement spécialisée dans le risque industriel exerce des missions visant à prévenir et à réduire les dangers et les nuisances liés à ces installations afin de protéger les personnes extérieures au site, l'environnement et la santé publique.

Par ailleurs, au titre des articles L. 557-1 et suivants et des articles R. 557-1 et suivants du Code de l'environnement, la Dreal a pour responsabilité le contrôle de la mise sur le marché des appareils et des systèmes de protection destinés à être utilisés en atmosphères explosibles.

> Le système d'inspection du travail (SIT)

Le risque ATEX, en corrélation étroite avec le risque chimique, fait partie des risques qui doivent être évalués par l'employeur au titre du Code du travail (cf. art. R. 4227-42 à R. 4227-54). C'est notamment dans ce cadre que l'employeur établit et met à jour un document relatif à la protection contre les explosions (DRPCE), intégré en annexe du document unique d'évaluation des risques professionnels (DUERP). En outre, lorsque des travailleurs de plusieurs entreprises sont présents sur un même lieu de travail, le chef de l'entreprise utilisatrice précise dans son DRPCE le but, les mesures et les modalités de mise en œuvre de la coordination générale des mesures de prévention (cf. art. R. 4511-1 et suivants) qui lui incombent intégrant également l'obligation de s'assurer que le personnel intervenant soit spécifiquement formé au risque ATEX.

Le SIT, rattaché au ministère du Travail, de la Santé et des Solidarités, est chargé d'assurer l'application des dispositions du Code du travail et des autres dispositions légales relatives au régime du travail. Par conséquent, il contrôle l'application de la réglementation ATEX ainsi que celle en lien avec cette dernière (par exemple la coordination, le risque chimique, le risque électrique, les équipements de travail, l'aération-ventilation...). À cet effet, il vérifie notamment la bonne mise en œuvre opérationnelle sur le terrain des mesures de prévention, du zonage ATEX et il examine la documentation afférente (DUERP, DRPCE, rapports de vérifications électriques...).

1.3.2 Autres réglementations

> Transport de marchandises dangereuses (TMD)

Comme explicité plus haut dans les exceptions d'application, les transports par terre, mer, voies navigables et air de ces substances inflammables/combustibles, répondent aux exigences des accords internationaux (ADNR, ADR, OACI, OMI, RID) et des directives communautaires qui donnent effet à ces accords. L'utilisation de ces moyens est soumise au niveau national à des dispositions prévues dans des arrêtés tels que l'arrêté du 29 mai 2009 modifié relatif aux transports de marchandises dangereuses par voies terrestres, dit « arrêté TMD ».

> Code de l'environnement

La prise en compte précoce du risque d'explosion est un incontournable de toute démarche de mise en place ou de modification d'une activité impliquant certaines catégories de produits chimiques. Ces produits chimiques et/ou activités sont classés au titre des installations classées pour la protection de l'environnement (ICPE), au sein d'une « nomenclature » visée par les articles R. 511-9 à 12 du Code de l'environnement. Nous pouvons notamment y trouver les « substances inflammables » qui font l'objet de rubriques spécifiques telles que les rubriques 4330 (Liquides inflammables de catégorie 1, liquides inflammables maintenus à une température supérieure à leur point d'ébullition, autres liquides de point d'éclair inférieur ou égal à 60 °C maintenus à une température supérieure à leur température d'ébullition ou dans des conditions particulières de traitement, telles qu'une pression ou une température élevée) et 4331 (Liquides inflammables de catégorie 2 ou catégorie 3 à l'exclusion de la rubrique 4330 ; silos et installation de stockage en vrac des céréales, grains et produits alimentaires ou tout produit dégageant des poussières inflammables), la rubrique 2160 (silos et installation de stockage en vrac des céréales, grain et produits alimentaires ou tout produit dégageant des poussières inflammables), la rubrique 2225 (sucrerie, raffineries de sucre, malteries), la rubrique 2226 (amidonnerie, féculeries, dextrines), ...

LA DÉMARCHE DE PRÉVENTION DU RISQUE ATEX DANS LES LIEUX DE TRAVAIL

Rappel : les dispositions réglementaires relatives au risque ATEX s'appliquent sur les lieux de travail tels que définis à l'article R. 4221-1¹⁰. Tout lieu où exerce un travailleur doit par conséquent faire l'objet d'une évaluation des risques et notamment celle du risque ATEX s'il y a lieu.

2.1 Introduction

La démarche de prévention du risque d'explosion s'inscrit dans la démarche globale de prévention des risques au poste de travail, notamment la déclinaison des principes généraux de prévention qui, pour le risque ATEX, sont rappelés à l'article R. 4227-44:

- empêcher la formation d'atmosphères explosives (ATEX);
- si la nature de l'activité ne permet pas d'empêcher la formation d'atmosphères explosives, éviter leur inflammation;
- 3. si l'explosion ne peut être évitée, atténuer les effets nuisibles d'une explosion pour la santé et la sécurité des travailleurs.

Ces objectifs de prévention devront être atteints en tenant compte notamment, au travers de l'évaluation des risques (cf. art. R. 4227-46):

- 1. de la probabilité que des atmosphères explosives puissent se présenter et persister ;
- 2. de la probabilité que des sources d'inflammation, y compris des décharges électrostatiques, puissent se présenter et devenir actives et effectives;
- des installations, des substances et mélanges utilisées, des procédés et de leurs interactions éventuelles;
- 4. de l'étendue des conséquences prévisibles d'une explosion.

L'employeur devra alors mettre en place les mesures techniques et organisationnelles nécessaires pour assurer la sécurité des salariés. Les mesures visant à empêcher la formation d'une atmosphère explosive sont prioritaires sur celles visant à éviter son inflammation ou sur celles visant à protéger contre les effets d'une explosion.

Il est néanmoins important de rappeler (comme mentionné au chapitre 1.1) que le maître d'ouvrage, lorsqu'il n'est pas l'employeur lui-même, qui entreprend la construction ou l'aménagement de bâtiments destinés à recevoir des travailleurs est soumis aux obligations visant la prévention des risques d'explosion, explicités aux articles :

- R. 4216-21 et 31 qui prescrit que ces bâtiments soient conçus et réalisés de manière à respecter les dispositions relatives à la prévention des explosions déclinés aux art. R. 4227-42 à 54, et que les installations électriques tiennent compte de ce risque, dès leurs conceptions (cf. art. R. 4215-12);
- •R. 4216-22: les locaux ou les emplacements dans lesquels doivent être entreposées ou manipulées des substances ou préparations classées explosives, comburantes ou extrêmement inflammables, ainsi que des matières dans un état physique susceptible d'engendrer des risques d'explosion ou d'inflammation instantanée disposent d'une ventilation permanente appropriée.

¹⁰ R. 42211: on entend par « lieux de travail » les lieux destinés à recevoir des postes de travail situés ou non dans les bâtiments de l'établissement, ainsi que tout autre endroit compris dans l'aire de l'établissement auquel le travailleur a accès dans le cadre de son travail. Les champs, bois et autres terrains faisant partie d'un établissement agricole ou forestier, mais situés en dehors de la zone bâtie d'un tel établissement, ne sont pas considérés comme des lieux de travail.

Pour comprendre cette démarche, il est intéressant d'appréhender la nature même du phénomène. En effet, l'explosion et l'incendie sont issus du même phénomène chimique, il s'agit d'une réaction de combustion :

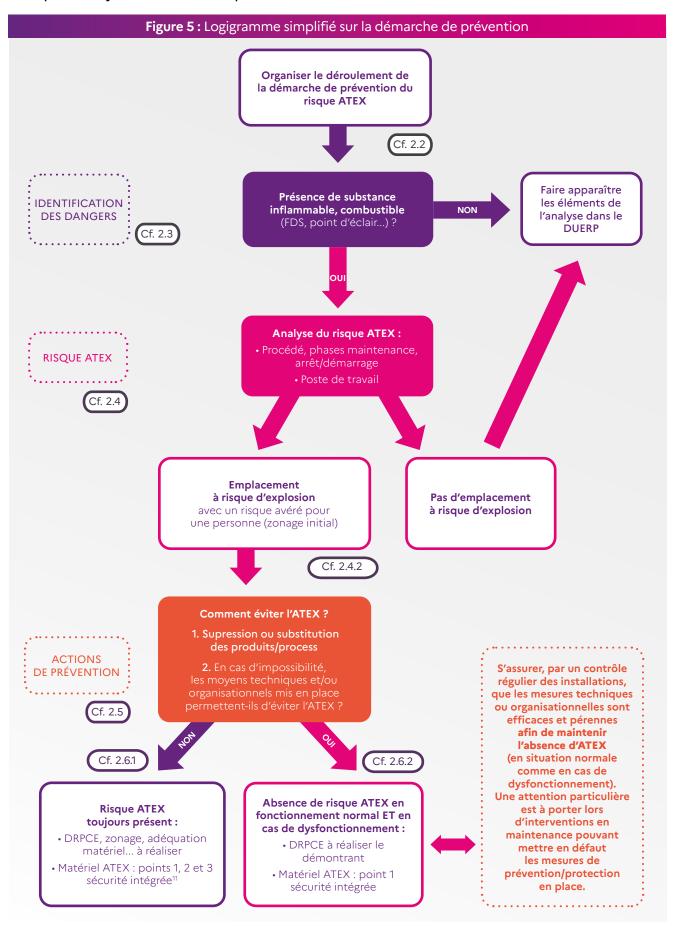
- dans le cas d'un incendie, la réaction de combustion a lieu au point de contact entre le combustible et le comburant, qui sont initialement séparés. Il en résulte une flamme statique;
- dans le cas d'une explosion, la flamme se propage au sein d'un mélange préexistant entre le combustible et le comburant, générant ainsi des effets de pression.

Plus un produit est sous une forme divisée (poudre ou poussière fine, gaz...), plus sa surface de contact avec le comburant est importante. Cela favorise la réaction de combustion qui, en s'accélérant, pourra générer le phénomène d'explosion.

Au regard de cette explication, on comprend qu'au sein d'un milieu clos ou confiné, le phénomène d'explosion est augmenté, amplifié par les effets de surpression induits sur les surfaces/parois de ce milieu.

À noter qu'une explosion conduit souvent à un incendie. Et inversement, un incendie peut augmenter la température de produits contenus dans des récipients à des niveaux tels que ces derniers peuvent atteindre leur point d'éclair ou s'autoenflammer et ainsi générer l'éclatement des récipients propageant de proche en proche le phénomène de combustion.

Ce phénomène peut conduire, par réaction en chaîne, à des événements catastrophiques (« effet domino »). Lorsque l'évaluation des risques met en évidence la possibilité de tels scénarios, le chef d'établissement devra les considérer dans une étude de sécurité spécifique ou dans une étude de danger en application de la réglementation relative aux installations classées pour la protection de l'environnement (Code de l'environnement).


Comme explicité en première partie du guide, différentes conditions sont nécessaires afin qu'une explosion se produise, elles sont regroupées schématiquement par l'hexagone de l'explosion (cf. figure 2 au § 1.2.1). Il importera donc d'agir sur ces différentes conditions afin de répondre aux deux premiers objectifs de prévention visés par l'article R. 4227-44 et explicités plus haut.

Par confinement ou milieu clos/confiné, on entend ici un milieu à même de créer un obstacle à l'augmentation du volume de gaz généré par l'explosion (effet de surpression). Il n'est pas question de milieu étanche ni de milieu dans lequel n'entrent pas de salariés de façon habituelle. Il peut s'agir d'un atelier, d'un sous-sol sous plancher, d'une fosse ouverte... et aussi d'un bidon, d'une canalisation, d'une cuve ou d'une citerne, aucun n'étant nécessairement fermé, hermétique ou étanche. Une unité de production située en extérieur pourrait être considérée comme un milieu confiné par la multitude d'équipements enchevêtrés qui la compose.

Crédits : Ineris

Nous pouvons synthétiser schématiquement cette démarche de la manière suivante :

¹¹ Exigences 1.0.1 de l'annexe II de la directive 2014/34/UE – Les appareils et systèmes de protection prévus pour être utilisés en atmosphère explosible doivent être conçus dans l'optique de la sécurité intégrée contre les explosions.

Remarques vis-à-vis de la réglementation « Prévention du risque chimique » du Code du travail :

- les substances inflammables ou combustibles à l'origine d'une ATEX étant des agents chimiques dangereux (ACD, cf. § 1.2.1), la démarche de prévention du risque ATEX est à considérer en lien avec la démarche de prévention du risque d'exposition à des agents chimiques dangereux (cf. art. L. 4412-1 & R. 4412-5). Cette dernière prévoit que l'évaluation du risque d'exposition aux ACD est renouvelée périodiquement, notamment à l'occasion de toute modification importante des conditions pouvant affecter la santé ou la sécurité des travailleurs ;
- · la valeur limite d'exposition professionnelle (VLEP) d'un ACD (exprimé en mg/m³ ou en ppm) est de manière générale bien plus faible que la concentration nécessaire pour générer une explosion (les LIE s'expriment en pourcentage volumique - %v/v - pour rappel 1 %v/v = 10 000 ppm). Il est donc intéressant d'effectuer une démarche d'évaluation du risque chimique pour la prévention de la santé des travailleurs comprenant notamment des contrôles de l'atmosphère au poste de travail, préalablement ou simultanément à celle du risque ATEX (cf. art. R. 4227-47). En ce sens, les mesures de prévention liées à la suppression ou à défaut à la limitation de l'exposition aux ACD (captage à la source d'émission, substitution...) auront une incidence sur la prévention du risque ATEX.

Ainsi la démarche de prévention du risque ATEX peut s'organiser concrètement autour de 5 grandes étapes permettant de la structurer :

- 1. formaliser le déroulement de la démarche ;
- identifier les substances et mélanges inflammables ou combustibles mis en œuvre ou émis au sein de procédés;
- 3. analyser le risque ATEX;
- définir les mesures techniques et organisationnelles;
- 5. élaborer le document relatif à la protection contre les explosions (DRPCE).

À chaque changement important de process ou d'activité (ex : ajout d'une pompe sur l'unité de production, déplacement d'une unité de production), cette démarche de prévention du risque devra faire l'objet d'une mise à jour afin de s'assurer que les mesures de prévention et de protection mises en place sont appropriées et adaptées.

2.2 Formalisation du déroulement de la démarche de prévention du risque ATEX

Pour une démarche de prévention du risque ATEX efficace et pérenne, il est conseillé de :

- > Mettre en place un groupe de travail chargé de l'évaluation du risque ATEX :
 - il est composé de personnes qui ont une bonne connaissance des procédés et des équipements, au cours de chacune des phases de fonctionnement (personnel d'exploitation, personnel de maintenance, responsable sécurité, bureau d'études...) et de personnes compétentes en ATEX (experts internes ou externes à l'entreprise);
- > Tenir compte de la mémoire de l'entreprise et de la branche d'activité en examinant :
 - tous les incidents ou accidents (même les plus minimes), en particulier les situations au cours desquelles la formation d'une atmosphère explosive a pu être identifiée ou suspectée, ainsi que les circonstances et les conséquences qu'elles ont/auraient pu entraîner (en fonctionnement normal ou en cas de dysfonctionnement);
 - le retour d'expérience d'explosions (ex : dans la base ARIA du BARPI ou dans le cadre de liens/partenariats avec les branches professionnelles);
 - l'historique des situations dangereuses recensées, notamment lors des phases de démarrage, d'arrêt ou de redémarrage, les incidents d'exploitation...

Il est conseillé, au sein de tout site où le risque ATEX a été identifié, qu'une personne interne à l'entreprise soit spécialisée sur ce risque et ait reçu une formation adaptée à ces missions (cf. 3^e partie du guide).

Cette dernière pourrait, en fonction des responsabilités qui lui sont confiées, participer :

- à l'analyse du risque ATEX ;
- au choix des mesures de prévention ;
- au choix des mesures et moyens de protection (EPI, matériel...);
- à la rédaction des autorisations de travail (cf. § 4.5);
- à l'élaboration des plans de prévention ;
- à la mise en place du plan de formation ATEX des personnels ;
- à la rédaction des notices de poste (cf. art. R. 4412-39)...

2.3 Identification des produits mis en œuvre ou émis au sein de procédés

La présence de substances inflammables ou combustibles étant l'une des conditions pour former une ATEX, il importe donc de s'intéresser aux caractéristiques des substances et mélanges stockés et mis en œuvre au sein des procédés, ainsi que de ceux susceptibles d'être émis par ces derniers (produits de dégradation, substances et mélanges chauffés...). Il est donc essentiel de s'intéresser à l'ensemble des situations susceptibles de faire apparaître une ATEX au regard des procédés mis en œuvre.

Pour ce faire et afin de caractériser précisément les dangers, l'employeur réalise :

- un inventaire des matières, substances, produits, mélanges... présents sur son site;
- une identification, pour chaque poste et équipement de travail, des substances et mélanges utilisés, produits ou émis au cours des procédés, mais également lors des phases de maintenance et de nettoyage;
- une recherche sur les caractéristiques d'inflammabilité/explosivité de chacun de ces produits utilisés, générés ou émis.

Remarque: une attention particulière doit être portée aux résidus pouvant être présents dans les process en fin de cycle et qui peuvent générer des ATEX ou des réactions parasites formant des gaz inflammables (ex: résidus de céréales dans les tuyauteries de transfert qui dégagent des gaz inflammables par décomposition organique).

2.3.1 Substances et mélanges utilisés au sein de chaque procédé

Ces substances et mélanges utilisés au sein de chaque procédé peuvent être des matières premières achetées auprès de fournisseurs ou des produits résultant du procédé de fabrication provenant de phases en amont de ce dernier.

Dans tous les cas, il est indispensable de connaître les paramètres physico-chimiques de ces produits afin de faire une évaluation pertinente du risque d'explosion. Un certain nombre d'entre eux sont disponibles :

- au sein des FDS des fournisseurs de produits chimiques : (cf. tableau ci-contre)
- ou, à défaut, au sein de la littérature ou dans des bases de données comme :
- l'Agence européenne des produits chimiques (ECHA) : https://echa.europa.eu/fr/
- la base de données CarAtex Gaz et vapeurs, poussières industrielles de l'INRS : https://www.inrs.fr/publications/bdd/caratex.html
- le portail Substances chimiques de l'Ineris : https://substances.ineris.fr/fr/
- la base de données Solvants de l'INRS : https://www.inrs.fr/publications/bdd/solvants.html
- la base de données de l'IFA (GESTIS Substance Database) : <u>https://gestis-database.dguv.de/</u>

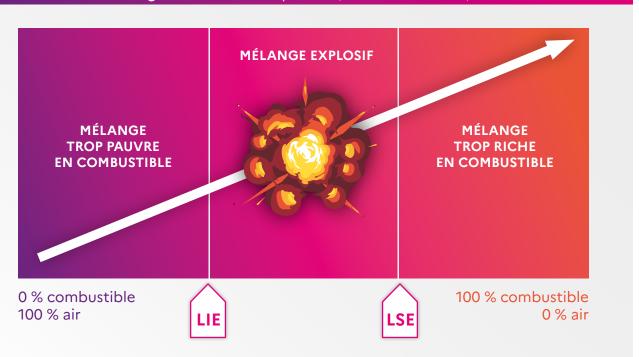
PRODUITS LIQUIDES ET GAZEUX	PRODUITS SOLIDES FINEMENT DIVISÉS	RUBRIQUE FDS
Tension de vapeur	Densité	9
Point d'éclair	Granulométrie	9
Domaine d'explosivité (limite inférieure d'explosivité ou LIE, limite supérieure d'explosivité ou LSE)*	Concentration minimale d'explosion (CME) (= limite inférieure d'explosion)	9
Température d'auto-inflammation (TAI/ TMI)**	Température minimale d'inflammation en nuage et en couche**	9
Violence d'explosion (P _{max} et K _g)**	Violence d'explosion (P _{max} et K _{st})**	1
Incompatibilités chimiques avec d'autres produits	Incompatibilités chimiques avec d'autres produits (eau notamment)	10
Groupe de gaz (IIA, IIB, IIC) et <i>Énergie</i> minimale d'inflammation (EMI)**	Groupe de poussières (IIIA, IIIB, IIIC) et Énergie minimale d'inflammation (EMI)**	1

^{*} Les limites inférieures et supérieures d'explosivité (LIE & LSE) sont parfois dénommées « limites inférieures et supérieures d'inflammabilité » (LII & LSI).

De même, la concentration minimale d'explosion (CME) est parfois dénommée « concentration minimale d'inflammabilité » (CMI) ou « limite inférieure d'explosivité » (LIE).

Ces caractéristiques fournissent des informations importantes à différents niveaux.

- La volatilité du produit et sa facilité à former une ATEX : la tension de vapeur, le point d'éclair.
- · La granulométrie pour les poussières.
- La sensibilité à l'inflammation : les températures d'auto-inflammation, l'énergie minimale d'inflammation et le groupe de gaz/vapeurs et poussières.
- La quantité de produit nécessaire au phénomène d'explosion : le domaine d'explosivité ou la concentration minimale d'explosion.
- La violence de l'explosion : la pression maximale et la vitesse de montée en pression (servant essentiellement à dimensionner les systèmes de protection contre les explosions).


• Les risques liés aux contacts entre les produits : l'incompatibilité avec d'autres produits renseigne notamment sur la possibilité de former des gaz inflammables lors de la mise en contact avec ces produits (ex : substances corrosives qui, en attaquant les métaux, provoquent le dégagement d'hydrogène hautement inflammable).

Rappel des conditions minimales pour qu'un produit puisse former une ATEX et s'enflammer :

 Pour un gaz, il doit être à une concentration comprise dans son domaine d'explosivité (entre la LIE et la LSE).

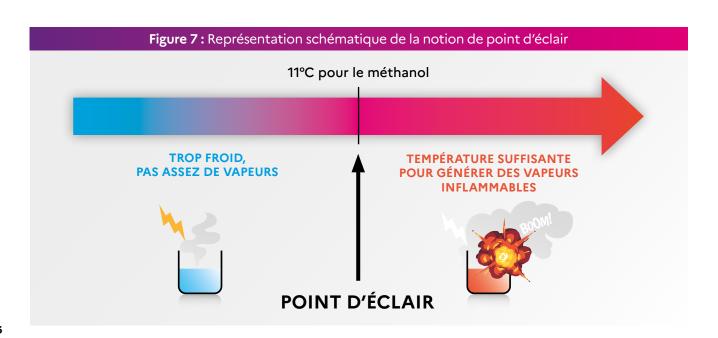

^{**} Les caractéristiques en italique sont utiles mais ne constituent pas, la plupart du temps, des informations indispensables à l'appréciation du risque de former une ATEX.

Figure 6 : Domaine d'explosivité (source INRS : ED945)

Exemples de domaines d'explosivité

QUELQUES EXEMPLES DE VALEURS DE LIE & LSE :	LIE %	LSE %
• Acétone	2,5	14,3 à 100 °C
• Butane	1,4	9,3
• Oxyde d'éthylène	2,6	100
• Oxyde de propylène	1,9	37
• Monoxyde de carbone	10,9	74
• Éthanol	3,1	19 à 60 °C
• Essence (io 100)	1,4	7,6
• Propane	1,7	10,9
• Hydrogène	4	77
• Méthane	4,4	17

La norme EN 80079-20-1 fournit une liste de gaz et liquides inflammables et leurs paramètres associés (LIE, LSE, point d'éclair...). Des exemples sont fournis dans le tableau donnant des exemples de domaines d'explosivité.

- Pour un liquide, il doit se trouver à une température supérieure à son point d'éclair avec une marge de sécurité (il est préconisé de diminuer de 15 °C la valeur du point d'éclair pour les produits complexes, les mélanges, les coupes pétrolières... et de 5 °C pour les produits purs de point d'éclair bien documenté) (cf. figure 7).
- Pour un solide, les particules doivent être en suspension et <u>la concentration doit être supérieure à la concentration minimale</u> d'explosion (CME). Une attention particulière doit être portée aux couches de poussières. Au-delà d'être à l'origine d'un risque de feu couvant, une couche de poussières de quelques millimètres d'épaisseur mise en suspension va générer une ATEX.

Type de poussières	Exemples de CME (g/m³)
Aluminium en poudre	40
Résine époxydique	20
Charbon de bois	140
Amidon de blé	25
Sucre	45
Vitamine C	70
Cacao	75

Il est d'usage de considérer que des poussières de diamètre supérieur à 0,5 mm (ou 500 μ m) ne peuvent pas former d'ATEX.

Ce critère est à considérer avec prudence en fonction de la nature du produit et du contexte de sa mise en œuvre. Par exemple, lors du déversement d'un produit en granulés (dans un silo), les fractions fines sont susceptibles de rester en suspension et de former une ATEX. Des particules de type fibres

(ex : coton) de longueur supérieure à 500 μ m (poussières de classe IIIA) peuvent aussi rester en suspension et former une ATEX.

2.3.2 Produits émis par les procédés

À chaque étape d'un procédé tel que la fabrication, l'élimination, le traitement, le nettoyage, la maintenance... des produits sont susceptibles d'être émis.

Il importe donc d'identifier ces derniers, que ce soient des substances ou mélanges fabriqués, des déchets ou des produits intermédiaires ou résultant de dérives possibles ou de défaillances du procédé, et de déterminer leurs caractéristiques d'inflammabilité/explosivité.

Pour rappel, l'employeur, au titre de l'évaluation du risque chimique, a l'obligation d'identifier tous les agents chimiques dangereux (ACD) émis tout au long de l'activité du site (de l'entrée sur site au stockage, du stockage au process, du process au stockage des produits finis et des déchets jusqu'à l'évacuation de ces derniers). Ces ACD comprennent notamment les produits inflammables (cf. art R. 4412-5 et 7).

Les résultats de cette évaluation sont à combiner à ceux de l'évaluation du risque ATEX qui doit tenir compte en particulier des installations, des substances et préparations utilisées, des procédés et de leurs interactions éventuelles (cf. art. R. 4227-46).

En conclusion de cette étape d'identification :

si cet inventaire conclut à la présence de substances et mélanges inflammables ou combustibles introduits dans des procédés ou à l'émission de substances inflammables ou combustibles, la démarche de prévention du risque ATEX est à poursuivre.

2.4 Analyse du risque ATEX

Des substances ou mélanges inflammables ou combustibles ayant été identifiés, il importe de déterminer si une ou des atmosphères explosives sont présentes ou susceptibles de survenir. Pour ce faire, il est nécessaire de :

- tenir compte des produits utilisés/émis, des conditions de stockage, de température et de pression du procédé, des réactions exothermiques, des produits de décomposition, des conditions de refroidissement, des systèmes de ventilation, de la détection de gaz...;
- décrire le fonctionnement des équipements de travail (machines, appareils, outils, engins, matériels et installations) au sens de l'article
 L. 4311-2 du Code du travail en recueillant l'ensemble des données les concernant et les paramètres de sécurité associés;
- évaluer le niveau de compétence des salariés (personnels internes, sous-traitants, travailleurs temporaires... (cf. 3° partie du présent guide).

2.4.1 Analyse des procédés

L'analyse des procédés revêt une importance toute particulière dans l'évaluation du risque d'apparition d'une ATEX tant lors de la mise en œuvre de produits chimiques inflammables ou combustibles (phases de stockage, prélèvements, chargements, production, déchargements...) que lorsque les procédés eux-mêmes génèrent des produits de décomposition ou des produits finis présentant des caractéristiques d'inflammabilité/explosivité.

Il importera alors d'identifier les phases de travail (ou phases de procédé) génératrices de ces ATEX en fonctionnement normal ou en cas de dysfonctionnement, puis d'expertiser les équipements de travail (silo, broyeur, circuits de dépoussiérage, circuits de transfert, dépotage...) afin d'identifier les sources d'émission et d'ignition potentielles susceptibles de générer une explosion. Dans cet objectif, l'ensemble des éléments du procédé (équipements de travail...) devra être pris en compte pour l'évaluation des sources d'inflammation :

- matériels électriques et électroniques ;
- matériels mécaniques (évents, soupapes...);
- matériels pneumatiques ;
- · matériels hydrauliques;
- matériels thermiques...

2.4.1.1 Identification des sources d'émissions susceptibles de générer une ATEX en fonctionnement normal ou en cas de dysfonctionnement

L'analyse de risque doit donc tenir compte du procédé en **fonctionnement normal** et lors de ses autres phases de vie (démarrage, arrêt, redémarrage, phases d'arrêt pour maintenance, interventions ponctuelles, fonctionnement dégradé ou transitoire, phases d'entretien).

En effet, à titre d'exemples, lors d'opérations de maintenance ou d'entretien :

- un produit présent sur le lieu de travail peut voir sa température augmenter jusqu'à former une ATEX, sous l'effet d'un travail par points chauds (soudure, meulage, tronçonnage...);
- une erreur de remontage générant une fuite ou un oubli de purge peut entraîner la formation d'une ATEX.

On s'attachera ensuite à analyser les types de dysfonctionnements raisonnablement envisageables (ex : arrêts de système de ventilation ou de refroidissement, fuites de produits, pannes prévisibles, arrêts accidentels d'alimentation en produits, coupures d'énergie...) ainsi que les sources de dysfonctionnements liés au facteur humain (écarts entre le prescrit et le réel, les contraintes de temps, les comportements liés à une situation anormale...) qui peuvent conduire à une ATEX.

2.4.1.2 Identification des sources d'inflammation potentielles (cf. norme NF EN 1127-1)

Les sources d'inflammation sont principalement des flammes, des étincelles et des surfaces chaudes ayant différentes origines.

• Électrique (étincelles, échauffement...): les sources d'inflammation dues au matériel électrique peuvent être suffisamment énergétiques pour enflammer tout type d'ATEX gaz/vapeurs ou poussières si celui-ci n'est pas conforme aux exigences de la directive 2014/34/UE, à savoir être certifié ATEX d'une catégorie adaptée à la zone où il est employé (cf. 5° partie du présent

guide) et adapté au produit générant l'ATEX. Remarque: la très basse tension, conçue pour la protection des personnes contre les chocs électriques, ne constitue pas une mesure visant la protection contre l'explosion; ainsi, des tensions inférieures à 50 V peuvent produire des énergies suffisantes pour enflammer une atmosphère explosive.

- Électrostatique (décharges par étincelles...): le phénomène de contact/séparation (frottement des particules entre elles lors d'un transvasement par exemple) génère des charges dites électrostatiques. Lorsque ces charges s'accumulent, une étincelle d'énergie plus ou moins importante en fonction des phénomènes électrostatiques mis en jeu peut être générée. Cette étincelle peut enflammer les atmosphères explosives de gaz, de vapeurs ou de poussières.
- Thermique (surfaces chaudes, flammes nues, travaux par points chauds, cigarettes...): une flamme nue constitue une source d'inflammation suffisamment énergétique pour enflammer toute atmosphère explosive. En ce qui concerne les surfaces chaudes, la température maximale de surface doit être comparée à la température minimale d'inflammation en couches et en nuage de poussière ou la température d'auto-inflammation des gaz/vapeurs.
- Mécanique (étincelles, échauffement...): les étincelles d'origine mécanique résultent des processus de friction, de choc et d'abrasion et peuvent enflammer tout type d'atmosphère explosive. Il s'agit par exemple de sources d'inflammation susceptibles de se présenter lors de travaux (meulage) ou résultant du fonctionnement normal ou de dysfonctionnements d'équipements mécaniques (frottement, étincelles d'impact).
- Chimique (réactions exothermiques, auto échauffement...): le défaut de régulation de température d'une réaction exothermique peut amener des températures suffisamment élevées pour être source d'inflammation pour les produits eux-mêmes ou les composés de dégradation thermique. Par ailleurs, les feux

couvants résultant de l'accumulation de poussières sur des surfaces chaudes ou l'autoéchauffement de stockages de grands volumes sont fréquemment impliqués dans des départs de feu et peuvent être cause d'inflammation d'ATEX (notamment des ATEX émises par l'autoéchauffement de la matière organique).

- Bactériologique (réaction exothermique) : la fermentation bactérienne peut échauffer le milieu et le placer dans des conditions d'amorçage d'un autoéchauffement en présence d'oxygène.
- Climatique (foudre, soleil...): si un impact de foudre se produit dans une atmosphère explosive, l'inflammation va se produire. De plus, il peut constituer une source d'inflammation à distance par effet indirect en induisant des surtensions ou des échauffements dans les équipements. Le rayonnement solaire direct ou indirect (derrière une paroi métallique par exemple) peut élever la température pouvant rendre les produits bien plus sensibles à l'inflammation.

2.4.1.3 Identification des mesures de prévention/protection existantes et de leur niveau de maîtrise du risque (efficacité et pérennité)

Outre le risque d'explosion qui peut déjà avoir fait l'objet d'une évaluation antérieure, les exigences en termes de qualité du produit final issu du procédé ou l'évaluation des autres risques liés à la mise en œuvre de produits chimiques (risque toxique, corrosif, d'anoxie...) peuvent conduire à la mise en œuvre de mesures de prévention susceptibles de couvrir le risque ATEX.

En ce sens, comme rappelé en début de chapitre, les locaux ou les emplacements dans lesquels sont **entreposées ou manipulées** des substances ou préparations classées explosives, comburantes ou extrêmement inflammables, ainsi que des matières dans un état physique susceptible d'engendrer des risques d'explosion ou d'inflammation instantanée, ne doivent contenir aucune source d'inflammation.

Ces locaux disposent d'une ventilation permanente appropriée.

De plus, lorsque les locaux de travail sont définis comme « locaux à pollution spécifique » tels que définis à l'article R. 4222-3, les obligations en matière d'aération-ventilation mécanique sont définies telles que prévues aux articles R. 4222-10 et suivants, en tenant compte de la nature des émissions présentes aux postes de travail et dans les locaux de travail.

Sur le plan technique, l'exécution des procédés en vase clos, l'inertage, les dispositifs de ventilation mécanique, le captage au plus près de la source d'émission, le transport ou le conditionnement en produits humides ou dilués, peuvent être des mesures permettant d'éviter l'apparition d'ATEX.

Il importera donc, au regard de l'évaluation des risques ATEX, d'analyser le niveau de maîtrise du risque (efficacité et pérennité) de ces mesures de prévention/protection (maintenance et contrôles préventifs, traçabilité, mise en place de redondance ou d'alimentation de sécurité...).

2.4.2 Évaluation du risque d'explosion et zonage initial

L'évaluation du risque d'explosion implique de combiner la probabilité de présence d'ATEX, qui correspond au zonage, et la probabilité de présence de source d'inflammation.

Il conviendra d'estimer également, conformément à l'article R. 4227-4, les conséquences potentielles d'une explosion permettant de débattre des priorités et d'aider à la planification des actions de prévention : intensité du phénomène redouté, fréquence d'exposition du personnel, nombre de personnes potentiellement concernées, impact sur la production...

2.4.2.1 Le classement de zones

Les emplacements où une atmosphère explosive est susceptible de se présenter doivent être identifiés, c'est ce que l'on appelle « réaliser le zonage » ou établir « le plan de zone ». C'est à l'employeur de subdiviser ces emplacements en zones communément appelées « zones ATEX »

conformément à l'article R. 4227-50 du Code du travail.

La délimitation des zones à risques d'explosion répond à un double objectif :

- identifier les caractéristiques des zones et leurs étendues;
- mettre en place au sein de ces zones du matériel adapté et des mesures de prévention/protection appropriées (procédures spécifiques de travail, signalisation...).

Si les **zones ATEX** sont souvent représentées sur un plan en 2 dimensions, il est entendu que l'analyse des risques au sein de ces zones doit prendre en compte **un volume** et non simplement une surface.

Par ailleurs, dans un souci d'information, ce plan précisera :

- le type de zone (0/20, 1/21 ou 2/22, cf. figure 10);
- les groupes de gaz (IIA, IIB, IIC) ou groupes poussières (IIIA, IIIB ou IIIC);
- les températures maximales de surface acceptables dans chacune des zones (guide méthodologique ATEX INRS ED 945).

L'arrêté du 8 juillet 2003 relatif à la protection des travailleurs susceptibles d'être exposés à une atmosphère explosive définit un emplacement dangereux (cf. art. 1 de l'arrêté) devant faire l'objet d'un zonage comme « un emplacement où il est probable qu'une atmosphère explosive puisse se présenter en quantités telles que des précautions spéciales sont nécessaires en vue de protéger la sécurité et la santé des travailleurs concernés ».

Il importe de préciser que cet emplacement dangereux est à définir en tenant compte :

- des différentes phases d'exploitation, notamment les phases de production, de maintenance et d'arrêt de production;
- des situations de dysfonctionnements techniques (pannes de ventilation...) et organisationnels (coactivité mal gérée...) au cours des différentes phases.

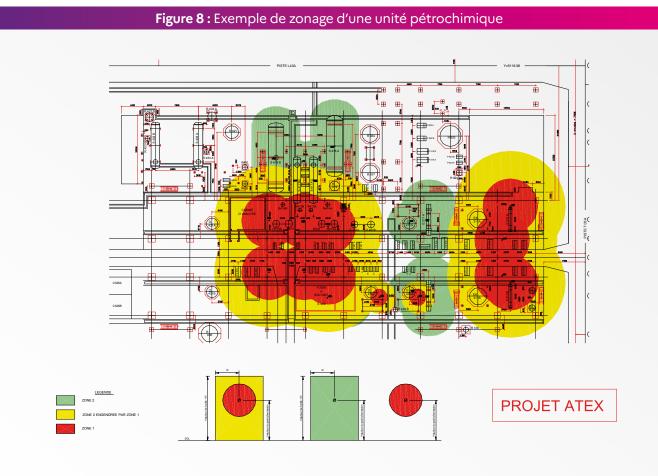


Figure 9 : Exemple de zonage d'une installation de captage de poussière de bois

Zone 20 Zone 21 Zone 22

Frise d'air

Appert d'air

Captage

Captage

Captage

Il est à noter que :

- les effets de l'explosion (effets thermiques et de surpression) sont d'autant plus importants que la quantité de produit en mélange dans l'air et formant une ATEX est importante. Associés à un confinement de la zone, les effets de l'explosion peuvent être catastrophiques;
- l'inflammation d'une ATEX, même non confinée, provoque toujours un dégagement de chaleur important accompagné d'une zone de flammes pouvant envahir un volume dix fois supérieur à celui de l'atmosphère explosive initiale.

Si petite soit-elle, l'inflammation d'une atmosphère explosive peut être à l'origine soit d'un incendie (source d'inflammation pour des combustibles à proximité), soit, en cas de présence de personnes, de brûlures ou de chute par mouvement de recul. Il est donc indispensable d'identifier l'ensemble des atmosphères explosives et d'évaluer les conséquences d'une explosion et de mettre tout en œuvre en vue de protéger la sécurité et la santé des travailleurs concernés.

Trois niveaux de zones ATEX, en fonction de la fréquence et de la durée de présence d'une atmosphère explosive, sont établis réglementairement par l'arrêté du 8 juillet 2003 relatif à la protection des travailleurs susceptibles d'être exposés à une atmosphère explosive :

- Les zones où une ATEX est présente en permanence lors du fonctionnement normal des installations. Zone 0 pour les gaz, vapeurs et brouillards et zone 20 pour les poussières. Citons par exemple l'intérieur des récipients contenant ou ayant contenu un liquide inflammable, ou l'intérieur d'un dépoussièreur (dispositif récupérant la poussière véhiculée par un flux d'air), ou encore le volume au-dessus de l'évent de respiration d'une cuve contenant un produit inflammable.
- Les zones où une ATEX est présente occasionnellement lors du fonctionnement normal des installations. Zone 1 pour les gaz, vapeurs et brouillards et zone 21 pour les poussières.

Citons par exemple la trémie de chargement manuel d'un pulvérulent combustible, une prise d'échantillon ou une zone autour d'un robinet de purge d'un réseau de liquide inflammable.

• Les zones où une ATEX est présente uniquement en cas de dysfonctionnement ou pour une courte durée. Zone 2 pour les gaz, vapeurs et brouillards et zone 22 pour les poussières. Citons par exemple, le volume au-dessus d'une soupape de surpression d'un réseau de gaz inflammable, le volume à proximité d'une bride susceptible de fuir, le volume en aval d'un filtre à manches...

Remarques:

- Il est conseillé d'utiliser le classement de zone 0/1/20/21 pour le fonctionnement normal des installations et de limiter le classement de zone 2/22 aux cas de dysfonctionnements. La notion de courte durée est sujette à interprétation et souvent décorrélée des notions de probabilité d'occurrence faible et de volume de substances dégagées. La zone 2/22 est à réserver aux cas de dysfonctionnements pour lesquels la présence de l'ATEX liée à ce dysfonctionnement reste limitée dans le temps (détection et intervention rapide pour gérer le dysfonctionnement). Par exemple, dans le cas des soupapes de surpression, certaines sont de sécurité et destinées à ne s'ouvrir qu'en cas de dysfonctionnement, une zone 2 peut ainsi être identifiée. Cependant, une zone 1 devrait être identifiée pour les soupapes de régulation process s'ouvrant à chaque démarrage ou arrêt, même s'il ne s'agit que d'une courte durée. De manière identique, l'ouverture d'un trou d'homme devrait être associée à une zone 1 si celui-ci est ouvert pour des conditions process (ex : remplissage, contrôle de niveau, maintenance préventive), ou à une zone 2 si celui-ci n'est ouvert qu'en cas de dysfonctionnement du process (ex: bourrage, blocage d'un agitateur...).
- Le volume autour d'une couche, d'un dépôt ou d'un tas de poussières combustibles est à considérer *a minima* comme une zone 22 car, en cas de mise en suspension, une ATEX se forme.

Figure 10 : Tableau de classification des zones ATEX				
	EM	1PLACEMENT DANGER	EUX	
Définition	Emplacement où une ATEX est présente en permanence, pendant de longues périodes ou fréquemment.	Emplacement où une ATEX est susceptible de se présenter occasionnellement en fonctionnement normal. L'atmosphère explosive peut être présente dans les conditions normales d'exploitation de l'unité de production, mais pas en permanence.	Emplacement où une ATEX n'est pas susceptible de se présenter en fonctionnement normal ou n'est que de courte durée, s'il advient qu'elle se présente néanmoins. L'atmosphère explosive n'est présente qu'en cas de dysfonctionnement du procédé.	Emplacement non dangereux
Gaz et vapeurs	Zone 0	Zone 1	Zone 2	Hors zone
Poussières	Zone 20	Zone 21	Zone 22	Hors zone

2.4.2.2 Zonage initial et zonage final

Afin de mettre en lumière les critères d'efficacité et de pérennité d'une action de prévention ou de protection vis-à-vis du risque ATEX, il est utile que l'évaluation fasse apparaître, en première étape, un zonage initial identifiant l'ensemble des sources d'émissions permanentes, momentanées et prévisibles en cas de dysfonctionnement au sein des activités. Puis dans un second temps, un zonage final tenant compte des mesures de prévention et de protection existantes ayant un impact direct sur le risque ATEX est établi.

Exemples de mesures de prévention/protection permettant de modifier le classement ou l'étendue du zonage initial :

- les mesures techniques et organisationnelles pré-existantes mises en place pour éviter la formation d'une atmosphère explosive ou limiter son volume permettent de modifier le classement ou l'étendue du zonage initial;
- les dispositifs d'aération-ventilation efficaces, suivis et contrôlés mis en place aux différents points d'émissions d'agents chimiques dangereux au titre de l'application d'autres dispositions de la réglementation du Code du travail ou du Code de l'environnement relatif à l'exposition à des effluents toxiques;
- si des dispositions empêchent la formation d'une atmosphère explosive dans un emplacement (inertage d'une capacité, température d'un liquide inflammable maintenue suffisamment basse...) ou réduisent son volume (ventilation contrôlée d'un lieu de travail, captage à la source d'émission, nettoyage régulier par aspiration...), il est nécessaire d'en tenir compte dans l'évaluation du risque et le zonage;

- si les mesures techniques et organisationnelles en place sont efficaces (par exemple un débit d'aspiration suffisant pour diluer l'ATEX sous 10 % de la LIE dans le cas d'un captage à la source d'émission), il est possible d'adopter un zonage final inférieur au zonage initial ou d'en réduire l'étendue en fonction de la fiabilité des mesures :
 - si la fiabilité des mesures de suppression de l'ATEX est faible ou qu'elle n'est pas évaluée de façon documentée, il faut identifier au minimum une zone 2 ou 22;
 - si les mesures sont fiables (dispositifs redondants, alimentation électrique de sécurité, détection de la défaillance associée à une alarme et à une mise en sécurité du procédé...), l'emplacement peut être considéré comme une zone à risque de formation d'ATEX maîtrisée. Cette zone n'est donc plus classée. Pour autant, une telle zone doit être identifiée dans le DRPCE et signalée, le cas échéant, pour rappeler au personnel d'exploitation et surtout de maintenance l'attention particulière à observer pour cet emplacement. En effet, l'employeur doit veiller à ce que les mesures qui permettent d'empêcher la formation d'une atmosphère explosive ne soient pas supprimées, par exemple, au cours de travaux ou de modifications du procédé. Des procédures spécifiques de maintenance et d'entretien des équipements concourant à la prévention de la formation de l'ATEX doivent être établies et appliquées.

À noter qu'il est important de tenir compte de la circulaire du 9 mai 1985, relative au commentaire technique des décrets n° 84-1093 et n° 84-1094 du 7 décembre 1984 concernant l'aération et l'assainissement des lieux de travail, précisant que :

- « lorsque [des substances susceptibles de former un mélange explosif] sont des gaz ou des vapeurs inflammables, leur concentration doit être maintenue à la plus faible valeur possible et rester < à 25 % de la limite inférieure d'explosivité (LIE) dans l'ensemble de l'installation;
- et < à 10 % de cette limite si des personnes travaillent dans cette atmosphère. »

Cette exigence s'applique notamment pour la définition des seuils de détection dans les locaux et pour la fixation des débits de la ventilation par rapport aux dégagements de substances inflammables considérés dans l'évaluation des risques.

Dans le cas où l'évaluation des risques, tenant compte des mesures existantes, démontrent que les sources d'émissions identifiées dans le zonage inital ne peuvent conduire à la formation d'une atmosphère explosive, un DRPCE simplifié pourra être établi tel que proposé en 2.6.2.

2.4.2.3 Évaluation des conséquences potentielles de l'explosion

Au-delà des exigences du Code du travail vis-à-vis du risque ATEX, une nécessaire cohérence devra être faite avec les exigences de la réglementation environnementale pour les ICPE & SEVESO (analyse de risques, EDD, PPRT, POI, PPI...).

L'évaluation des risques doit tenir compte de l'étendue des conséquences prévisibles d'une explosion (cf. 4° art. R. 4227-46). Afin d'illustrer cette disposition, peuvent être évoqués, en fonction de l'intensité du phénomène redouté, du nombre de personnes potentiellement concernées, du bâti et des matériels ou des produits présents et des impacts sur la production :

- le nombre de décès et blessés potentiels ;
- la destruction des bâtiments et locaux, voire des locaux riverains ;
- la destruction des machines ;
- les arrêts de production ;
- les temps d'enquêtes judiciaires ;

- les interventions des autorités de contrôle ;
- la perte d'image de marque ;
- les coûts des condamnations pénales et civiles ;
- l'augmentation de la prime d'assurance.

L'étendue des zones, en particulier pour les gaz et vapeurs, peut être évaluée à l'aide de modèles de dispersion ou d'abaques comme ceux présentés dans les annexes de la norme NF EN 60079-10-1.

2.5 Définition des mesures techniques et organisationnelles

Les résultats de l'évaluation du risque explosion permettent ensuite de planifier les actions de prévention à déployer. Ces actions sont choisies et mises en œuvre en privilégiant les mesures techniques et organisationnelles respectant les principes généraux de prévention.

Les mesures visant à supprimer la possibilité de formation d'une ATEX sont donc prioritaires sur celles visant à éviter son inflammation ou celles visant à protéger les personnes et les biens contre les effets d'une explosion (cf. art. R. 4227-44).

Dans cet objectif, on cherchera notamment à :

- éliminer les substances inflammables ou combustibles;
- supprimer, dans la mesure du possible, le comburant (l'air), par inertage¹² d'une capacité par exemple ;
- à défaut, travailler avec un procédé en vase clos ou qui évite la mise en suspension de poussières ou la création de vapeurs ou brouillards;
- réduire les concentrations pour qu'elles n'atteignent pas le domaine d'explosivité (ex : captage à la source d'émission...);
- agir sur les sources potentielles d'ignition.

Il importera de définir **un plan d'action** ou **un PAPRIPACT** (Programme annuel de prévention des risques professionnels et d'amélioration des conditions de travail obligatoire pour les entreprises de plus de 50 salariés, L.2312-27) dans lequel apparaîtront les actions prioritaires à mettre en œuvre et les délais de mise en application.

Ces mesures font l'objet d'un réexamen périodique et à chaque fois que se produisent des changements importants dans les conditions d'exécution du travail (cf. art. R. 4227-45).

¹² Attention au risque d'hypoxie généré.

2.5.1 Exemples de mesures techniques et organisationnelles

Des exemples de mesures techniques et organisationnelles permettant d'empêcher la formation d'ATEX ou à défaut d'éviter leur inflammation sont mentionnés dans le tableau suivant :

Exemples de mesures de prévention/protection (liste non exhaustive et ne hiérarchisant pas les différentes mesures)				
Action sur	Gaz	Vapeurs	Poussières	
	Remplacement par un gaz ininflammable.	Remplacement par un liquide ininflammable (par substitution ou réaliser une dilution).	Remplacement par un produit incombustible ou moins sensible à l'inflammation.	
Le combustible		Remplacement par un produit ayant un point d'éclair au moins 15 °C au-dessus de sa température d'utilisation.	Augmenter la granulométrie au-delà d'un diamètre de 0,5 mm (attention suivant la qualité de compactage des granulés ou pellets, il est possible de retrouver de la poussière fine).	
	Éviter la présence de gaz dans l'atmosphère de travail (test d'étanchéité du réseau, vérification périodique, entretien).	Travailler en vase clos. Éviter l'émanation de vapeurs (condensation des vapeurs, capotage, mise en place de couvercles, procédures de vidange/remplissage/ transport adaptées). Abaisser la température en dessous du point d'éclair avec une marge suffisante (a minima point d'éclair -15 °C).	Ajouter des poussières inertes (talc, carbonates). Travailler en vase clos.	
La concentration de combustible	Capter le gaz à la source d'émission.	Capter les vapeurs à la source d'émission.	Éviter l'émission de poussières (capotage, mise en place de couvercle, procédures adaptées de vidange/remplissage/transport).	
	Ventiler les locaux mécaniqueme	ent en complément d'un captage à la source.	Capter les poussières à la source d'émission.	
	détecter et vérifiés fréquemment, e	s détecteurs calibrés sur le gaz ou la vapeur à t définir les actions à mettre en œuvre en cas de ption du procédé, ventilation forcée).	Éviter la mise en suspension de couches de poussières. Nettoyer fréquemment les dépôts de poussières par aspiration.	
Le comburant	: Diminution de la teneur en oxygène (comburant) de l'air, au moyen d'un gaz inerte (attention au risque d'hypoxi			
	Appareils (électriques ET non électriques) adaptés à la zone ATEX dans laquelle ils se trouvent et adaptés au produit générant l'ATEX.			
	Équipotentialité des parties conductrices (liaisons équipotentielles) et mise à la terre des équipements/installations.			
	Emploi de vêtements de travail et équipements de protection individuelle dissipateurs de charges électrostatiques en combinaison avec un sol dissipateur de charges.			
	Refroidissement d'un procédé qui émet de la chaleur.			
	Gestion des réactions chimiques (exothermiques, incompatibilités).			
Les sources d'inflammation	Détection d'élévation de température.		Contrôle de la vitesse de rotation d'une bande transporteuse et du déport de bande et détection d'élévation de température.	
	Vérification des insta	e par une personne compétente.		
			Captage d'éléments de taille importante dans un réseau d'aspiration de poussières combustibles (séparation gravitaire et magnétique).	
			Détection dans le stockage d'élévation de température, dégagement de monoxyde de carbone (en cas de risque d'autoéchauffement) ou de méthane (en cas de risque de fermentation).	
	Encadrem	ent des opérations se déroulant dans ou à proxin	nité d'une zone ATEX.	
	Mise en place des procédures de travail pour les opérations générant des risques incendie/explosion : permis de feu pour les travaux par points chauds, certificat de dégazage/inertage, bon d'intervention en espace confiné			
	Maîtrise des interventions des entreprises extérieures (plan de prévention).			
	Maintenance et vérifications périodiques des installations et équipements (notamment les installations électriques et les réseaux de distribution des liquides et gaz, systèmes d'aspiration).			
L'organisation du travail	Procédure de nettoyage par aspiration.			
	Consignes relatives à la mise à disposition et au port d'EPI et de vêtements de travail appropriés au risque ATEX.			
	Consignes relatives à la mise à disposition et l'utilisation d'équipements de travail adaptés au risque ATEX.			
	Sensibilisation de l'ensemble du personnel au risque d'explosion.			
	Formation spécifique des	opérateurs travaillant dans les zones ATEX et à pr et des équipes d'intervention incendie (EPI		

La réglementation ATEX demande également « lorsque les deux premiers objectifs de prévention ne peuvent pas être atteints » de définir des mesures techniques et organisationnelles afin d'atténuer les effets d'une explosion d'une ATEX sur les travailleurs (cf. 3° art. R. 4227-44). À noter que la suppression de l'ensemble des sources potentielles d'inflammation est très exigeante et difficilement pérenne, c'est pourquoi la protection contre les effets d'une explosion s'impose souvent (voir ci-dessous).

En plus de la protection des volumes, des mesures doivent être également prises pour éviter la propagation des explosions (cf. art. R. 4227-45).

Exemples de mesures de protection (liste non exhaustive et ne hiérarchisant pas les différentes mesures) Dispositifs d'isolement de l'explosion (arrête-flamme, vanne à fermeture rapide, clapet d'isolement d'explosion, écluse rotative et sas alvéolaire...) Les systèmes Installations résistantes à l'explosion de protection Systèmes d'extinction automatique d'explosion Systèmes de décharge d'explosion (évents...)

L'employeur doit également prendre les dispositions nécessaires pour que les travailleurs soient alertés par des signaux optiques et acoustiques et évacués avant que les conditions d'une explosion ne soient réunies (cf. art. 12 de l'arrêté du 8 juillet 2003 et § 4.6 du présent guide).

2.5.2 Accès, signalisation, procédures et consignes

2.5.2.1 Accès

Comme le précise l'article R. 4412-21 du Code du travail : « l'accès aux locaux de travail où sont utilisés des agents chimiques dangereux est limité aux personnes dont la mission l'exige. Ces locaux font l'objet d'une signalisation appropriée rappelant notamment l'interdiction

d'y pénétrer sans motif de service et l'existence d'un risque d'émissions dangereuses pour la santé, y compris accidentelles ».

Par ailleurs, l'article 6 de l'arrêté du 8 juillet 2003 précise :

- que l'exécution de travaux dans les emplacements dangereux s'effectue selon des instructions écrites de l'employeur;
- qu'un système d'autorisation en vue de l'exécution de travaux dangereux ainsi que de travaux susceptibles d'être dangereux lorsqu'ils interfèrent avec d'autres opérations, soit formalisé.

Cette autorisation doit, nécessairement, être délivrée avant le début des travaux par une personne habilitée à cet effet (cf. chapitre 3 du présent guide).

Ainsi, l'accès aux locaux où sont utilisées des substances classées inflammables est limité aux personnes dont la mission l'exige et en particulier en présence de zones ATEX (en permanence, occasionnellement ou en cas de dysfonctionnement) requérant des compétences appropriées pour y intervenir ou y circuler.

2.5.2.2 La signalisation

L'article R. 4227-51 et l'arrêté du 4 novembre 1993 imposent notamment que les accès aux locaux ou emplacements où peuvent se présenter des atmosphères explosives dangereuses soient signalés par le panneau d'avertissement figurant ci-dessous.

En complément de cette signalisation réglementaire, il sera possible d'apporter des éléments d'informations supplémentaires (par ex : des hachures en jaune et noir sur le sol, l'ajout du plan des zones affichées à côté du panneau réglementaire, indication sur le type et la fréquence de la survenance de l'atmosphère explosive dangereuse...)

Les travailleurs doivent être informés de la signalisation et de sa signification dans le cadre de la formation qu'ils reçoivent en matière de protection contre le risque d'explosion (cf. 3° chapitre du présent guide).

2.5.2.3 Procédures et consignes

Comme mentionné plus haut, l'employeur établit, au titre de l'article R. 4412-39, une « notice de poste » pour chaque poste ou situation de travail exposant les travailleurs à des substances et mélanges inflammables ou combustibles. Cette notice permet d'informer les travailleurs des risques auxquels leur travail peut les exposer, des dispositions prises pour les éviter et des consignes relatives à l'emploi des équipements de protection collective ou individuelle.

Compte tenu du risque ATEX et des mesures prises à son égard, les travaux effectués dans les emplacements dangereux (zones ATEX) ne peuvent avoir lieu que selon des instructions écrites de l'employeur et qu'après l'obtention d'une autorisation délivrée avant le début des travaux par l'employeur ou une personne habilitée à cet effet (cf. art. R. 4227-52 et art. 6 de l'arrêté du 8 juillet 2003). Les mesures à prendre lors de ces interventions sont détaillées au chapitre 4 du présent guide.

Concernant l'obligation d'information et de formation des travailleurs, il est important de rappeler que l'employeur doit établir au titre de l'article R. 4412-39 du CT, une « notice de poste » pour chaque poste ou situation de travail exposant ces derniers à des agents chimiques dangereux (dont notamment les substances et mélanges inflammables ou combustibles). Son contenu doit donc préciser les dangers et les risques chimiques auxquels les travailleurs sont suceptibles d'être exposés, les dispositions prises

pour les éviter et les consignes relatives à l'emploi des équipements de protection collective ou individuelle. Elles devront donc tenir compte du risque ATEX et être élaborées par des personnes formées et compétentes (cf. chapitre 5). Ces notices constitueront des supports incontournables de la formation des salariés à leur poste de travail.

Par ailleurs, une consigne de sécurité incendie est établie et affichée de manière très apparente dans les locaux où sont manipulées et mises en œuvre des matières inflammables (cf. art. R. 4227-37).

Il conviendra, par ailleurs, de modifier les notices de poste établies dans le cadre de l'évaluation du risque chimique (cf. art. R. 4412-39) en tenant compte du risque ATEX notamment concernant les mesures de prévention et organisationnelles (ex : mise en route d'une ventilation spécifique...), et de protection (chaussures qui protègent de l'exposition aux produits chimiques et antistatiques, vêtements de travail et EPI adaptés au risque ATEX...).

Pour rappel et en complément de l'obligation mentionnée à l'article R. 4412-39, les dispositions de l'article R. 4412-38 précisent que l'employeur veille à ce que les travailleurs ainsi que le comité social et économique :

- 1. reçoivent des informations sous des formes appropriées et périodiquement actualisées sur les agents chimiques dangereux se trouvant sur le lieu de travail, telles que notamment leurs noms, les risques pour la santé et la sécurité qu'ils comportent et, le cas échéant, les valeurs limites d'exposition professionnelle et les valeurs limites biologiques qui leur sont applicables;
- aient accès aux fiches de données de sécurité mises à disposition par le fournisseur des agents chimiques;
- 3. reçoivent une formation et des informations sur les précautions à prendre pour assurer leur protection et celle des autres travailleurs présents sur le lieu de travail. Sont notamment portées à leur connaissance les consignes relatives aux mesures d'hygiène à respecter et à l'utilisation des équipements de protection individuelle.

Ainsi, l'ensemble de la démarche de prévention conduira l'employeur à mettre en place une documentation lisible et accessible à l'ensemble des personnels concernés et à s'assurer que les travailleurs intervenant en zone ATEX possèdent les informations, compétences et les EPI requis.

2.6 Élaboration du document relatif à la protection contre les explosions – DRPCE

Le DRPCE est la compilation de l'ensemble de la démarche de prévention du risque d'explosion. Il est établi par l'employeur conformément à l'article R. 4227-52 et est annexé au document unique d'évaluation des risques professionnels (DUERP).

2.6.1 Contenu du DRPCE

Ce document décrit les mesures mises en œuvre pour assurer la protection des salariés contre les explosions au poste de travail. Cette exigence s'applique quel que soit le nombre de salariés et qu'il y ait eu ou non des accidents dans l'entreprise. Il est élaboré avant le commencement du travail pour tout lieu et équipement de travail et révisé annuellement au même titre que le document unique ou en cas de modification des lieux, équipements de travail ou de l'organisation du travail (cf. art. R. 4227-54).

Dans le DRPCE, l'employeur doit notamment faire apparaître :

- que les risques d'explosion ont été déterminés et évalués;
- quels sont les emplacements où il peut y avoir un risque d'explosion (classification en zones);
- quelles sont les mesures techniques destinées à prévenir les explosions ou à en atténuer les effets ;
- quels sont les critères applicables au choix des équipements de travail dans les zones à risques;
- quelles sont les mesures organisationnelles mises en œuvre.

Les informations suivantes doivent être présentes :

- évaluation des risques et mesures de prévention et de protection mises en œuvre;
- classification en zones ;
- dispositions relatives à la formation et à l'information du personnel;

- dispositions en matière de maintenance des installations;
- dispositions en matière de coordination des mesures de sécurité lors d'interventions d'entreprises extérieures (cf. art. R. 4227-53).

Le DRPCE doit permettre d'établir facilement le lien entre les installations, les zones identifiées, y compris les zones où le risque de formation d'ATEX est maîtrisé, les mesures de maîtrise du risque de formation d'ATEX et de maîtrise du risque d'inflammation.

Le DRPCE contient aussi les justifications requises dans le cas où des appareils et des systèmes de protection non conformes aux catégories prévues sont toujours en place dans l'entreprise conformément aux dispositions des articles 6 de l'arrêté du 28 juillet 2003 et 16 de l'arrêté du 8 juillet 2003 (cf. chapitre 5 du présent guide).

Un exemple non exhaustif de contenu de DRPCE est donné en annexe 2.

2.6.2 Contenu du DRPCE simplifié lorsque les mesures existantes éliminent le risque ATEX

Comme explicité en 2.4.2, un certain nombre de mesures de prévention existantes peuvent éviter voire supprimer le risque de formation d'atmosphère explosive.

Cette maîtrise du risque ATEX doit faire l'objet d'une **justification** au sein d'une document spécifique pouvant être assimilé à un DRPCE simplifié. Ce dernier devra *a minima* comprendre :

- la liste des mesures de prévention (techniques et organisationnelles) et de protection ayant une incidence directe sur la suppression du risque ATEX et ce qui est mis en place pour en assurer le maintien;
- la localisation des équipements, installations et matériels de prévention et de protection existantes présents aux différents points d'émissions. Ces derniers devront être accompagnés d'une documentation justifiant du maintien de leur efficacité (procédures de maintenance, contrôle, systèmes d'alertes en cas de dysfonctionnement, mesures compensatoires prises en relais en cas de défaillance d'un équipement...).

FORMATION DES TRAVAILLEURS DANS LE DOMAINE ATEX

3.1 Introduction

L'article R. 4227-49 impose que l'employeur délivre une formation aux travailleurs en matière de protection contre les explosions lorsque des atmosphères explosives peuvent se former.

Les récents accidents ont mis en évidence l'importance d'un personnel encadrant correctement formé capable d'évaluer les risques ATEX, d'établir des procédures et consignes spécifiques et d'accompagner des sous-traitants intervenant notamment en maintenance dans ou à proximité d'une zone à risque d'explosion. Ces derniers doivent ainsi être équipés d'outils, de matériels et d'EPI adéquats, et formés à leurs utilisations afin d'éviter tout départ d'incendie ou toute explosion (cf. chapitres 4 et 5 sur les catégories des appareils pouvant être mis en œuvre en zone ATEX).

3.1.1 Exigences en formation du point de vue de la réglementation ATEX

L'arrêté du 8 juillet 2003 relatif à la protection des travailleurs susceptibles d'être exposés à une atmosphère explosive précise dans son article 5 que :

« l'employeur prévoit, à l'intention des personnes qui travaillent dans des emplacements où des atmosphères explosives peuvent se présenter, **une formation suffisante et appropriée** en matière de protection contre les explosions ».

Si la notion de formation « suffisante et appropriée » n'est pas définie précisément dans son contenu, elle induit néanmoins l'obligation pour l'employeur de s'assurer que pour chaque lieu ou situation de travail où la réglementation ATEX s'applique, les travailleurs susceptibles d'être en présence d'une zone ATEX possèdent, dans le domaine de la prévention contre les explosions, l'expérience et la formation requises quant à l'accomplissement en sécurité des tâches qui leur sont confiées.

Il en est de même pour les personnes intervenant au voisinage d'une zone ATEX mais également pour les personnes opérant des actions d'entretien, de réglages ou de maintenance sur des appareils utilisables en zone ATEX (certifiés ATEX).

Cette obligation de formation en matière de prévention contre l'explosion s'inscrit dans le cadre de l'obligation générale de formation à la sécurité mentionnée aux articles L. 4141-2 et 3. Dans le cas de la sous-traitance, elle s'applique aux travailleurs de l'entreprise utilisatrice (entité faisant intervenir, dans sa zone de responsabilité, une entreprise extérieure), mais également aux travailleurs des entreprises extérieures intervenants sur site.

Cette formation « suffisante et appropriée » s'inscrit pleinement dans une logique de compétences spécifiques nécessaires pour établir une démarche de prévention pertinente.

3.1.2 Nécessité de compétences spécifiques sur l'ATEX

Le personnel encadrant et les différents opérateurs devront bénéficier de compétences spécifiques au regard des enjeux et de la technicité requise dans les diverses actions contribuant à la maîtrise du risque ATEX: l'évaluation du risque, le dimensionnement des zones ATEX au regard des mesures de prévention et de protection (techniques et organisationnelles), la détermination des équipements de travail appropriés, le bon usage de ces derniers ainsi que de leur maintenance spécifique.

Il est essentiel que la compétence des personnes soit maintenue, vérifiée et validée à intervalles pertinents par rapport à l'évolution de la réglementation et des normes, aux modifications du procédé industriel et au retour d'expérience des différents acteurs confrontés à la gestion du risque ATEX sur site.

Différents domaines ont déjà mis en place cette logique de compétence spécifique, notamment dans les réglementations :

- transport de matières dangereuses (TMD) avec l'obligation de travailler avec un « conseiller sécurité » qui peut être interne (salarié) ou externe à l'entreprise (prestataire) et qui doit être titulaire d'un certificat CSTMD. Ce certificat est conditionné à la réussite d'un examen national organisé par le CIMFD (certificat valable 5 ans, renouvelable par un examen);
- rayonnements ionisants (RI) avec l'obligation, inscrite au Code du travail (cf. art. R. 4451-112 et suivants), de désignation d'une « personne compétente en radioprotection (PCR) » (personne de l'entreprise ou organisme compétent). L'arrêté du 18 décembre 2019, qui définit les modalités de formation de la PCR et de certification des organismes de formation et des organismes compétents en radioprotection, est pris en application de l'article R. 4451-126;
- travaux en milieu hyperbare avec l'obligation pour l'employeur de désigner une personne chargée d'assurer la fonction de « conseiller à la prévention hyperbare ». Cette personne doit être titulaire d'un certificat obtenu à l'issue d'une formation dispensée par un organisme habilité. Ce certificat doit préciser l'activité professionnelle exercée ainsi que la classe qui définit la zone d'intervention ou de travaux pour laquelle le conseiller peut proposer les mesures de prévention adaptées. Les modalités de cette formation sont définies par l'arrêté du 12 décembre 2016.

3.1.3 Nécessité de compétences spécifiques par métier

Afin de répondre à cette obligation de formation, il est nécessaire de différencier des catégories de travailleurs intervenant en zone ATEX ou ayant une incidence dans la démarche de prévention du risque et de s'assurer qu'ils obtiennent le niveau de formation requis et adapté à leurs différentes missions. Pour cela, les catégories de travailleurs suivantes sont, notamment, à distinguer :

• le personnel encadrant ou décisionnaire (direction, personnes en ressources techniques, personne en charge du pilotage ou ayant une incidence sur l'organisation de la démarche de prévention du risque ATEX...);

- les personnels chargés de l'évaluation du risque ATEX (préventeur, QHSE...);
- le personnel travaillant en zone ATEX ou à son voisinage (opérateurs internes ou d'une entreprise extérieure, à titre d'exemple le personnel extérieur installant des échafaudages ou réalisant des opérations de nettoyage...);
- le personnel intervenant sur les appareils certifiés ATEX, notamment le personnel de maintenance:
 - les encadrants techniques responsables des études et des opérations accompagnant les techniciens sur site;
 - les opérateurs de maintenance intervenant sur des équipements de travail, y compris les machines sous la responsabilité d'un encadrant technique (techniciens internes ou externes);
- •le personnel intervenant de manière momentanée en zone (auditeurs, organismes de contrôles...);
- le personnel circulant de manière momentanée (visiteurs...) pour lesquels s'appliqueront des règles et consignes d'accueil sur site;
- les personnels formateurs internes ou externes.

Voir au § 3.5.

3.1.4 Recours aux travailleurs temporaires

Si une entreprise où un risque ATEX a été identifié a recours à des travailleurs temporaires affectés à des opérations en zone ATEX, sans préjudice des travaux interdits à ces travailleurs (cf. art. D. 4154-1), elle est responsable des conditions d'exécution du travail (cf. art. L. 1251-21), y compris en ce qui concerne la santé et la sécurité. Elle doit organiser une formation pratique et appropriée à la sécurité au bénéfice des travailleurs temporaires. Cette formation porte sur les conditions de circulation dans l'entreprise, sur les conditions d'exécution du travail et la conduite à tenir en cas d'accident ou de sinistre.

En ce qui concerne les formations à la sécurité spécifiques telles que la formation en matière de protection contre les explosions, elles sont délivrées par l'entreprise de travail temporaire. Toutefois, il revient à l'entreprise utilisatrice de vérifier avant la prise de poste par le travailleur temporaire que ce dernier a effectivement reçu la formation adaptée au poste par ses spécificités. L'entreprise utilisatrice devra éventuellement compléter cette formation.

3.1.5 Les jeunes travailleurs

Pour rappel, les jeunes (âgés d'au moins 15 ans et de moins de 18 ans) ne peuvent pas être affectés à des postes impliquant la préparation, l'emploi, la manipulation ou l'exposition à des substances inflammables ou combustibles (cf. art. D. 4153-17-I).

Il est possible de déroger à cette interdiction (cf. art. D. 4153-17-II) en respectant les prescriptions des articles R. 4153-38 à 45 notamment en procédant à la déclaration prévue à l'article R. 4153-41 auprès de l'agent de contrôle de l'Inspection du travail. Dans le cas où ces jeunes sont affectés à ces postes, ils bénéficient d'une formation adéquate et devront nécessairement, dans le cadre de leur tutorat, bénéficier d'un accompagnement sur son lieu de travail par une personne compétente.

3.2 Définition des différents niveaux d'exigence des formations

Il n'existe pas aujourd'hui de dispositif réglementaire dans le domaine des ATEX encadrant le niveau de qualification (cahiers des charges de formations) ni d'exigences particulières quant aux formateurs.

Néanmoins, le retour d'expérience en France liée aux accidents (explosions et incendies) au sein de plusieurs établissements de différentes tailles met en exergue le manque de formation du personnel interne à l'entreprise et des sous-traitants (direction et opérateurs), associée au manque de suivi spécifique des équipements en zone ATEX. La mise en place de référentiels de formations, permettant de s'assurer du niveau de qualification des décisionnaires et intervenants sur site, est rendue nécessaire.

En ce sens, il est proposé ci-dessous une liste d'éléments essentiels et incontournables qui devraient être présentés au cours des formations dispensées aux différentes catégories de personnel. Ces éléments sont le fruit du retour d'expérience des différents acteurs professionnels de la prévention et de l'administration impliqués dans la mise en œuvre de la réglementation ATEX. Ainsi les diagnostics, constats, enquêtes, analyses d'accidents et de rapports de vérification ainsi que l'évaluation du niveau des connaissances des acteurs ont permis de définir des éléments de connaissances et de compétences indispensables à la mise en œuvre des exigences réglementaires et de sécurité minimales devant être appliquées sur le terrain.

> Des formations adaptées au profil métier

Il est essentiel que les formations soient adaptées au profil métier des personnes et que, le cas échéant, elles soient complétées par une mise en pratique dans l'entreprise afin que les personnes formées puissent repérer immédiatement les dispositifs de sécurité et consignes spécifiques de travail propres à l'entreprise (cf. § 2.5.2). À l'issue de chaque formation, un contrôle des connaissances est à mettre en place.

Notamment, le personnel encadrant est chargé, avec l'appui de techniciens et d'ingénieurs compétents, d'identifier les installations devant faire l'objet d'une évaluation du risque ATEX, conformément à l'article R. 4227-44, de réaliser ou faire réaliser cette dernière, de s'assurer de la sécurité et de la formation des travailleurs intervenants en zone ATEX et de vérifier le bon état de fonctionnement des installations. Il fournit ou établit les autorisations de travail aux opérateurs internes ou externes intervenant en zone ATEX telles que mentionnées à l'article R. 4227-52 du Code du travail.

Être encadrant nécessite donc un niveau de formation suffisant afin de mettre en place une démarche d'évaluation pertinente, d'associer les compétences nécessaires à la réalisation des objectifs issus de cette dernière et de mettre à disposition les éléments documentaires résultants de cette évaluation (DRPCE, zonage, liste des équipements et traçabilité de leurs vérifications...).

> Prises en compte des évolutions réglementaires et techniques

Il est recommandé d'assurer une mise à jour régulière des connaissances des personnels formés. Au regard du retour d'expérience de ces dernières années, il apparaît raisonnable que cette mise à jour soit assurée, *a minima*, tous les 3 ans.

3.2.1 Formation ATEX pour le personnel encadrant ou décisionnaire chargé du pilotage du processus ATEX (Formation ATEX Encadrant)

Cette formation a pour objectif de permettre à ce personnel d'acquérir une connaissance globale de la problématique ATEX.

Il doit être capable de piloter, de décliner les actions et les organisations nécessaires quant à la mise en œuvre de la réglementation ATEX au sein de l'établissement (pilotage de l'évaluation des risques et des plans d'action, plans de formation du personnel, organisation de la maintenance, réalisation d'audits internes, processus d'achat des appareils ATEX, des prestations de services...).

La durée de cette formation doit être suffisante et adaptée au profil métier de ce personnel en fonction notamment de la dimension de la problématique ATEX sur site et de sa complexité notamment en cas d'interventions de sous-traitants au sein des activités.

En effet, le niveau de compétences à acquérir est d'autant plus important en cas d'intervention de plusieurs corps de métiers avec de possibles interférences.

Les connaissances acquises sont alors pleinement mobilisées dans le cadre de l'établissement des contrats de sous-traitance comprenant notamment l'obligation de mise en œuvre d'équipements de protection et d'appareils adaptés aux zones ATEX.

Ces obligations seront, par ailleurs, reprises et constitutives des plans de prévention et des autorisations de travail au sein de l'établissement.

Les points suivants devront être *a minima* abordés dans le cadre de cette formation ATEX :

Intégrer les concepts sur le phénomène de l'explosion de gaz, vapeurs, brouillards ou poussières

- Comprendre les différents types et mécanismes de l'explosion de gaz/vapeurs/ brouillards/poussières et les paramètres associés.
- Savoir identifier les substances ou mélanges inflammables ou combustibles susceptibles de conduire à une ATEX et les paramètres associés (point d'éclair, EMI, LIE, LSE, TAI...).
- Savoir identifier les sources d'inflammation potentielles (électriques, mécaniques, électricité statique...) en fonction des différentes situations de travail.
- Connaître la réglementation et les normes applicables.

Mettre en œuvre une démarche d'évaluation et de prévention du risque

- Être capable de mettre en œuvre la démarche d'évaluation des risques et connaître le zonage.
- Décliner les mesures de prévention/ protection spécifiques et assurer leur suivi et leur maintenance (aération/ventilation, appareils ATEX électriques et non électriques, modes de protection, détection, EPI...).
- Être capable de mettre en œuvre des mesures organisationnelles notamment vis-à-vis de la sous-traitance (plan de prévention, bon d'autorisation de travail, permis de travail, permis de feu, protocole de sécurité, consignes de sécurité).
- Être capable d'élaborer et de mettre en œuvre le DRPCE et d'assurer sa mise à jour et le suivi de son plan d'action.

Attendus de la formation :

- une évaluation des connaissances du personnel formé;
- une attestation signée du formateur comprenant les points essentiels sur lesquels le personnel a été formé et validant, ou non, l'acquisition des compétences;
- la remise des supports de formation et d'une éventuelle documentation utile à cette catégorie de personnel;
- une évaluation de la formation par les personnels formés.

3.2.2 Formation ATEX pour le personnel chargé de réaliser l'évaluation du risque ATEX (formation ATEX référent)

L'évaluation du risque ATEX ne pouvant être réalisée que par des personnes compétentes dans le domaine, il paraît indispensable que celle-ci soit confiée à des personnes ayant suivi une formation spécifique et détaillée.

Ces personnes ressources jouent un rôle clef en matière de pilotage, de suivi et d'animation de la démarche ATEX au sein de l'établissement.

Cette formation, à destination du personnel responsable de l'évaluation de risque ATEX, a pour objectif :

- d'appréhender toutes les questions relatives à la mise en œuvre des directives 1999/92/CE et 2014/34/UE;
- d'étudier le risque ATEX et de définir les mesures de prévention et de protection nécessaires pour assurer la sécurité des travailleurs et de l'installation;
- d'assurer le lien entre sa société et les divers organismes compétents en ATEX (par exemple : laboratoire d'essai, bureau d'études, organisme notifié...) afin de s'assurer de la cohérence des actions et décisions mises en œuvre;
- d'apporter son concours et son expertise dans la coordination de la sous-traitance, la définition des mesures techniques et organisationnelles à mettre en œuvre avant et en cours d'intervention, et l'accompagnement en zone.

En qualité de référent et d'expert du risque ATEX sur site, il devra bénéficier d'une formation robuste et d'une durée suffisante pour mener à bien ses missions et apporter ses compétences techniques et organisationnelles en situation normale comme en situation dégradée (ex : en cas d'incidents/accidents).

Les points suivants devront être *a minima* abordés dans le cadre de cette formation ATEX :

Intégrer les concepts sur le phénomène de l'explosion de gaz, vapeurs, brouillards ou poussières

- Maîtriser les différents types et mécanismes de l'explosion de gaz/vapeurs/brouillards/ poussières et les paramètres associés.
- Savoir identifier les substances et mélanges inflammables ou combustibles susceptibles de conduire à une ATEX et les paramètres associés (point d'éclair, EMI, LIE, LSE, TAI...).
- Connaître les méthodes associées à la sécurité des procédés et identifier les paramètres utiles pour le domaine ATEX.
- Connaître et identifier les sources d'inflammation potentielles (électriques, mécaniques, électricité statique...) en fonction des différentes situations de travail.
- Connaître et appliquer la réglementation.
- Connaître les différentes normes applicables.

Mettre en œuvre une démarche d'évaluation et de prévention du risque

- Être capable de mettre en œuvre la démarche d'évaluation des risques et et connaître le zonage.
- Proposer des dispositions techniques visant à supprimer/diminuer les risques identifiés.
- Identifier des actions visant à supprimer le combustible.
- Identifier des actions visant à limiter la concentration en combustible.
- Identifier des actions visant à supprimer le comburant.
- Être capable de réaliser un zonage (définition des zones, calculs de dispersion...) en fonction de référentiels reconnus.
- Définir et décliner les mesures de prévention/ protection spécifiques suivant les exigences liées au zonage ATEX et assurer leur suivi et leur maintenance (aération/ventilation, EPI, détection, matériels ATEX électriques et non électriques, modes de protection...).
- Assurer une coordination entre les différentes compétences afin de mettre en place les mesures techniques et organisationnelles nécessaires à la maîtrise du risque ATEX.
- Être capable d'élaborer et de mettre en œuvre des mesures organisationnelles notamment vis-à-vis de la sous-traitance (rédaction des procédures, plan de prévention, bons d'autorisation de travail, permis de travail, permis de feu, protocole de sécurité, consignes de sécurité...).
- Être capable de rédiger un DRPCE et d'en assurer la mise à jour et le suivi de son plan d'action.

Attendus de la formation :

- une évaluation des connaissances du personnel formé;
- une attestation signée du formateur comprenant les points essentiels sur lesquels le personnel a été formé et validant, ou non, l'acquisition des compétences;
- la remise d'un support de formation et d'une documentation utile (si possible, ciblée sur les activités dans lesquels ces personnels exercent);
- une évaluation de la formation par les personnels formés.

3.2.3 Formation ATEX minimale devant être dispensée à toutes les personnes travaillant en zone ATEX (ou au voisinage de celle-ci si pertinent) (formation ATEX minimale)

Cette formation est à destination du personnel devant travailler ou se rendre en zone ATEX, mais n'intervenant pas sur un appareil certifié ATEX. Ce personnel doit être informé des risques associés à la présence d'une ATEX, des grandes lignes du mécanisme d'explosion, ainsi que de la démarche de prévention du risque ATEX.

Cette formation doit être nécessairement adaptée au profil métier des travailleurs. La durée de cette dernière devra tenir compte de :

- la nature et la localisation de leurs interventions ;
- la dimension du risque ATEX sur site et la nature des mesures de prévention techniques et organisationnelles à mettre en œuvre;
- la connaissance des équipements, outils et EPI adaptés afin d'intervenir en zone (matériel présentés au cours de cette formation).

Les points suivants devront être *a minima* abordés dans le cadre de cette formation :

Introduction

- Aborder la définition de l'ATEX.
- Sensibiliser aux explosions, connaître les risques et les effets d'une explosion.
 Utilisation d'exemples significatifs avec films/photos.
- Intégrer le mécanisme de l'explosion de gaz/ vapeurs/brouillards/poussières et distinguer les paramètres de formation d'une atmosphère explosible.
- Présenter les différentes substances (hydrogène, poussière de bois...).
- Mettre en relation les caractéristiques d'explosivité et les paramètres d'utilisation des produits générant la formation d'une ATEX dans des situations de travail.
- Identifier les sources d'inflammation (y compris l'électricité statique).

Connaître la signalisation du marquage

- Repérer le panneau ATEX, les zones ATEX.
- Savoir identifier simplement un appareil ATEX par le logo. (x)
- Apporter une notion sur les différents marquages (notamment classes de gaz IIA, IIB, IIC) avec pour objectif de sensibiliser l'utilisateur final sur la nécessité d'adapter son outillage à la nature de l'environnement.

Connaître les principales mesures de prévention et de protection

- Les moyens techniques de gestion des ATEX (ventilation, détection...).
- Les moyens de suppression des sources d'inflammation (mise à la terre, appareil ATEX...).
- Les mesures organisationnelles associées aux zones ATEX (permis de travail, permis de feu, plan de prévention...).
- Conditions d'accès des véhicules en zone ATEX.
- Connaissance des EPI et vêtements de travail pour évoluer en zone ATEX (notamment chaussures de sécurité antistatiques).
- Procédure d'urgence/d'alerte (gestion des alarmes d'explosimètres notamment).

Connaître le matériel adapté et interdit en zone ATEX

- Utilisation d'outillage électrique et non électrique en zone ATEX (ex : visseuse, multimètre, nettoyeur HP autonome, marteau...).
- Électricité statique, tresses de continuité électrique des tuyauteries, mise à la terre.

Savoir ce que je ne dois pas faire en zone ATEX

- Les risques accidentels : étincelle, dégradation d'un équipement ATEX (perte de ses caractéristiques).
- Utilisation de matériel inadapté à la zone ou au produit.
- Redémarrage d'un véhicule en cas de nappe de gaz.

Comment mon métier est-il impacté?

- Consacrer un temps conséquent de la formation à cette partie liée au métier des personnes formées.
- Insister sur l'importance du respect des consignes et procédures.
- Signaler les anomalies (dégazage non réalisé, problèmes de ventilation, de détections...).

Attendus de la formation :

- une évaluation des connaissances du personnel formé;
- une attestation signée du formateur comprenant les points essentiels sur lesquels le personnel a été formé et validant, ou non, l'acquisition des compétences;
- la remise des supports de formation et d'une éventuelle documentation utile à cette catégorie de personnel;
- une évaluation de la formation par les personnels formés.

3.2.4 Formations ATEX pour le personnel intervenant sur le matériel ATEX notamment le personnel de maintenance, de bureau d'études

Ces formations destinées aux personnels intervenants internes ou externes (cf. § 3.2.4.2), ou ayant la responsabilité d'opérations sur des appareils ATEX (cf. § 3.2.4.1), électriques ou non

électriques (conception en bureau d'études, sélection, construction, inspection, entretien, réparation, maintenance, consignation, montage, démontage, modifications des équipements de travail, remise en service...) ont pour objectif d'apporter les connaissances techniques et les compétences nécessaires pour tous types d'interventions.

Ces formations ne peuvent être dispensées qu'à des personnes ayant déjà une compétence métier (électrique, mécanique, instrumentation...).

Rappelons que les équipements de travail présents en zone ATEX doivent être conçus spécifiquement pour fonctionner dans ces zones, et être entretenus et vérifiés afin d'assurer la sécurité lors de leurs utilisations comme mentionné à l'article R. 4227-52 et son arrêté d'application du 8 juillet 2003 (articles 10 et 11). Tout doit être mis en œuvre pour réduire au maximum le risque d'explosion en assurant notamment la maintenance des équipements de travail par des opérateurs ayant les compétences requises et bénéficiant d'une autorisation de l'employeur.

Le personnel de maintenance joue donc un rôle essentiel dans le maintien en sécurité des équipements de travail et la notion de « formation suffisante et appropriée » du personnel intervenant en zone ATEX introduite par l'article 5 de l'arrêté du 8 juillet 2003 prend ici une importance particulière.

Ces formations sont donc à dispenser par des organismes ayant le niveau de compétences techniques nécessaire et reconnu dans le domaine de l'ATEX (cf. § 3.5).

Ces formations doivent décliner les règles à respecter afin de maintenir le niveau de protection ATEX originel (mode de protection, évaluation des risques...).

Le contenu et la durée de ces formations sont à adapter au métier ainsi qu'au niveau de responsabilité de la personne devant intervenir.

Dans le cas de la sous-traitance, l'obligation en matière de formation ATEX s'applique également aux travailleurs des entreprises intervenant sur le site et à tout intervenant sur des appareils ATEX (atelier de réparation extérieur à l'établissement).

3.2.4.1 Formation appareils ATEX pour les personnes responsables des études et des opérations (formation ATEX responsable technique)

Cette formation a pour objectif:

- de permettre au responsable des études et des opérations de garantir le respect des règles d'intervention et les mises en œuvre techniques vis-à-vis du travail dont il a été désigné responsable ou qu'il doit réaliser sous sa responsabilité. Elle lui permettra également d'encadrer des techniciens;
- de garantir, à l'issue des interventions, le maintien du niveau de sécurité des appareils ATEX sur lesquels a porté l'intervention.

Ce personnel jouant un rôle particulièrement important dans l'organisation de la maintenance et de son suivi, la formation doit être nécessairement adaptée au profil métier et d'une durée suffisante afin d'acquérir un niveau de compétence robuste permettant de fournir des directives précises et adaptées pour l'équipe de techniciens dont il a la charge.

La durée de cette dernière devra donc tenir compte:

- de la qualification initiale du personnel formé et du niveau de technicité attendu;
- du type d'interventions sur site (électriques, mécaniques...);
- de la connaissance à acquérir concernant les équipements, outils et EPI adaptés afin d'intervenir en zone;
- de l'encadrement des techniciens sur site.

Les points suivants devront être *a minima* abordés dans le cadre de cette formation :

Intégrer les concepts sur le phénomène de l'explosion de gaz/vapeurs, brouillards ou poussières

- Généralités concernant les phénomènes d'explosion de gaz, vapeurs, brouillards et de poussières.
- Connaissance détaillée des sources d'inflammation (électriques, mécaniques, électricité statique...).
- Connaissance de la directive 1999/92/CE (DRPCE et documentation associée).
- Connaissance de la directive 2014/34/UE.
- Connaissance du classement de zone.
- Connaissance détaillée des principes généraux de protection contre l'explosion.
- Connaissance détaillée des principes généraux des modes de protection et du marquage du matériel électrique et non électrique.
- Compréhension des aspects liés à la conception du matériel qui affectent le concept de protection.
- Compréhension générale des exigences d'inspection, d'entretien, de métrologie, de maintenance... (notices d'instruction des équipements, registre de maintenance, suivi et traçabilité des interventions).
- Connaissance détaillée des techniques à employer dans le choix et la construction des appareils : « adéquation matériel/zone ».
- Règles d'intervention en zone ATEX (plan de prévention, permis de travail, permis de feu, mise en œuvre des sécurités, ventilation, mise à la terre, détection, contrôle d'atmosphère, EPI).
- Savoir établir un déroulé opérationnel approprié.

Attendus de la formation :

- une évaluation des connaissances du personnel formé;
- une attestation signée du formateur comprenant les points essentiels sur lesquels le personnel a été formé et validant, ou non, l'acquisition des compétences;
- la remise des supports de formation et d'une éventuelle documentation utile à cette catégorie de personnel;
- une évaluation de la formation par les personnels formés.

3.2.4.2 Formation appareil ATEX pour les personnels intervenant directement sur le matériel ATEX sous la responsabilité d'un encadrant technique (formation ATEX intervenant technique)

Cette formation a pour objectif de garantir, à l'issue des interventions du technicien bénéficiant d'une formation métier de base (ex : électromécanicien), le maintien du niveau de sécurité des appareils ATEX vis-à-vis du travail exécuté (consignations, intervention, dépose, réparation, remise en service...).

La qualification et la compétence de cette catégorie de personnel sont essentielles : en effet, au-delà de leurs compétences métiers, il est indispensable qu'ils bénéficient d'une formation complémentaire suffisamment conséquente leur permettant de comprendre la nature de la sécurité intégrée inhérente aux équipements ATEX et de garantir leur intégrité lors des opérations de maintenance.

La durée de cette formation complémentaire devra tenir compte :

- de la qualification initiale du personnel formé et du niveau de technicité attendu;
- du type d'interventions sur site (électriques, mécaniques...);
- de la connaissance à acquérir concernant les équipements, outils et EPI adaptés afin d'intervenir en zone.

Les points suivants devront être *a minima* abordés dans le cadre de cette formation :

Mettre en œuvre une démarche d'évaluation et de prévention du risque

- Généralités concernant la réglementation et les phénomènes d'explosion de gaz, vapeurs, brouillards et de poussières.
- Connaissance des sources d'inflammation (électriques, mécaniques, électricité statique...).
- Approche succincte de la directive
 1999/92/CE (classement de zone, signalisation).
- Approche succincte de la directive 2014/34/UE (catégories, marquage et documentation).
- Connaissance des principes généraux des modes de protection pour appareils électriques et non électriques.
- Compréhension des aspects liés à la conception du matériel qui affectent le concept de protection.
- Bonnes pratiques liées à l'intervention sur les appareils ATEX (montage/démontage/ entretien).
- Compréhension générale des exigences d'inspection, d'entretien, de métrologie, de maintenance...
- Règles d'intervention en zone ATEX (permis de travail, permis de feu, mise en œuvre des sécurités, ventilation, mise à la terre, détection, contrôle d'atmosphère, consignation, remise en service, EPI, vêtement de travail...).

Attendus de la formation :

- une évaluation des connaissances du personnel formé;
- une attestation signée du formateur comprenant les points essentiels sur lesquels le personnel a été formé et validant, ou non, l'acquisition des compétences;
- la remise des supports de formation et d'une éventuelle documentation utile à cette catégorie de personnel;
- une évaluation de la formation par les personnels formés.

3.3 Identification et niveau de formation acceptable pour divers postes de travail en relation avec le risque d'explosion

Tel que précisé dans l'introduction, « l'employeur prévoit, à l'intention des personnes qui travaillent dans des emplacements où des atmosphères explosives peuvent se présenter, une formation suffisante et appropriée en matière de protection contre les explosions » (cf. arrêté du 8 juillet 2003).

Cela implique:

- la nécessité de compétences spécifiques par métier;
- des formations adaptées à chaque profil;
- la prise en compte des évolutions réglementaires et normatives.

Une liste non exhaustive des différents postes pouvant avoir une interaction avec la réglementation ATEX est proposée ci-dessous et un niveau de formation correspondant est proposé.

Ces éléments sont valables pour une entreprise utilisatrice et pour le personnel sous-traitant.

Mission	Description	Formation
Personnel de direction, chefs de service	Responsable de la mise en œuvre de la réglementation ATEX au sein de l'entreprise.	Formation ATEX encadrant (3.2.1)
Personnel devant intervenir dans ou à proximité d'une zone ATEX	Opérateur travaillant à proximité d'une zone ATEX Réalisation d'audit sur le terrain.	Formation ATEX minimale (3.2.3)
Acheteur	Responsable des achats de matériel et prestation de service.	Formation ATEX encadrant (3.2.1)
Opérateurs de production, opérateurs salle de contrôle	Manipulation de produits, échantillonnage, dépotage, transvasements, ouvertures de circuits, démarrage de machines ATEX, surveillance des paramètres de sécurité ATEX, mise à disposition d'unités de production pour travaux Personnel assurant la bonne conduite du procédé.	Formation ATEX minimale (3.2.3) + Formation adaptée au métier
Personnel QHSE	Audits, relevés, définition des règles de sécurité en zone ATEX, suivi du DRPCE, formation sécurité, accueil sécurité	Formation ATEX encadrant (3.2.1) et/ou Formation référent ATEX (3.2.2)
Pompiers, secouristes, médecins, infirmier(e)s, personnel d'astreinte	Interviennent en cas d'urgence en zone ATEX.	Formation ATEX minimale (3.2.3)
Service inspection	Garant des règles de surveillance des matériels en zone ATEX. Approbateurs des spécifications techniques	Formation ATEX encadrant (3.2.1) + Formation intervenant technique (3.2.4.2)

Mission	Description	Formation
Personnel d'encadrement, responsables d'unités, chefs opérateurs, responsable de maintenance	Responsables de la sécurité de leurs personnels (évoluant en zone), des procédés et des travaux, garants des règles de sécurité applicables, établissement du permis de travail, réalisation de l'analyse de risque avant travaux, coordination	Formation ATEX encadrant (3.2.1) + Formation ATEX responsable technique (3.2.4.1) si nécessaire
Personnel des services études, projets et travaux neufs	Garant du design et des règles de conception/ modification des installations, élaboration des cahiers des charges techniques du matériel.	Formation ATEX responsable technique (3.2.4.1)
Responsable de maintenance, responsable d'opérations sur du matériel ATEX électrique, instrumentation, mécanique	Assurent ou coordonnent les modifications techniques, maintenance, réparation, dépannage, achat, réception de matériel ATEX.	Formation ATEX responsable technique (3.2.4.1)
Techniciens de maintenance intervenant sur du matériel ATEX (électrique, non électrique, mécanique, instrumentation)	Réalisent les interventions de maintenance, réparation sur du matériel ATEX sous la responsabilité d'une personne compétente en ATEX.	Formation ATEX intervenant technique (3.2.4.2)
Techniciens, ouvriers n'intervenant pas directement sur du matériel ATEX	Personnel évoluant en zone ATEX afin d'y réaliser divers travaux (tuyauteurs, échafaudeurs, calorifugeurs).	Formation ATEX minimale (3.2.3)
Référent ATEX	Personne assurant la bonne mise en œuvre du contexte réglementaire ATEX au sein de l'entreprise. Coordination, validation, organisation de la réglementation ATEX. Suivi, mise à jour et respect des règles telles que définies dans le DRPCE. Contact privilégié avec organisme notifié, de contrôle Peut être amené à rédiger le plan de prévention, définir le zonage	Formation ATEX référent (3.2.2) + Formation technique spécifique si besoin
Responsables de personnel d'entreprises (sous-traitant) devant intervenir en zone ATEX mais pas sur du matériel	Garants du plan de prévention Doivent définir le plan de formation de son personnel, définir les EPI adaptés, fournir les matériels ATEX adaptés	Formation ATEX encadrant (3.2.1)
Inspecteurs, auditeurs indépendants, d'organismes de contrôle ou d'État	Réalisation de contrôles, d'audits détaillés suivant la réglementation ATEX.	Formation ATEX minimale (3.2.3) + Formation adaptée à leurs missions (par exemple : 3.2.1, ou 3.2.2, ou 3.2.4)

3.4 Accueil visiteur et information à l'entrée du site

Le risque ATEX spécifique à chaque entreprise, défini en fonction des caractéristiques des produits utilisés (gaz, poussière), du procédé, de l'organisation interne... est à expliquer à toute nouvelle personne devant entrer sur un site présentant un risque ATEX.

Il en est de même pour les spécificités telles que les signaux d'alerte utilisés (cf. § 2.5.2), les points de rassemblement, les méthodes de signalisation des zones ATEX, les règles particulières adaptées au site, les EPI, la détection...

L'ensemble de ces éléments essentiels sont regroupés dans les consignes/instructions de sécurité et sont à transmettre à toute personne entrant sur le site y compris aux visiteurs qui sont, par ailleurs, accompagnés tout le temps de leur présence dans les locaux de l'entreprise par une personne de l'entreprise formée au risque ATEX. L'accueil sécurité du site doit, de ce fait, aborder le risque ATEX ainsi que les spécificités qui lui sont liées.

Il est utile que cette information des visiteurs soit validée par un questionnaire (QCM) afin de s'assurer de sa bonne compréhension.

3.5 Compétence des formateurs

Au-delà de ses compétences pédagogiques, un formateur ATEX doit pouvoir démontrer un niveau de compétence technique dans son domaine métier, mais également dans le domaine de l'ATEX afin de pouvoir dispenser les formations prévues au § 3.2.

Afin de suivre l'évolution réglementaire, l'évolution normative et le retour d'expérience des différents acteurs de la prévention du risque ATEX, il est essentiel que la compétence des formateurs soit maintenue, suivie et contrôlée à intervalles réguliers suivant un référentiel reconnu.

Le retour d'expérience montre qu'un recyclage tous les 3 ans apparaît pertinent compte tenu de l'évolution technique, réglementaire et normative.

Le contenu du référentiel de formation de formateur devra répondre aux exigences définies dans cette troisième partie du présent guide.

3.5.1 Pour les formations ne nécessitant pas d'intervention sur du matériel ATEX

Il est recommandé que les formateurs dispensant les formations ne nécessitant pas d'intervention sur du matériel ATEX :

- soient en activité ou aient été en activité dans un domaine en rapport avec la sécurité industrielle : (Q)HSE, sécurité, formateur risque chimique...;
- aient suivi une formation complète et détaillée auprès d'un organisme compétent et reconnu dans les domaines de l'explosion (formation théorique, pratique... équivalent à la formation ATEX encadrant ou ATEX référent).

3.5.2 Pour les formations nécessitant l'intervention sur des appareils ATEX

Il est recommandé que les formateurs dispensant la formation pour le personnel intervenant sur le matériel ATEX :

- soient en activité ou aient été en activité dans un domaine en rapport avec les matériels ATEX (maintenance, bureau d'études, conception, installation, réparation...);
- possèdent une solide expérience dans le domaine technique concerné (électricité, instrumentation, automatisme, mécanique...);
- aient suivi une formation complète et détaillée auprès d'un organisme compétent et reconnu dans les domaines de l'explosion (formation théorique, pratique... équivalent à la formation ATEX responsable technique).

INTERVENTIONS EN ZONE ATEX

4.1 Introduction

Cette partie a pour objet de traiter à la fois de l'intervention des travailleurs (personnel interne ou travailleurs temporaires) d'une entreprise en zone ATEX et de l'intervention d'une entreprise extérieure (qui peut elle-même faire appel à des entreprises sous-traitantes) pour exécuter ou participer à l'exécution d'une opération en zone ATEX dans un établissement d'une entreprise utilisatrice.

Considérant les principes généraux de prévention, la suppression du risque de création de zone ATEX doit être prioritaire.

RAPPEL sur les zones ATEX:

- Zone 0/20 : Emplacement où une ATEX est présente en permanence, pendant de longues périodes ou fréquemment.
- •Zone 1/21 : Emplacement où une ATEX est susceptible de se présenter occasionnellement en fonctionnement normal.

L'atmosphère explosive peut être présente dans les conditions normales d'exploitation de l'unité de production, mais pas en permanence.

• Zone 2/22 : Emplacement où une ATEX n'est pas susceptible de se présenter en fonctionnement normal ou n'est que de courte durée, s'il advient qu'elle se présente néanmoins.

L'atmosphère explosive n'est présente qu'en cas de dysfonctionnement de l'unité de production.

L'article 6 de l'arrêté du 8 juillet 2003 spécifie que le DRPCE (cf. art. R. 4227-52) prévoit nécessairement :

- que l'exécution de travaux dans les emplacements dangereux s'effectue selon des instructions écrites de l'employeur;
- qu'un système d'autorisation en vue de l'exécution de travaux dangereux ainsi que de travaux susceptibles d'être dangereux lorsqu'ils

interfèrent avec d'autres opérations, soit formalisé. Cette autorisation doit être délivrée avant le début des travaux par une personne habilitée à cet effet par l'employeur.

Dans le cas de l'intervention d'une entreprise extérieure, les interventions des travailleurs doivent être effectuées dans le respect des articles R. 4511-1 et suivants du Code du travail.

Le chef de l'entreprise utilisatrice (donneur d'ordres) et le ou les chefs des entreprises extérieures analysent les risques pouvant résulter de l'interférence entre les activités, installations et matériels et établissent un plan de prévention (cf. art. R. 4512-6).

Ce plan de prévention est établi par écrit conformément à l'article R. 4512-7 pour les travaux exposant à des substances ou mélanges inflammables. Il précise (cf. art. R. 4512-8) entre autres:

- le détail opérationnel des différentes phases d'activité et le matériel utilisé;
- la définition des phases d'activité dangereuses et les moyens de prévention spécifiques ;
- l'adaptation des matériels et des installations à la nature des opérations ;
- les risques spécifiques d'interférences liés aux installations et aux activités qui y seront exercées lors de l'intervention ;
- les mesures de prévention établies d'un commun accord pour prévenir ces risques et, pour chacune d'elles, la partie contractante chargée de leur mise en œuvre;
- les installations et les équipements mis à disposition de l'entreprise extérieure par le donneur d'ordres ;
- l'organisation des secours ;
- les consignes et les procédures remises par le donneur d'ordres aux entreprises ;
- les instructions à donner aux travailleurs.

Le chef de l'entreprise utilisatrice (donneur d'ordres) assure la coordination générale des mesures de prévention (cf. art R. 4511-5) prises pour prévenir les risques liés à l'interférence entre les activités, installations et matériels des différentes entreprises (extérieures et sous-traitantes) intervenant dans son établissement.

Il précise dans le DRPCE (cf. art R. 4227-53) les mesures et les modalités de mises en œuvre de la coordination générale des mesures de prévention qui lui incombe.

4.2 Personne en charge d'une intervention en zone ATEX

Sont considérées comme personnes en charge d'une intervention en zone ATEX toutes les personnes devant planifier, préparer, réaliser ou encadrer un travail situé en zone ATEX.

Par exemple:

- les personnes chargées de l'élaboration des contrats de maintenance, d'inspection;
- les personnes qui établissent et/ou signent des autorisations de travail, plans de prévention ;
- les personnes qui supervisent l'intervention de travailleurs de l'entreprise utilisatrice ou d'entreprises extérieures;
- · les techniciens;
- les opérateurs de productions ;
- les auditeurs...

Exemples d'interventions se déroulant en zone ATEX :

- inspection (ouverture de matériels électriques...);
- nettoyage (utilisation de matériels présentant des sources d'inflammation...);
- opérations effectuées dans le cadre d'un procédé (démarrage, permutation, mise à disposition d'équipements...);
- installation d'échafaudage (chocs mécaniques, équipotentialité...);
- auditeurs, visiteurs (risque électrostatique, matériel portatif...);
- travaux de maintenance sur un équipement de travail;
- travaux curatifs d'urgence...

Pour rappel, la **compétence** des personnes en charge d'une intervention en zone ATEX passe par une formation suffisante et appropriée en matière de protection contre les explosions (cf. § 3.1).

Il est de la **responsabilité de l'entreprise utilisatrice** de s'assurer de cette compétence au travers :

- de son DRPCE;
- des contrats rédigés entre l'entreprise utilisatrice et l'entreprise intervenante;
- du niveau de compétence/formation requis pour son personnel compte tenu des risques spécifiques liés à l'ATEX (zonage, groupe de gaz, température maximale de surface...), des matériels utilisés, des moyens de protection collective et individuelle nécessaires pour son personnel;
- du plan de prévention ;
- du protocole de sécurité;
- des autorisations de travail;
- des autorisations d'accès au site.

Il est de la **responsabilité de l'entreprise extérieure** de s'assurer de cette compétence au travers :

- · du plan de prévention ;
- des règles spécifiques exigées par l'entreprise utilisatrice;
- du niveau de compétence/formation requis pour son personnel compte tenu des risques spécifiques liés à l'ATEX (zonage, groupe de gaz, température maximale de surface...), des matériels utilisés, des moyens de protection collective et individuelle nécessaires pour son personnel;
- du plan de formation de son personnel.

4.3 Analyse de risque liée à l'intervention en zone ATEX

Pour donner suite à la démarche d'évaluation des risques ATEX (cf. § 2 du présent guide), des zones ATEX ont été identifiées et des mesures de prévention et de protection appropriées ont été prises. Pour rappel, tout doit être mis en place pour limiter la zone ATEX à défaut de pouvoir la supprimer.

Lors d'une intervention en zone ATEX, il est important de rappeler que, quel que soit le type de zone définie, une explosion peut survenir à tout moment. Lors de l'intervention du personnel interne à l'entreprise ou du personnel d'une entreprise extérieure dans ou à proximité d'une zone ATEX, il est nécessaire, afin de protéger les travailleurs, de déterminer la dangerosité de l'intervention à réaliser. Il est notamment nécessaire d'évaluer et de maîtriser les risques durant toute la durée du travail. Il est aussi important de prendre en compte le fait que l'intervention peut elle-même être à l'origine de la formation d'une ATEX.

La démarche suivante peut être appliquée comme un outil de gestion des risques liés à l'intervention d'une entreprise extérieure mais aussi en interne en partant du principe que le personnel intervenant, même interne, peut ne pas connaître parfaitement sa zone d'intervention ni les produits pouvant être présents notamment lors de changements réguliers de produits sur un même procédé.

Dans le cas d'une intervention par du personnel interne à l'entreprise, la démarche est identique afin de garantir la prise en compte de l'ensemble des risques susceptibles d'être présents (le personnel de maintenance d'une entreprise peut ne pas être informé des activités spécifiques dans ou à proximité de la future zone d'intervention).

4.3.1 Inspection commune préalable

Dans le cas de l'intervention d'une entreprise extérieure, il est procédé, préalablement à son intervention et conformément à l'article R. 4512-2, à une inspection commune des lieux de travail, des installations et des matériels. Cette inspection a notamment pour objet de recueillir les informations nécessaires à la prévention des risques liés à la présence d'une ATEX (présente dans l'établissement de l'entreprise utilisatrice ou susceptible de se former par l'intervention de l'entreprise extérieure).

L'article R. 4512-3 précise qu'au cours de l'inspection commune préalable, le chef de l'entreprise utilisatrice :

- 1. délimite le secteur de l'intervention des entreprises extérieures ;
- 2. matérialise les zones de ce secteur qui peuvent présenter des dangers pour les travailleurs ;
- 3. indique les voies de circulation que pourront emprunter ces travailleurs ainsi que les véhicules et engins de toute nature appartenant aux entreprises extérieures;

4. définit les voies d'accès de ces travailleurs aux locaux et installations à l'usage des entreprises extérieures prévues à l'article R. 4513-8.

Le chef de l'entreprise utilisatrice communique aux chefs des entreprises extérieures ses consignes de sécurité applicables aux travailleurs chargés d'exécuter l'opération, y compris durant leurs déplacements (cf. art. R. 4512-4) et les employeurs se communiquent toutes informations nécessaires à la prévention des risques, notamment la description des travaux à accomplir, des matériels utilisés et des modes opératoires dès lors qu'ils ont une incidence sur la santé et la sécurité.

4.3.2 Établissement du plan de prévention

À la suite de cette inspection commune et au vu des informations et éléments recueillis, les entreprises utilisatrices et extérieures procèdent en commun à une analyse des risques pouvant résulter de l'interférence entre les activités, installations et matériels.

Lorsque ces risques existent, les employeurs arrêtent d'un commun accord, avant le début des travaux, un plan de prévention définissant les mesures prises par chaque entreprise en vue de prévenir ces risques (R. 4512-6)

Dans le cadre de l'évaluation du risque ATEX, cette analyse consiste à :

- identifier les situations à risque :
 - -identification des emplacements et conditions dans lesquelles une ATEX est susceptible de se former : l'évaluation des risques et le classement de zones consignés dans le DRPCE (cf. § 2.6) peuvent servir de base à cette évaluation des risques avant intervention. Il convient toutefois d'évaluer aussi les modifications apportées dans le contexte d'intervention : dispositif de maîtrise de risque déficient ou arrêté pour les besoins de l'intervention, procédé mis à l'arrêt, présence de substance inflammable résultant d'une défaillance ou utilisé spécifiquement pour l'intervention. Il peut être nécessaire d'établir un classement de zone temporaire résultant du contexte spécifique d'intervention et des mesures de maîtrise des risques spécifiques mises en place.

- Prendre des mesures pour éviter du mieux possible l'apparition de l'ATEX à l'endroit de l'intervention en :
 - -consignant les sources potentielles d'émission;
 - intervenant sur le procédé (diminution de débit, de la pression...);
 - assurant une ventilation suffisante;
 - confinant le lieu de l'intervention;
 - vérifiant l'étanchéité d'une conduite remise sous pression de gaz inflammable...
- · Identifier les zones ATEX résiduelles.
- Éviter les sources d'inflammation (cf. § 2.4.1.2) lors de l'intervention en :
 - utilisant des appareils ATEX certifiés suivant la directive 2014/34/UE et en adéquation avec la zone et le produit. Dans le cas contraire, son emploi devra nécessiter des **précautions particulières** (permis de feu, utilisation d'un explosimètre...);
 - maîtrisant l'intervention afin de limiter les risques de chocs, d'impacts...;
 - maîtrisant le risque électrostatique (EPI, mises à la terre...);
 - maîtrisant la coactivité des opérations.

Si l'évaluation des risques résultant de la visite préalable commune démontre l'impossibilité de supprimer de façon sûre l'ATEX ou la source d'inflammation, des moyens techniques et organisationnels tels qu'un contrôle permanent de l'explosivité doivent être mis en place afin que le travailleur puisse mettre le lieu de travail en sécurité et évacuer avant l'apparition d'une atmosphère explosive.

L'ensemble de ces moyens devront être définis au travers du plan de prévention (PP) et de l'autorisation de travail (ou bon d'intervention).

Les mesures prévues par le PP devront comporter au moins les dispositions telles que définies au R. 4512-8 :

- la définition des phases d'activité dangereuses et des moyens de prévention spécifiques correspondants;
- l'adaptation des matériels, installations et dispositifs à la nature des opérations à réaliser ainsi que la définition de leurs conditions d'entretien;
- 3. les instructions à donner aux travailleurs ;

- 4. l'organisation mise en place pour assurer les premiers secours en cas d'urgence et la description du dispositif mis en place à cet effet par l'entreprise utilisatrice;
- 5. les conditions de la participation des travailleurs d'une entreprise aux travaux réalisés par une autre en vue d'assurer la coordination nécessaire au maintien de la sécurité et, notamment, de l'organisation du commandement.

Le plan de prévention fixe également la répartition des charges d'entretien entre les entreprises extérieures dont les travailleurs utilisent les locaux et installations prévus à l'article R. 4513-8 et mis à disposition par l'entreprise utilisatrice (cf. art. R. 4512-10).

Remarque: Le plan de prévention doit être écrit, ce dernier est tenu, pendant toute la durée des travaux, à la disposition de l'inspection du travail, des agents de prévention des organismes de Sécurité sociale et, le cas échéant, de l'Organisme professionnel de prévention du bâtiment et des travaux publics (OPPBTP);

Par ailleurs, le chef de l'entreprise utilisatrice informe par écrit l'Inspection du travail de l'ouverture des travaux.

4.3.3 Autorisation/permis de travail

Comme l'indique l'article R. 4226-8, dans les locaux ou emplacements où des ATEX peuvent se former, la maintenance, les mesurages et les essais des installations électriques ne peuvent être entrepris qu'après autorisation écrite du chef d'établissement et selon ses instructions. Si les matériels utilisés pour réaliser ces opérations ne sont pas prévus spécialement pour ce type d'emplacements, ces emplacements sont préalablement rendus non dangereux.

Lorsque des travaux sont effectués dans une zone ATEX ou à proximité, en interne ou en soustraitance, ils sont soumis à autorisation de travail conformément à l'article R. 4227-52.

Cette autorisation, issue de l'évaluation des risques, doit être rédigée par les **personnes compétentes**, signée, puis délivrée et expliquée aux travailleurs avant le début des travaux. Sur le terrain, cette autorisation est souvent « matérialisée » par un permis de travail, un bon d'intervention...

Les responsabilités de chacun doivent être clairement définies.

Les consignes issues de l'autorisation de travail doivent être rédigées de manière que leur contenu puisse être compris et appliqué par tous les travailleurs.

Dans cet objectif, cette autorisation devra, a minima, préciser :

- le début et la fin des travaux ;
- •le lieu précis où les travaux doivent être effectués;
- la nature précise des travaux devant être réalisés;
- le matériel utilisé;
- la présence de risques spécifiques (type de zone ATEX, caractéristiques importantes des produits : groupe de gaz ou de poussières, TAI ou température maximale de surface des appareils);
- quels sont les acteurs responsables des travaux, leurs compétences et leurs coordonnées directes;
- une synthèse de l'évaluation des risques ;
- la liste des moyens techniques et organisationnels à mettre en œuvre et à respecter avant, pendant et après les travaux (par exemple : balisage, outillage, contrôles d'atmosphère, surveillance, consignations, inertage, dégazage, EPI, réception, essais...).

Si l'entreprise emploie des travailleurs qui ne maîtrisent pas suffisamment la langue du pays, les consignes doivent être également élaborées dans une langue qu'ils comprennent.

À la fin des travaux, il est impératif de **contrôler que** la sécurité de l'installation n'a pas été dégradée durant l'intervention et répond toujours à son niveau initial.

Cela revient à s'assurer que les mesures de prévention des explosions nécessaires aux conditions de service de l'installation sont à nouveau efficaces (validation du mode de protection des appareils ATEX devant être remis en service par exemple). Cela confirme l'importance du niveau de compétence des personnes intervenantes tel que défini au chapitre 3.

Afin d'assurer la traçabilité des travaux ayant été réalisés, il est recommandé **qu'un rapport d'intervention** soit rédigé, archivé et mis à disposition. Ce rapport comportera a minima:

- la nature de l'intervention avec la liste des opérations effectuées ;
- les personnes ayant eu la charge de l'intervention (signataires du permis, techniciens...);
- les actions complémentaires, nécessaires à la suite de l'intervention, (remplacement à prévoir...);
- la liste des pièces remplacées avec leur référence et documentation associée (déclaration UE, notice d'instruction...);
- les résultats des contrôles, mesures ou essais (seuils de sécurité, d'alarme...);
- toute modification ou extension apportée à l'installation ;
- le respect des exigences décrites dans les notices d'instruction.

Concernant les plan de prévention et la nécessité de mettre en place des autorisations de travail, la circulaire DRT 2006/10 du 14 avril 2006, relative à la sécurité des travailleurs sur les sites à risques industriels majeurs, explique que lorsque de nombreuses opérations sont réalisées tout au long de l'année par des prestataires extérieurs, le plan de prévention peut se révéler trop généraliste et ne pas être adapté aux circonstances précises de chacune des opérations.

En ce sens, les décisions rendues par la Cour de cassation, chambre criminelle, du 16 février 1999 « Pardies Ascétique » et par le TGI de Grenoble (13 décembre 1999 « Cézus », 22 septembre 2003 « Enichem ») mettent en avant que la définition (trop) large de la notion d'opération pour justifier la seule mise en place d'un plan de prévention annuel (même si celui-ci est complété par des bons de commande de tâches ou de travaux plus précis), ne suffit pas à respecter les dispositions du Code du travail (cf. art. R. 4511-1 & suivants).

C'est pourquoi, lors de l'exécution d'une opération (notamment dans les secteurs de la métallurgie, de la chimie, du pétrole, de l'agroalimentaire, des menuiseries industrielles...), les différentes entreprises doivent veiller à mettre en œuvre les mesures de prévention prévues dans le plan de prévention. À ce titre, un suivi de la situation réelle de travail est indispensable afin de mettre à jour l'évaluation des risques et les mesures de prévention associées.

Ce suivi en situation réelle de travail (journalière) va donner lieu à un document complémentaire au PP qui constituera une autorisation de travail ou permis de travail.

À titre de préconisation à adapter à la prise en compte du risque ATEX, les chefs d'établissements pourront se référer à la recommandation R 474 de l'Assurance Maladie qui mentionne notamment la désignation d'un référent pour l'accueil des entreprises extérieures et aux documents ED 941 et ED 6256 de l'INRS qui présentent des modèles d'autorisation de travail.

Comme précisé plus haut, l'autorisation de travail, délivrée par l'employeur, doit donc être établie au début de l'intervention afin de dresser un état des lieux de la situation réelle au moment de l'intervention.

En résumé, pour toute opération, il est essentiel de mettre en place un dispositif (autorisation/permis de travail, bon d'intervention...) permettant de s'assurer, en plus de la traçabilité des opérations, que les dispositions envisagées à la préparation de l'opération ou durant l'élaboration du plan de prévention n'ont pas évolué et que les mesures de prévention/protection sont bien en place au commencement de l'opération.

Il faut souligner l'importance et l'obligation de se référer aux notices d'instruction définies par les constructeurs avant, pendant et après tout type d'intervention sur un équipement de travail.

Avant le début des opérations en zone ATEX et conformément à l'article R. 4512-15, le chef de l'entreprise extérieure ou son délégataire informe l'ensemble de ses personnels affectés aux opérations des dangers liés à la présence d'une ATEX et des mesures de prévention et de protection mises en œuvre. Il rappelle/explique l'emploi de dispositifs collectifs et individuels de protection tels que l'utilisation de l'explosimètre.

4.3.4 Protocole de sécurité (articles R. 4515-1 & suivants)

Dans le cadre spécifique des opérations de chargement et déchargement réalisées par des entreprises extérieures (cf. art. R. 4515-1), la réglementation prévoit la rédaction d'un « protocole de sécurité » qui vient se substituer au plan de prévention (cf. art. R. 4515-4) sans obligation

d'inspections communes préalables et simplement mis à disposition de l'Inspection du travail et des CSE.

Lorsqu'une entreprise venant réaliser de telles opérations entre sur site et intervient en zone ATEX, notamment pour charger en citerne ou en vrac des produits chimiques et/ou pétroliers, l'entreprise d'accueil devra être vigilante sur le respect des consignes lors de ces interventions et s'assurer que les mesures organisationnelles (consignations, signalisation, coactivités, ventilation...) s'il y a lieu, sont prises et que les équipements et matériels (dont EPI) sont adaptés aux opérations afin de supprimer, ou à défaut limiter, les risques d'émissions et d'incendie/explosion.

Pour l'entreprise d'accueil, le protocole de sécurité comprendra, notamment, les informations suivantes (cf. art. R. 4515-6):

- les consignes de sécurité, particulièrement celles qui concernent l'opération de chargement ou de déchargement;
- le lieu de livraison ou de prise en charge, les modalités d'accès et de stationnement aux postes de chargement ou de déchargement accompagnées d'un plan et des consignes de circulation;
- 3. les matériels et engins spécifiques utilisés pour le chargement ou le déchargement ;
- les moyens de secours en cas d'accident ou d'incident;
- 5. l'identité du responsable désigné par l'entreprise d'accueil, auquel l'employeur délègue, le cas échéant, ses attributions.

Pour le transporteur, le protocole de sécurité décrira, notamment (cf. art. R. 4515-7) :

- 1. les caractéristiques du véhicule, son aménagement et ses équipements ;
- la nature et le conditionnement de la marchandise;
- 3. les précautions ou sujétions particulières résultant de la nature des substances ou produits transportés, notamment celles imposées par la réglementation relative au transport de matières dangereuses. Il sera de bonne pratique de s'assurer que celles-ci pénètrent sur site en respectant les consignes.

Chacune des opérations ne revêtant pas le caractère répétitif (définie à l'art. R. 4515-3) donnera lieu à un protocole de sécurité spécifique (cf. art. R. 4515-8). Par ailleurs, lorsque le prestataire ne peut pas être

identifié préalablement par l'entreprise d'accueil ou lorsque l'échange préalable n'a pas permis de réunir toutes les informations nécessaires, par dérogation aux dispositions de l'article R. 4515-8, l'employeur de l'entreprise d'accueil fournit et recueille par tout moyen approprié les éléments qui se rapportent au protocole de sécurité (cf. art. R. 4515-10).

Ce sera donc à cette dernière de s'assurer que les prestataires qui pénètrent en zone ATEX sont suivis et respectent les consignes qu'elle aura établies.

Il est important de noter que la directive européenne « transports matières dangereuses (TMD) », transposée par l'arrêté du 29 mai 2009 (transports par voies terrestres), fait obligation de désignation d'un « conseiller à la sécurité » :

« toute entreprise dont l'activité comporte le transport terrestre de marchandises dangereuses, ou les opérations d'emballage, de chargement, de remplissage, ou de déchargement liées à ces transports, doit désigner un ou plusieurs conseillers à la sécurité pour le transport des marchandises dangereuses, chargés d'aider à la prévention des risques pour les personnes, les biens ou l'environnement, inhérents à ces activités. »

Cette fonction peut être assurée par le chef d'entreprise, une personne de l'entreprise, ou déléguée à une personne compétente externe à l'entreprise.

Les fonctions du conseiller à la sécurité sont listées dans le chapitre 1.8.3 de l'accord européen ADR. Ainsi il doit :

- vérifier le respect des prescriptions relatives au TMD;
- conseiller l'entreprise dans les opérations concernant le TMD;
- en cas d'accident, rédiger un rapport à la direction de l'entreprise (tenu à disposition de l'administration);
- assurer la rédaction d'un rapport annuel destiné à la direction de l'entreprise ou, le cas échéant, à une autorité publique locale, sur les activités de cette entreprise relatives au TMD.

Le conseiller à la sécurité doit être titulaire d'un certificat de formation professionnelle délivré après réussite à un examen, par le Comité interprofessionnel pour le développement de la formation dans les transports de marchandises dangereuses (CIFMD).

Il sera important de s'assurer que ce conseiller à la sécurité interne ou externe, en qualité d'expert, possède le niveau de compétences requises afin d'analyser les risques liés aux opérations de chargement/déchargement en zone ATEX (par exemple, formation ATEX encadrant cf. 3.2.1).

4.4 Les opérations de maintenance

L'expérience montre que le risque d'accident est plus élevé lors de travaux de maintenance. C'est pourquoi, il est important de s'assurer que toutes les mesures de protection requises ont été prises avant, pendant et après les travaux.

Les travaux de maintenance peuvent être initiateurs d'atmosphères explosives ou générateurs de source d'inflammation.

Si ceux-ci sont réalisés dans une zone non classée ATEX (mais sur un procédé utilisant des substances combustibles), il est alors fort probable que les équipements et matériels déjà installés et présents dans cette zone constituent une source d'inflammation pour l'ATEX susceptible d'être créée par l'opération.

S'ils sont réalisés dans une zone déjà classée ATEX, alors il faudra s'assurer que l'intervention ne présente pas un danger supplémentaire (adéquation par rapport au matériel existant...).

Il est donc important d'évaluer les risques liés à cette intervention au moment de la préparation des travaux.

Exemples de travaux pouvant générer une ATEX :

- utilisation d'un produit combustible (essence, solvant, générateur d'aérosol...);
- utilisation de bouteilles de gaz pour le soudage;
- recharge de batterie au plomb;
- ouverture de circuits (tuyauterie, pompe, compresseur...);
- dégazage d'une capacité ;
- démontage d'un instrument de contrôle (instrumentation, vanne de régulation...).

Exemples de travaux générateurs de sources d'inflammation :

 les travaux par points chauds (soudage, brasage, tronçonnage...);

- les travaux nécessitant du matériel électrique (contrôleurs électriques, ligneurs laser, perceuses...);
- les travaux nécessitant l'ouverture de matériels électriques (la source d'inflammation n'étant alors plus maîtrisée);
- les travaux provoquant des gerbes d'étincelles (sciage, meulage, tronçonnage, marteaupiqueur...);
- les travaux provoquant des étincelles uniques (marteau, clefs à frappe/chocs...);
- les travaux provoquant des points chauds (perçage, utilisation d'appareils de chauffage...);
- l'utilisation de véhicules et d'engins de chantier (camions, grues, chariots élévateurs, matériels de pompage...).

L'expérience montre que les risques provoqués par les travaux par points chauds (disquage, tronçonnage, soudage, perçage...) sont sous-estimés et sont à l'origine d'incendies et d'explosions graves. En effet, ces opérations génèrent des surfaces chaudes et des étincelles (~1 000 °C), parfois éloignées de la zone d'intervention, susceptibles d'échauffer et d'enflammer une majorité de produits.

Il est donc important d'apporter une vigilance particulière à ces travaux, y compris si ceux-ci n'interviennent pas directement dans une zone ATEX lorsque les travaux réalisés à proximité de celle-ci induisent des projections d'étincelles ou des points chauds. Une zone de sécurité de 10 m est généralement établie. Une attention particulière doit être portée aux travaux en hauteur pour lesquels les étincelles ou scories peuvent aller bien au-delà de cette distance.

Le retour d'expérience fait aussi état de nombreux accidents au cours des phases de redémarrage après l'exécution de travaux de maintenance. La cause est fréquemment d'origine organisationnelle au cours du remontage de l'installation (oubli de joint, serrage insuffisant) ou dans la prise en compte des conditions spécifiques de redémarrage (mauvais inertage, remontée en pression trop rapide...). La vérification de la bonne exécution des travaux et des conditions de levée des consignations est un aspect essentiel à prendre en compte, de même que les tests préalables et le suivi de la remise en service.

À noter que, concernant la sous-traitance de travaux et l'accidentologie associée, le Bureau d'analyse des risques et pollutions industriels (BARPI) de la Direction générale de la prévention des risques du ministère de la Transition écologique a établi un important document de synthèse (2019) intitulé « Sous-traitance et maîtrise des risques » à partir de l'analyse approfondie de décennies d'accidents survenus dans de nombreuses ICPE.

Si le recours à des entreprises extérieures s'est fortement développé en vue de prendre en charge l'exécution des travaux pour lesquels l'exploitant ne dispose pas toujours de toutes les compétences requises, le BARPI appelle à une grande vigilance.

En effet, l'accidentologie montre que de nombreux accidents, notamment d'explosion, ont eu lieu à différentes étapes d'intervention en sous-traitance identifiées ci-dessous. C'est pourquoi, les experts du BARPI explicitent qu'une véritable gestion des risques s'impose à tous les acteurs pour limiter les accidents. Elle implique de la part de l'exploitant:

- une analyse préalable des risques pour les travaux sous-traités ;
- l'élaboration et la mise en œuvre effective de dispositions de prévention appropriées incluant des mesures de première intervention, notamment lors de :
 - -la préparation de l'intervention : description des travaux à effectuer, règles de sécurité à appliquer (consignes, « permis de feu ») et programmes d'intervention établis par l'exploitant au bénéfice des sous-traitants et du personnel;
 - la préparation du chantier : première phase opérationnelle sur laquelle se fonde la bonne suite des opérations).
- une surveillance rigoureuse des opérations et une réception sérieuse et formalisée des travaux effectués :
 - -le contrôle du respect effectif par le soustraitant des procédures et des mesures de sécurité : primordial pour s'assurer de la bonne exécution des travaux dans les conditions de sécurité satisfaisantes ;
 - -la réception des travaux : détecter les malfaçons susceptibles d'être à l'origine d'événements accidentels.

Le risque ATEX devra donc être pris en considération à toutes les étapes de mise au travail des entreprises extérieures et tout au long de leurs interventions jusqu'à la réception des travaux.

Dans le cas de la maintenance, trois situations sont à distinguer.

1. Les interventions de maintenance en zone ATEX

Il convient d'analyser le risque et de mettre en œuvre des mesures temporaires visant en priorité à supprimer l'ATEX et à réduire autant que possible sa probabilité d'apparition. Cela passe par une démarche de consignation des fluides (gaz, vapeurs, poussières, brouillards) à l'origine du risque de formation d'ATEX, complétée par une consignation des autres énergies afin de supprimer les risques (cf. document d'aide ED 6109 de l'INRS). Si néanmoins une zone ATEX persiste, elle doit être identifiée et faire l'objet d'un traitement particulier. Il pourra, ainsi, être nécessaire d'identifier un zonage en phase maintenance qui, dans ce cas, est à mentionner dans le DRPCE.

2. Les interventions de maintenance qui génèrent une ATEX

Certaines opérations de maintenance (courante ou non) peuvent conduire à la formation d'une ATEX au niveau de la zone d'intervention ou à distance de cette zone. Pour des opérations récurrentes de maintenance, il est nécessaire, pour ces ATEX « temporaires », d'en tenir compte dans le fonctionnement normal de l'installation et de l'identifier dans le zonage. Pour les interventions ponctuelles non anticipées (ex. : réparation à la suite d'une panne rare ou d'un bris de matériel), elles doivent faire l'objet d'une démarche spécifique d'évaluation et de prévention des risques et de la mise en place d'un zonage temporaire.

Il peut, par exemple, être nécessaire de purger un équipement contenant un fluide inflammable. Dans ce cas, une ATEX est susceptible de se former au point de purge. Il faudra s'assurer qu'aucune source d'inflammation potentielle ne sera présente dans cette zone lors de cette opération.

À noter que, normalement, si l'évaluation de risque a été bien faite, les points de purge doivent avoir été pris en compte en tant que zones ATEX 1 ou 2 en fonction de leurs utilisations : purge dans les conditions normales du process « zone 1 », purge en cas de dysfonctionnement « zone 2 ».

3. Les interventions de maintenance à proximité d'une zone ATEX

Dans ce cas, une analyse des risques sera nécessaire afin de prendre des mesures pour que cette intervention n'interfère pas avec la zone ATEX voisine et n'ait pas une influence sur son éventuelle inflammation. Il sera nécessaire de supprimer cette zone ATEX en consignant par exemple l'installation, ou à défaut isoler la zone ATEX des travaux entrepris.

Il est important de signaler que, dans le cadre des entretiens et vérifications des équipements de travail, l'article R. 4323-14 rappelle que le montage et le démontage de ces derniers sont réalisés de façon sûre, en respectant les instructions du fabricant et que la remise en service d'un équipement de travail après une opération de maintenance ayant nécessité le démontage des dispositifs de protection est précédée d'un essai permettant de vérifier que ces dispositifs sont en place et fonctionnent correctement.

4.5 Le contrôle de l'atmosphère avant/pendant/après l'intervention

La présence d'atmosphère explosive doit être exclue lors de l'exécution de travaux générant des sources d'inflammation.

Le périmètre de travail doit être préalablement délimité et balisé.

Figure 12 : Intervention en zone ATEX			
	Mesures à mettre en place		
Travaux utilisant une flamme	Évaluation des risques. Autorisation de travail. Explosimétrie en continu. Mise en place de moyens de protection, refroidissement		
Travaux générant une source d'inflammation	Évaluation des risques. Autorisation de travail. Explosimétrie en continu.		
Travaux révélant une source d'inflammation (ex : ouverture de matériel électrique)	Évaluation des risques. Autorisation de travail. Explosimétrie en continu.		

L'absence d'atmosphère explosive doit être respectée et maintenue durant toute la durée du travail et, le cas échéant, pendant une période supplémentaire (par exemple en présence de phénomènes de refroidissement). Cela peut notamment passer par l'arrêt d'une partie de l'installation de production et la purge des canalisations. En complément, une surveillance de l'atmosphère doit être réalisée en cas d'utilisation d'appareils non adaptés à la zone ou au produit (perceuse, meuleuse, poste de soudage, engin de manutention...). Les moyens à mettre en œuvre dépendent de l'importance de l'opération.

Une intervention ponctuelle et limitée dans le temps (quelques minutes à quelques heures) doit faire l'objet d'une évaluation des risques spécifique ainsi que d'une surveillance continue de la LIE au moyen de détecteurs portatifs pour les zones gaz/vapeurs.

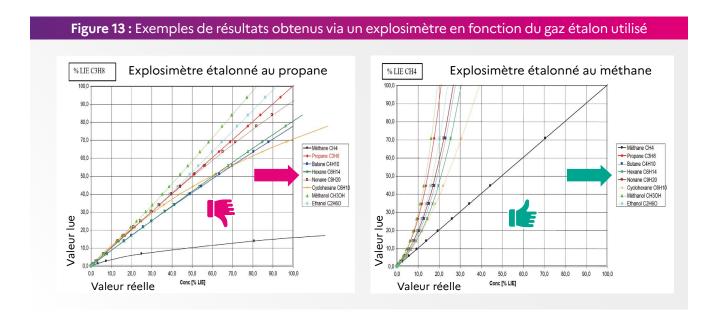
Pour des interventions plus conséquentes, l'utilisation de matériels de détection fixes doit être envisagée dans le cadre de l'évaluation des risques.

La détection de la LIE doit être réalisée de manière continue, via l'usage de détecteurs individuels, mobiles ou fixes. Conformément à la circulaire du 9 mai 1985, le seuil maximal ne devra pas dépasser 10 % de la LIE durant toute la durée des travaux en présence de personnes et 25 % de la LIE dans le cas contraire.

Par ailleurs, comme le précise la norme NF EN 60079-29-2 relative à la sélection, l'installation, l'utilisation et la maintenance des détecteurs gaz :

- -là où des personnes peuvent être présentes, il convient que le personnel observe fréquemment la lecture affichée par tout matériel de détection de gaz lorsqu'il pénètre dans un emplacement potentiellement dangereux;
- -une atmosphère dangereuse peut être constituée à quelques mètres du point d'échantillonnage. En conséquence, de nombreuses mesures d'explosivité de gaz doivent être réalisées tout autour de la zone de travail (une attention particulière est portée aux différentes sources d'émissions possibles et à la cinétique de développement des panaches de gaz);
- le choix et le positionnement des détecteurs doivent être réalisés de façon à permettre

- d'anticiper le plus possible l'apparition de l'atmosphère explosive durant les travaux (nature des produits mis en œuvre, classement de zone ATEX, ventilation, environnement...);
- dès qu'une alarme se déclenche ou qu'il y a une évolution anormale de la détection d'ATEX, il faut considérer que le danger de présence d'une ATEX est imminent. En conséquence, des mesures de prévention adéquates devront immédiatement être prises (arrêt des travaux en cours, recherche de fuites, ventilation forcée, consignations, mise en sécurité des matériels, refroidissement des points chauds, évacuation du personnel...).


Il est également important de préciser :

- qu'un explosimètre est un appareil de détection qui doit faire l'objet d'une réflexion quant au choix de la technologie du capteur, de son gaz de calibrage (idéalement le composé générant l'ATEX, de son positionnement, des conditions (climatiques) dans lesquelles il peut être utilisé...);
- qu'il est important que les détecteurs soient entretenus et vérifiés régulièrement (par exemple, à l'aide d'une station de vérification/ calibrage) afin d'assurer une bonne qualité de détection;
- que, concernant les poussières, au regard de la difficulté à évaluer leur concentration réelle en continu, leur présence visible à l'œil nu en suspension dans l'atmosphère ou accumulées sur des surfaces constitue un premier indicateur de risque.

Remarque importante concernant le choix des explosimètres :

Il est fréquent de rencontrer dans un environnement industriel divers produits (gaz, liquides...) au sein d'un même site.

Il est à noter qu'en fonction du type d'appareil utilisé, du gaz de calibrage choisi et de la sensibilité des gaz détectés (présence éventuelle de gaz interférant), la valeur indiquée peut différer de la valeur réelle. Ceci peut, dans certains cas, présenter un risque potentiel. En effet, l'opérateur peut être amené à se croire en sécurité alors que les seuils mesurés dépassent ceux affichés sur l'explosimètre. Voir l'exemple ci-après :

Courbes de gauche : si l'appareil étalonné au propane est utilisé dans une atmosphère ATEX due par exemple à du méthane, une valeur lue de 10 % correspond à une valeur réelle de 50 %.

L'opérateur est en danger.

Courbes de droite : si l'appareil étalonné au méthane est utilisé dans une atmosphère ATEX due par exemple à du méthanol, une valeur lue de 30 % correspond à une valeur réelle d'environ 10 %.

L'opérateur aura réagi bien avant le seuil maximal autorisé, il est en sécurité.

Une analyse spécifique doit être menée quant au choix du détecteur, aux seuils de détection choisis et au gaz étalon utilisé (cf. ED 116 de l'INRS).

LES APPAREILS ATEX

5.1 Sélection et installation d'équipements en zone ATEX

Selon l'article L. 4311-2 du Code du travail, le terme « équipements de travail » recouvre les machines, appareils, outils, engins, matériels et installations. Les moyens de protection sont, quant à eux, les dispositifs de protection, les équipements de protection individuelle.

Les équipements de travail et tous les dispositifs de raccordements associés, utilisés en zone ATEX, doivent être conçus, construits, montés, installés ainsi qu'entretenus et utilisés de manière à réduire au maximum les risques d'explosion (cf. art. 11 de l'arrêté du 8 juillet 2003) et, de ce fait, ils doivent être conformes à la directive 2014/34/UE relative aux appareils et systèmes de protection ATEX (transposée en droit français aux articles R. 557-1-1 à R. 557-5-5 et R. 557-7-1 à R. 557-7-9 du Code de l'environnement).

Il est donc nécessaire que l'employeur rédige une spécification technique d'achat précisant les caractéristiques minimales, issues du document relatif à la protection contre les explosions (DRPCE), auxquelles doit répondre le matériel, notamment :

- zone d'implantation ATEX (0/20, 1/21, ou 2/22);
- classe de température ;

- groupe de subdivision gaz ou poussière ;
- températures ambiantes d'utilisation.

Pour en savoir plus sur les critères de sélection des appareils et le marquage associé, se référer à l'ED 945 de l'INRS ou au guide « ATEX pour les néophytes » de l'Ineris.

Le choix des équipements de travail installés et utilisés en zone ATEX est sous la responsabilité de l'employeur (cf. art. R. 4321-1).

5.1.1 Matériels concernés

L'employeur doit être en mesure de distinguer les équipements de travail :

- devant répondre aux exigences de la directive 2014/34/UE ATEX;
- et les équipements n'entrant pas dans le champ d'application de cette directive.
- a. Matériels électriques ou non électriques: destinés
 à être utilisés en atmosphères explosibles et
 possédant une ou plusieurs sources potentielles
 d'inflammation, ils sont soumis à la directive ATEX
 2014/34/UE.

Catégories des appareils ATEX

Catégorie de protection du matériel	Niveau de protection de la catégorie	Moyens d'assurer la protection	
Catégorie 1	Très haut	2 moyens indépendants d'assurer la protection ou la sécurité, même lorsque 2 défaillances se produisent indépendamment l'une de l'autre.	
Catégorie 2	Haut	Adapté à une exploitation normale et à des perturbations survenant fréquemment ou aux équipements pour lesquels les défauts de fonctionnement sont normalement pris en compte.	
Catégorie 3	Normal	Adapté à une exploitation normale.	

Exemples issus de la « Borderline List – ATEX Products »

du guide d'application de la directive 2014/34/UE (ATEX 2014/34/UE Guidelines)

Matériels	Dans le champ de la directive ATEX 2014/34/UE	Exemples de matériel	Remarques
Systèmes automatiques de lubrification	Oui (matériel électrique)		Dans le champ, s'il s'agit d'un système alimenté par batterie et qui contient une ou plusieurs batteries de valeurs supérieures à celles spécifiées dans la clause « matériel simple » de la norme EN 60079-11.
Ordinateurs	Oui (matériel électrique)		
Moteurs électriques	Oui (matériel électrique)		Sources propres d'inflammation : échauffements, étincelles électriques (bobinage, connexions) et mécaniques (roulements).
Câbles chauffants	Oui (matériel électrique)		Transforme l'électricité en chaleur. Ils peuvent être également considérés comme des composants lorsqu'ils font partie d'un circuit de traçage électrique.
Pompe intégrant un moteur électrique (exemples : pompe à rotor noyé, distributeur de carburant)	Oui (matériel électrique)		Sources propres d'inflammation : échauffements, étincelles électriques et mécaniques. Risque électrostatique lors des opérations de pompage/remplissage.
Téléphone, talkie-walkie	Oui (matériel électrique)		Sources propres d'inflammation : échauffements, étincelles électriques.
Prises de courant	Oui (matériel électrique)		Sources propres d'inflammation : échauffements, étincelles électriques.
Torches	Oui (matériel électrique)		Sources propres d'inflammation : échauffements, étincelles électriques.
Ventilateur intégrant un moteur pneumatique	Oui (matériel non électrique)		Sources propres d'inflammation mécaniques.
Frein mécanique	Oui (matériel non électrique)		Sources propres d'inflammation mécaniques.
Réducteur mécanique	Oui (matériel non électrique)		Sources propres d'inflammation mécaniques.
Écluse rotative	Oui (matériel non électrique)		Sources propres d'inflammation mécaniques. Elle peut être en outre considérée comme système de protection si elle a une fonction d'arrêter la propagation d'une explosion (voir ci-dessous).

 b. Composants: sans fonction autonome, mais essentiels au fonctionnement sûr des appareils ou des systèmes de protection autonomes, ils sont soumis à la directive ATEX 2014/34/UE.

Exemples d'éléments qui pourraient être mis sur le marché en tant que composants, s'ils sont explicitement destinés à être incorporés dans des produits ATEX:

- borniers;
- boutons-poussoirs, voyants, dispositifs de respiration et de drainage, axe de manœuvre;
- coffrets antidéflagrants vides.
- c. Systèmes de protection autonomes: les dispositifs, autres que les composants, dont la fonction est d'arrêter immédiatement les explosions naissantes et/ou de limiter la zone affectée par une explosion et qui sont mis séparément sur le marché pour une utilisation en tant que systèmes autonomes sont soumis à la directive ATEX 2014/34/UE.

Exemples de systèmes de protection autonomes:

- · Arrête-flammes;
- Systèmes de décharge en cas d'explosion (évent d'explosion, clapets d'explosion...);
- Systèmes de suppression d'une explosion.
- d. Dispositifs de sécurité destinés à contribuer au fonctionnement sûr des appareils au regard d'une source d'inflammation et au fonctionnement sûr des systèmes de protection autonomes.

Ces dispositifs sont soumis à la directive 2014/34/UE même s'ils sont situés en dehors de l'atmosphère explosible.

Exemples de dispositifs de sécurité :

- Dispositifs de protection contre les surcharges pour moteurs électriques du mode de protection « sécurité augmentée »;
- Systèmes composés d'unités de contrôle reliées à des capteurs et actionneurs mesurant la température, la pression, le débit, et utilisés pour contrôler et éviter l'apparition d'une source d'inflammation;
- Barrière de sécurité intrinsèque.

5.1.2 Documentation obligatoire devant accompagner les appareils ATEX

Tout matériel ATEX doit être livré accompagné de sa notice d'instructions (dans la langue du pays d'utilisation) et d'une déclaration UE de conformité.

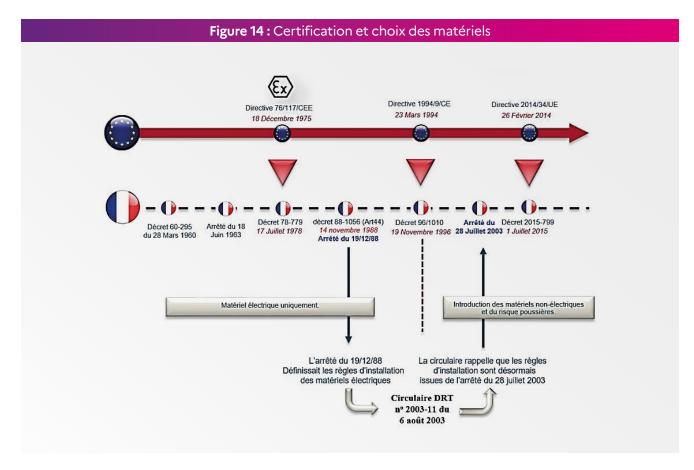
Les agents de contrôle de l'Inspection du travail ou de la DREAL peuvent contrôler la présence, chez l'utilisateur, de la déclaration UE de conformité et de la notice d'instructions des matériels ATEX, afin de s'assurer du respect des dispositions de l'article 3 de l'arrêté du 28 juillet 2003 et de l'article 16 de l'arrêté du 8 juillet 2003 mentionnant que les matériels doivent être conformes aux dispositions du décret n° 96-1010 du 19 novembre 1996 relatif aux appareils et aux systèmes de protection destinés à être utilisés en atmosphère explosive (remplacées par les articles R. 557-7-1 et suivants du Code de l'environnement qui transpose la directive 2014/34/UE).

Exemple issu de la « Borderline List - ATEX Products »

du guide d'application de la directive 2014/34/UE (ATEX 2014/34/UE Guidelines)

Matériel	Dans le champ de la directive ATEX 2014/34/UE	Exemple de matériel	Remarques
Écluse rotative	Oui (système de protection)		Considérée comme système de protection si elle a une fonction d'arrêter la propagation d'une explosion. Elle doit également protéger vis-à-vis de ses sources propres d'inflammation mécaniques.

Du fait que:


- la directive 2014/34/UE offre la possibilité aux fabricants de réaliser leur propre vérification de la conformité de leurs matériels ATEX (« autocertification » pour tout type de matériel de catégorie 3 et matériel non-électrique de catégorie 2 soumis tout de même à un dépôt de dossier auprès d'un organisme notifié);
- pour un même matériel, les contraintes d'exploitation et de maintenance peuvent être variables d'un fabricant à l'autre (gestion de sondes thermiques, maintenance préventive lourde, réglage des relais de protection électrique, plan de remplacement des roulements...).

Il est recommandé que l'utilisateur s'assure, avant l'achat du matériel ATEX, que les points suivants sont bien précisés et mis à disposition par le fabricant:

- le marquage CE et Ex (cf. chapitre 5.2 du guide);
- la catégorie de matériel;
- le groupe de gaz et/ou poussières ;
- la classe de température basée sur la température maximum de surface (TMS);
- la déclaration UE de conformité;
- la notice d'instructions.

La notice doit notamment comprendre:

- les conditions d'installation et les conditions particulières d'utilisation;
- les règles de mise en œuvre ;
- les opérations de maintenance nécessaires ;
- les informations nécessaires à la future inspection, maintenance et réparation du matériel (cf. 1.0.6 annexe II de la directive 2014/34/UE) comprenant notamment les plans et schémas nécessaires à la mise en service, à l'entretien, à l'inspection, à la vérification du bon fonctionnement, et, le cas échéant, à la réparation de l'appareil ou du système de protection, ainsi que toutes les instructions utiles, notamment en matière de sécurité.

5.2 Résumé et chronologie de la réglementation

Principaux textes réglementaires, européens et français relatifs aux prescriptions applicables aux matériels soumis à un risque d'explosion :

	Avant le 30 juin 2003	Du 30 juin 2003 au 30 juin 2006	Du 30 juin 2006 au 20 avril 2016	Après le 20 avril 2016	
Mise sur le marché des matériels ATEX		Directive 94/9/CE*	Directive 94/9/CE*	Directive 2014/34/UE**	
Mise à disposition des équipements de travail en zone ATEX	Section II de l'arrêté du 8 juillet 2003 (Partie A de l'annexe II de la directive 1999/92/CE).	Section II et III de l'arrêté du 8 juillet 2003 (Annexe II de la directive 1999/92/CE).	Section II et III de l'arrêté du 8 juillet 2003 (Annexe II de la directive 1999/92/CE).	Section II et III de l'arrêté du 8 juillet 2003 (Annexe II de la directive 1999/92/CE).	
Particularité pour les matériels électriques existant avant le 30 juin 2003	19 décembre 1988 conformité à l'arrê	S'ils sont conformes à l'arrêté du 19 décembre 1988, présomption de conformité à l'arrêté du 28 juillet 2003 jusqu'au 30 juin 2006.		Continuent de bénéficier de la présomption de conformité si le DRPCE l'a validée explicitement avant le 1er juillet 2006.	

^{*} Décret nº 96-1010 du 19 novembre 1996.

5.2.1 Réglementation avant le 30 juin 2003

> Exigences sur les matériels et absence de notion de zones ATEX

5.2.1.1 Décret 60-295 du 28 mars 1960 et arrêté du 18 juin 1963 (agrément des matériels et des organismes de vérification)

Le 1er avril 1960 est publié, au JORF, le premier décret obligeant les constructeurs d'appareils pouvant présenter un risque en atmosphère explosive, de prendre en compte ce dernier en conception : il s'agit du décret n° 60-295 du 28 mars 1960 portant règlement sur le matériel électrique utilisable dans les atmosphères explosives.

Excepté les matériels utilisés à bord des bateaux de navigation maritime et des aéronefs, il vise le matériel électrique utilisable en des lieux où des atmosphères explosives peuvent se former par suite du mélange d'un comburant et de substances inflammables à l'état de gaz, de vapeurs, de brouillards ou de poussières.

Il prescrit la mise en place d'un système d'agrément et des obligations spécifiques pour les constructeurs et utilisateurs et en particulier :

• la constitution, auprès du ministre de l'Industrie, d'une commission du matériel électrique utilisable dans les atmosphères explosives;

- la mise en place d'un système d'agrément des matériels par le ministre de l'Industrie (sur proposition de la commission) défini par arrêté, suivant la nature des procédés à adopter pour empêcher la naissance ou la propagation d'une inflammation, et d'après la composition des atmosphères explosives où le matériel pourra être employé :
 - -les spécifications auxquelles doivent répondre les types et la nature des essais, des épreuves et des vérifications auxquelles ces types doivent satisfaire avant d'être agréés;
 - -les essais, épreuves et vérifications auxquels les appareils ou certaines parties des appareils doivent individuellement satisfaire;
 - les marques et indications que les appareils doivent porter;
- la mise en place d'un système d'agrément par le ministre de l'Industrie d'organismes chargés des essais, épreuves et vérifications (précisées dans l'arrêté du 18 juin 1963) aux frais des demandeurs;
- la précision, dans les décisions d'agréments des types, des règles spéciales d'utilisation, d'entretien, de remplacement et de vérification que l'utilisateur doit respecter pour assurer le maintien de la conformité de chaque appareil en service au type agréé.

^{**} Transposée dans le Code de l'environnement aux articles L. 557-1-1 à L. 557-5-5 et R.557-7-1 à 9.

Le constructeur doit ensuite porter sur chaque appareil de façon apparente et durable les marques et indications, et certifier ainsi la conformité de cet appareil avec le type agréé, ainsi que l'exécution satisfaisante des essais, épreuves et vérifications individuels opérés sous sa direction.

Il doit remettre au premier utilisateur, et éventuellement à tout utilisateur ultérieur qui en ferait la demande, une copie de la décision d'agrément, une notice comportant toutes les indications utiles sur les conditions normales d'utilisation de l'appareil et, le cas échéant, un exemplaire ou un extrait certifié conforme du procès-verbal (relatif aux essais et vérifications opérés sous la direction d'un expert).

L'utilisateur d'un de ces matériels doit, quant à lui, porter immédiatement à la connaissance de l'ingénieur des mines chargé de la surveillance toute inflammation dans laquelle cet appareil pourrait être impliqué, ainsi que tout accident ou incident de nature à compromettre la sécurité lorsqu'ils sont susceptibles d'être imputés à l'appareil. Le service des mines procède à une enquête dont le procèsverbal est, avec l'avis du chef de l'arrondissement minéralogique, adressé au ministre de l'Industrie.

Au cours de cette enquête, le constructeur et l'utilisateur doivent tenir à la disposition du service des mines les pièces documentaires et lui fournir toutes les informations complémentaires utiles sur l'appareil, son utilisation et son fonctionnement antérieurs.

Le ministre de l'Industrie peut alors prescrire la mise hors service de tous les appareils semblables.

5.2.1.2 Arrêté du 18 juin 1963 (exigences techniques sur matériels)

Sorti au JORF du 5 juillet 1963, celui-ci définit notamment:

- les spécifications auxquelles doivent répondre les types de matériels électriques à enveloppe antidéflagrante (résistance enveloppes, température max., exigences visseries...), et la nature des essais, épreuves et vérifications auxquels ils doivent être soumis (et individuellement satisfaire) en vue de leur agrément pour l'emploi dans les lieux autres que les mines grisouteuses;
- les marques et indications que ces appareils doivent porter.

La protection par « enveloppe antidéflagrante » est celle dans laquelle l'appareillage électrique est enfermé à l'intérieur d'une enveloppe capable de supporter la déflagration interne d'un mélange inflammable pouvant pénétrer dans l'enveloppe ou se former à l'intérieur de celle-ci, sans subir d'avarie de structure et sans transmettre l'inflammation interne, par des joints ou autres communications, à une atmosphère explosive extérieure :

- •le terme « enveloppe » s'étend ici non seulement aux parties principales de l'enveloppe qui peuvent être constituées par des éléments du matériel lui-même tels que : carcasse, cuves, flasques et paliers de machines tournantes, mais aussi aux organes rapportés tels que portes et couvercles ;
- le terme « joint » désigne l'espace compris entre les éléments et constituant une communication entre l'intérieur et l'extérieur;
- le terme « longueur du joint » désigne la distance minimale que les gaz doivent parcourir dans le joint pour passer de l'intérieur à l'extérieur;
- le terme « interstice » désigne l'écartement maximal entre les surfaces limitant le joint.

Les types de matériels à enveloppe antidéflagrante sont divisés :

- a) en trois groupes, I, II et III, suivant le degré de sécurité défini par les caractéristiques géométriques des joints, d'une part, et la composition des atmosphères explosives utilisées pour les essais d'agrément, d'autre part;
- b) en deux classes, A et B, définies ci-après :
 - -classe B: matériels comportant de l'huile minérale et dont les espaces libres sont accessibles aux produits provenant de cette huile. Ces matériels ne peuvent être construits pour le groupe III. Sont assimilés à l'huile minérale les diélectriques liquides dont les vapeurs ou les produits de décomposition sont inflammables;
 - classe A : autres matériels.

Pour la première fois le terme « antidéflagrant » est utilisé, plus uniquement pour le secteur minier, mais à tous les secteurs industriels. Les matériels doivent être « agréés » par le ministère.

En synthèse: zonage – documentation – plaque

Zonage actuel	Zone 0	Zone de type 1	Zone de type 2	
Définition des zones à l'époque	Non définie			
Exemples de zones	Non définie			
Prescriptions relatives aux matériels	Arrêté du 18 juin 1963 (enveloppe antidéflagrante, visseries, joints).			

Matériel électrique utilisable dans les atmosphères explosives

Par arrêté A E 35/64 du 26 août 1964, est agréé dans le groupe III et la classe A pour l'utilisation dans les atmosphères explosives, avec température maximale de 115°C, l'appareil d'éclairage type Raquette n° 823, construit par Mapelec, 72, route d'Albert, à Amiens (Somme).

Par arrêté A E 36/64 du 26 août 1964, est agréé dans le groupe II et la classe A pour l'utilisation dans les atmosphères explosives, avec température maximale de 100°C, la baladeuse type n°40, construite par Atrow, chemin du Jas-de-Bouffan, à Aix-en-Provence (Bouches-du-Rhône).

Extrait du journal officiel du 4 septembre 1964 : agrément du ministère de l'Industrie.

Exemple de de plaque de signalétique de moteur que l'on peut trouver sur les matériels électriques.

(Ce ne sera qu'en 1977 qu'une **norme NF C23-518 « enveloppe antidéflagrante** » spécifique sera publiée accompagnée d'une série de normes relatives à d'autres modes de protection. Ces normes définissent les règles de l'art dans le cadre de la directive européenne 76/117/CEE).

> Introduction de notion de zones ATEX pour les dépôts d'hydrocarbures

5.2.1.3 L'arrêté du 9 novembre 1972

Cet arrêté définit les dispositions **spécifiques aux dépôts d'hydrocarbures** et évoque les « zones de type 1 et 2 » :

Extrait de l'arrêté du 9 novembre 1972, article 110.1 :

Il est distingué des zones de type 1 et de type 2, classées selon la possibilité de présence de gaz ou vapeurs combustibles dans l'atmosphère, et selon les risques que peuvent alors présenter ces gaz ou vapeurs.

Il en résulte que sont, en particulier, considérées comme :

- zones de type 1, celles où des gaz ou vapeurs combustibles peuvent apparaître en cours de fonctionnement normal de l'installation*:
- zones de type 2, celles notamment, où des gaz ou vapeurs combustibles ne peuvent apparaître que dans des conditions de fonctionnement anormales de l'installation.

Les zones qui ne sont pas de type 1 ou de type 2 sont dites « non classées ».

^{*} Note : cette définition englobe finalement les zones 0 et 1 d'aujourd'hui qui, si elles sont présentes, le sont en fonctionnement normal de l'installation. Il n'y avait pas de notion de probabilité.

> Harmonisation européenne sur les exigences concernant les matériels ATEX et introduction de notion de zones pour les équipements électriques au sein des ICPE

5.2.1.4 Directive 76-117 du 18 décembre 1975

La nouvelle directive définit des règles de libre circulation des matériels sur le sol européen dès lors que les conditions suivantes sont remplies.

Article 4: les États membres ne peuvent, pour des motifs de sécurité concernant sa construction en vue de son utilisation en atmosphère explosible, interdire la vente ou la libre circulation, ou l'usage conforme à sa destination, du matériel électrique visé aux articles 1 et 2:

- dont la conformité aux normes harmonisées est justifiée par la délivrance du certificat de conformité visé à l'article 8, et l'apposition du marquage distinctif prévu à l'article 10;
- qui déroge à des normes harmonisées et dont un examen spécial de la construction a permis d'établir qu'il assure une sécurité au moins équivalente à ces normes, ceci étant justifié par la délivrance du certificat de contrôle dans les conditions prévues à l'article 9 et l'apposition du marquage distinctif prévu à l'article 10.

Article 9 : le certificat de contrôle mentionné à l'article 4 paragraphe 1 deuxième tiret est délivré par l'un des organismes agréés visés à l'article 14. Il atteste que le type du matériel assure une sécurité au moins égale à celle des normes harmonisées.

Article 10 : le marquage distinctif apposé par le fabricant sur le matériel atteste que ce matériel est conforme au type qui a reçu un certificat de conformité ou de contrôle.

5.2.1.5 Décret 78-779 du 17 juillet 1978 (certificat et marquage)

La directive a été transposée par le décret précité qui précise notamment les points suivants.

Article 1 : le matériel électrique utilisable en atmosphère explosive, à l'exception du matériel utilisé à bord des bateaux de navigation maritime et des aéronefs ainsi que du matériel électromédical, est soumis aux dispositions du présent décret.

Article 2: au sens du présent décret, on entend par :

- « matériel électrique », toutes les installations ou dispositifs qui mettent en œuvre l'électricité;
- « atmosphère explosive » : tout mélange d'air et de substances inflammables à l'état de gaz, de vapeurs, de brouillards ou de poussières.

Article 4: le matériel électrique défini aux articles 1 et 2, ci-dessus, doit être conforme à des types ayant obtenu un certificat de conformité ou un certificat de contrôle. Ces certificats sont délivrés par un organisme agréé à cet effet par un État membre de la CEE.

Article 13: en vue de certifier que l'appareil est conforme au type qui a reçu un certificat de conformité ou de contrôle et qu'il a subi avec succès les essais et épreuves individuels imposés par les arrêtés prévus à l'article 5, le constructeur porte sur chaque matériel de façon lisible et durable les marques et indications définies par les mêmes arrêtés.

5.2.1.6 L'arrêté du 9 août 1978

L'arrêté du 09 août 1978 concernant les dispositions relatives à la construction du matériel électrique utilisable en atmosphère explosive dans des lieux autres que les mines grisouteuses :

- présente les spécifications techniques en distinguant et codifiant notamment différents modes de protection :
 - immersion dans l'huile « 0 »;
 - surpression interne « p »;
 - remplissage pulvérulent « q » ;
 - enveloppe antidéflagrante « d » ;
 - sécurité augmentée « e » ;
 - sécurité intrinsèque « i » ;
 - encapsulage « m ».

Ces modes de protections font l'objet de normes spécifiques en annexe de l'arrêté. Ce dernier :

- · donne la liste des organismes agréés ;
- présente le dispositif de délivrance des certificats de conformité aux normes européennes, comprenant une phase de contrôle par un organisme agréé, qui délivre et communique un certificat de contrôle au ministre de l'Industrie pour homologation après consultation de la Commission du matériel électrique utilisable en atmosphère explosive.

- présente les règles de marquage :
- « chaque matériel ayant fait l'objet d'un certificat de conformité aux normes européennes, outre le marquage prévu dans les normes correspondantes, devra porter de façon visible, lisible et durable la marque distincte figurant à l'annexe Z de la directive 79/196/C. E. E. du 6 février 1979. »

5.2.1.7 L'arrêté du 31 mars 1980 (zonage au sein des ICPE)

Cet arrêté, relatif à la réglementation des installations électriques des établissements réglementés au titre de la législation sur les installations classées et susceptibles de présenter des risques d'explosion, ne participe pas à plus d'éclaircissement, demandant à l'exploitant de définir les zones (cf. art. 2 de l'arrêté du 31 mars 1980) selon les critères suivants.

L'exploitant d'un établissement visé à l'article 1^{er} définit sous sa responsabilité les zones dans lesquelles peuvent apparaître des atmosphères explosives :

- soit de façon permanente ou semipermanente dans le cadre du fonctionnement normal de l'établissement;
- soit de manière épisodique avec une faible fréquence et une courte durée.

L'article 3 de cet arrêté aborde la notion de matériels en adéquation aux zones précédemment définies.

- **3.1** Dans les zones où les atmosphères explosives peuvent apparaître de façon permanente ou semi-permanente, les installations électriques **doivent être entièrement constituées** de matériels utilisables dans les atmosphères explosives et répondre aux dispositions du décret n° 78-779 du 17 juillet 1978 et de ses textes d'application.
- 3.2 Dans les zones où les atmosphères explosives peuvent apparaître de manière épisodique avec une faible fréquence et une courte durée, les installations électriques doivent soit répondre aux prescriptions du paragraphe 3.1, soit être constituées de matériels de bonne qualité industrielle qui, en service normal, n'engendrent ni arc, ni étincelle, ni surface chaude susceptible de provoquer une explosion.

En synthèse: zonage - documentation - plaque

Zonage actuel	Zone 0	Zone de type 1	Zone de type 2
Définition des zones Dépôts hydrocarbures (arr. 9 nov. 1972)	Non définie à l'époque	Peuvent apparaître en cours de fonctionnement normal de l'installation.	Ne peuvent apparaître que dans des conditions de fonctionnement anormales de l'installation.
Exemples de zones	Non définie à l'époque	Intérieur des réservoirs	Orifices de mise à l'air libre d'une citerne routière*
Prescriptions relatives aux matériels	Non définies au sein de l'arrêté du 18 juin 1963 (enveloppe antidéflagrante, visseries, joints).		

^{*}Note : bien que discutable aujourd'hui car l'ouverture de cet orifice pour la phase de remplissage est généralement considérée comme faisant partie du fonctionnement normal de la citerne.

Zonage actuel	Zone 0 Zone de typ		e type 1	Zone de type 2
Définition des zones au sein des ICPE (cf. arr. du 31 mars 1980)	Zone présente de façon permanente ou semi-permanente.		Peuvent apparaître de manière épisodique avec une faible fréquence et une courte durée.	
Prescriptions relatives aux matériels	Matériels répondant au décret n° 78-779 du 17 juillet 1978 et conformes à l'arrêté du 9 août 1978.		du décre et confor ou de qui en se	s répondant aux dispositions et n° 78-779 du 17 juillet 1978 emes à l'arrêté du 9 août 1978 bonne qualité industrielle, ervice normal n'engendrent étincelle, ni surface chaude.

Certificat de conformité délivré par un organisme « agréé ».

> Élargissement de la notion de zonage pour les équipements électriques

5.2.1.8 Décret n° 88-1056 du 14 novembre 1988 modifié (décret 2010-1017)

Le décret n° 88-1056 du 14 novembre 1988, pris pour l'exécution des dispositions du livre II du Code du travail (cf. titre III : Hygiène, sécurité et conditions du travail) en ce qui concerne la protection des

travailleurs dans les établissements qui mettent en œuvre des courants électriques, introduit la notion de locaux et emplacements à risques en son article 43:

« I. - Dans les locaux ou sur les emplacements où sont traitées, fabriquées, manipulées ou entreposées des matières susceptibles de prendre feu presque instantanément au contact d'une flamme ou d'une étincelle et de propager rapidement l'incendie, les canalisations et matériels électriques doivent être conçus et installés de telle sorte que leur contact accidentel avec ces matières ainsi que l'échauffement de celles-ci soient évités.

En cas de présence de poussières inflammables risquant de provoquer un incendie si elles pénétraient dans les enveloppes du matériel électrique, ces enveloppes doivent s'opposer à cette pénétration par construction ou par installation.

II. En outre:

- a) il ne doit exister dans ces locaux ou sur ces emplacements d'autres matériels que ceux nécessaires au fonctionnement du matériel d'utilisation installé dans lesdits locaux ou emplacements ; toutefois, le passage des canalisations étrangères à ce fonctionnement est autorisé sous réserve que ces canalisations soient disposées ou protégées de telle manière qu'elles ne puissent en aucun cas être la cause d'un incendie.
- b) Les parties actives non isolées doivent être :
 - soit suffisamment éloignées de matières combustibles;
 - soit protégées par des enveloppes s'opposant à la propagation d'un incendie.
- c) Les canalisations électriques doivent être d'un type retardateur de la flamme ; elles doivent être protégées contre les détériorations auxquelles elles peuvent être soumises.
- d) Le matériel électrique dont le fonctionnement provoque des arcs ou des étincelles ou l'incandescence d'éléments n'est autorisé que si ces sources de danger sont incluses dans des enveloppes appropriées. »

Et précise en son article 44, que :

- « I. Dans les zones présentant des risques d'explosion, les installations électriques doivent :
 - être réduites à ce qui est strictement nécessaire aux besoins de l'exploitation ;
 - être conçues et réalisées de façon à ne pas être une cause possible d'inflammation des atmosphères explosives présentes;
 - répondre aux prescriptions de l'article 43.
 - II. Les modalités pratiques d'application des dispositions ci-dessus sont définies par arrêté (arrêté du 19 décembre 1988).»

5.2.1.9 L'arrêté du 19 décembre 1988 (zonage)

L'arrêté du 19 décembre 1988, relatif aux conditions d'installation des matériels électriques sur les emplacements présentant des risques d'explosion et venu en complément des textes relatifs aux installations électriques, fournit, en son article 3, des précisions en fonction de la destination des matériels, plus précisément du lieu où ils sont utilisés. On parle désormais de « zone ».

Arrêté du 19 décembre 1988 - Article 3 : Le matériel électrique doit être choisi en fonction du risque d'apparition des atmosphères explosives et de la nature de celles-ci.

- « I. Lorsque le risque provient de la présence d'une atmosphère explosive gazeuse (gaz, vapeurs ou brouillards):
- 1º Dans les zones où une telle atmosphère explosive gazeuse est présente en permanence ou pendant de longues périodes, les installations électriques doivent être entièrement réalisées en « sécurité intrinsèque » de catégorie « ia » ; les matériels et systèmes doivent avoir reçu le certificat de conformité correspondant défini par le décret n° 78-779 du 17 juillet 1978 et de ses textes d'application, notamment l'arrêté du 9 août 1978.
- 2° Dans les zones où une telle atmosphère explosive gazeuse est susceptible de se former en fonctionnement normal, les installations électriques doivent être entièrement constituées de matériels utilisables en atmosphères explosives et répondant aux dispositions du décret n° 78-779 du 17 juillet 1978 et de ses textes d'application.
- 3° Dans les zones où une telle atmosphère explosive n'est pas susceptible de se former en fonctionnement normal et où une telle formation, si elle se produit, ne peut subsister que pendant une courte période, les installations électriques doivent :
- soit répondre aux dispositions du 2° ci-dessus ;
- -soit être constituées de matériels électriques conformes aux règles de construction d'une norme reconnue pour du matériel électrique industriel qui, en service normal, n'engendre ni arcs, ni étincelles, ni surfaces chaudes susceptibles de provoquer une inflammation ou une explosion. »

Bien que l'arrêté du 19 décembre 1988 ne précise pas la nature exacte des zones, (telles que définies au sein de l'arrêté du 8 juillet 2003), il explicite que les matériels doivent répondre à différentes prescriptions en fonction de leur emplacement (ci-après la définition des « zones »).

Cependant, l'arrêté n'apporte pas de précisions quant aux installations et matériels existants, c'est-à-dire ceux ayant fait l'objet d'un « agrément ministériel », installés avant la directive « ancienne approche » 76/117/CEE.

Il est, de plus, clairement précisé qu'un matériel « n'engendrant ni arcs, ni étincelles, ni surfaces chaudes, conforme à une norme reconnue » peut très bien être maintenu dans une zone, dont la définition correspond à celle de l'arrêté du 19 décembre 1988 (correspondant à la définition d'une zone 2 selon l'arrêté du 8 juillet 2003).

En synthèse: zonage - documentation - plaque

Zonage actuel	Zone 0	Zone de type 1	Zone de type 2
Arrêté du 19 décembre 1988	Zone présente en permanence ou pendant de longues périodes.	Susceptible de se former en fonctionnement normal.	Pas susceptible de se former en fonctionnement normal ou ne peut subsister que pendant une courte période.
Prescriptions relatives aux matériels	Mode de protection « ia ». Conforme au décret 78-779. Certificat de conformité selon l'arrêté du 9 août 1978 (arrêté d'application du décret n° 78-779 du 17 juillet 1978).	Matériel répondant aux dispositions du décret nº 78-779 du 17 juillet 1978.	Matériels conformes au décret 78-779 ou à une norme industrielle, et sans étincelle, ni arc, ni surface chaude.

Certificat de conformité délivré par un organisme « agréé ».

> Nouvelle harmonisation européenne sur les exigences concernant les matériels ATEX

5.2.1.10 Directive 94/9/CE du 23 mars 1994

Dans un objectif d'harmonisation et de complétude réglementaire, la directive ATEX 94/9/CE introduit, selon une « nouvelle approche », des règles applicables aux systèmes de protection contre les explosions ainsi qu'à tous les appareils utilisables ou en relation avec des atmosphères explosibles : cela concerne les matériels électriques et non électriques, les composants et les dispositifs de sécurité, de contrôle et de réglage nécessaires au fonctionnement sûr de ces appareils et systèmes de protection.

Elle définit uniquement des exigences essentielles de sécurité et de santé. Les normes harmonisées permettront de répondre à ces exigences. Elle se fonde sur les principes suivants :

- I'harmonisation est limitée aux exigences essentielles ; seuls les « produits » répondant aux exigences essentielles peuvent être mis sur le marché et mis en service ;
- les normes harmonisées, dont les références ont été publiées au Journal officiel de l'UE et qui doivent être publiées en tant que normes nationales, sont présumées répondre aux exigences essentielles correspondantes. Un produit conforme à ces normes est donc présumé conforme à la ou les directives concernées;
- l'application des normes harmonisées ou d'autres spécifications techniques est laissée à la discrétion des fabricants qui sont libres de choisir n'importe quelle solution technique garantissant la conformité aux exigences essentielles;
- les fabricants peuvent choisir entre différentes procédures d'évaluation de la conformité prévues dans la directive applicable;
- lorsqu'une procédure d'évaluation de la conformité prévoit l'intervention d'un organisme indépendant, celui-ci doit avoir été habilité pour la procédure concernée par un État membre et doit avoir été notifié pour ce faire par la Commission européenne. On parle alors d'organismes notifiés;
- selon le secteur de produit, la conclusion positive de la procédure d'évaluation de la conformité permet l'apposition du marquage CE;
- la surveillance du marché, à la charge des États membres, doit répondre aux prescriptions données par la directive.

Remarque: le marquage CE qui signifie « Conformité Européenne » est un marquage réglementaire qui exprime qu'un produit donné a été fabriqué en conformité avec l'ensemble des prescriptions de l'UE qui lui sont applicables et qui exigent l'apposition de ce marquage. Le marquage CE apposé sur un produit indique que ce produit répond aux exigences essentielles de sécurité et de santé de la directive et qu'il a également fait l'objet des procédures d'évaluation de conformité prescrites.

La directive s'applique:

- aux appareils destinés aux mines grisouteuses et aux autres emplacements à risque d'explosion;
- aux dispositifs de sécurité, de contrôle et de réglage destinés à être utilisés en dehors d'une atmosphère explosive, mais qui sont nécessaires ou qui contribuent au fonctionnement sûr des appareils et des systèmes de protection, au regard des risques d'explosion;
- aux composants, si ceux-ci n'ont pas de fonction autonome et sont mis séparément sur le marché.

Sont considérés comme appareils, les machines, les matériels, les dispositifs fixes ou mobiles, les organes de commande, l'instrumentation et les systèmes de détection et de prévention qui, seuls ou combinés, sont destinés à la production, au transport, au stockage, à la mesure, à la régulation, à la conversion d'énergie et à la transformation de matériaux et qui, par leurs propres sources potentielles d'inflammation, risquent de provoquer le déclenchement d'une explosion.

Sont considérés comme systèmes de protection, les dispositifs dont la fonction est d'arrêter immédiatement les explosions naissantes et/ou de limiter la zone affectée par une explosion et qui sont mis séparément sur le marché comme systèmes à fonction autonome.

5.2.1.11 Décret n° 96-1010 du 16 novembre 1996

Le décret n° 96-1010 du 19 novembre 1996 relatif aux appareils et aux systèmes de protection destinés à être utilisés en atmosphère explosible modifié par le décret 2002-695 transposera les exigences de la directive.

Il a été abrogé le 20 avril 2016 par le décret 2015-799.

5.2.2 Réglementation après le 30 juin 2003

5.2.2.1 Les arrêtés des 8 et 28 juillet 2003

La directive 1999/92/CE du 16 décembre 1999, transposée dans le Code du travail par les décrets 2002-1553 et 1554 et créant la section VI « Prévention des explosions » (art. R. 4227-42 à 54), définit les nouvelles obligations pour les employeurs, notamment celles de :

- définir les zones à risques d'explosion ;
- rédiger et tenir à jour un DRPCE (document relatif à la protection contre les explosions) au sein duquel l'ensemble des moyens techniques et organisationnels participant à la maîtrise du risque d'explosion doivent être clairement établis.

L'arrêté du 28 juillet 2003 relatif aux conditions d'installation des matériels électriques explicite, entre autres, le devenir des installations électriques existantes, celles dont la mise en service est intervenue avant la date butoir du 1er juillet 2006 pour autant que le DRPCE en fasse référence.

Extrait de l'arrêté du 28 juillet 2003 – Article 6 : « les installations existantes lors de l'entrée en vigueur du présent arrêté et conformes aux dispositions de l'arrêté du 19 décembre 1988 sont réputées satisfaire aux prescriptions du présent arrêté jusqu'au 30 juin 2006. Au-delà de cette date, elles continueront à bénéficier de cette présomption à condition que le "document relatif à la protection contre les explosions", prévu à l'article R. 232-12-29 du Code du travail, les ait validées explicitement avant le 1er juillet 2006. »

L'arrêté du 28 juillet 2003 précise que les matériels électriques « conformes aux dispositions de l'arrêté du 19 décembre 1988 sont réputés satisfaire aux prescriptions de l'arrêté du 28 juillet... », jusqu'en 2006. Après cette date, il faut que l'utilisateur les ait validés au travers son DRPCE (validé = toujours conforme à son mode de protection d'origine).

L'arrêté du 28 juillet 2003 précise de ce fait que les matériels électriques qui sont toujours en service et qui relevaient donc de la directive 76/117/CEE « ancienne approche » sont réputés respecter les exigences de la directive « nouvelle approche » (94/9/CE).

Il n'y a pas d'effet « rétroactif », aucune précision n'est apportée quant aux installations et matériels électriques antérieurs à la directive « ancienne approche », antérieurs à l'arrêté du 19 décembre 1988, seulement une exigence concernant la qualité du matériel installé devant toujours répondre à sa fonction de protection, exigence validée par l'utilisateur.

Pour déterminer si tous les matériels électriques installés avant le 1^{er} juillet 2006 sont « acceptables » il faut aller plus loin qu'une simple déclaration de ces matériels au sein du DRPCE... Il faut déterminer :

- s'ils présentent un risque ;
- si leur utilisation permet de garantir l'absence d'étincelle, de point chaud, d'arc électrique ;
- si leur mode de protection est toujours actif, c'est-à-dire qu'il n'y ait pas eu de dégradation dans le temps (dégradation du fait de son vieillissement, son utilisation ou sa maintenance).

Afin de réaliser cette évaluation, il est recommandé de s'appuyer sur les normes NF EN 60079-17 et NF EN 60079-14.

La typologie des zones ATEX est abordée au sein de l'arrêté du 8 juillet 2003 :

Zone 0 ou Zone 20

Présence en permanence, pendant de longues périodes ou fréquemment. Utilisation de matériels de catégorie 1G ou 1D selon directive 94/9/CE (devenue 2014/34/UE).

Zone 1 ou Zone 21

Présence occasionnelle en fonctionnement normal.

Utilisation de matériels de catégorie 2G ou 2D (ou 1G ou 1D) selon directive 94/9/CE (devenue 2014/34/UE).

Zone 2 ou Zone 22

N'est pas susceptible de se présenter en fonctionnement normal ou n'est que de courte durée, s'il advient qu'elle se présente néanmoins.

Utilisation de matériels de catégorie 3G ou 3D (ou 2G ou 2D et 1G ou 1D) selon directive 94/9/CE (devenue 2014/34/UE).

Responsabilité de l'employeur

La législation française, d'une manière générale, considère qu'il est de la responsabilité de l'employeur d'assurer la santé et la sécurité des travailleurs.

À ce titre, rappelons l'une des obligations de l'employeur décrite au sein de l'arrêté du 8 juillet 2003 :

« Section III - article 17 : 1° En ce qui concerne les équipements de travail :

a) Destinés à être utilisés dans les emplacements où des atmosphères explosives peuvent se présenter, et qui sont **déjà utilisés** ou mis pour la première fois à disposition dans l'entreprise ou l'établissement avant la date de publication du présent arrêté, ceux-ci **doivent satisfaire**, à partir de cette date, aux prescriptions minimales de la section 2 du présent arrêté;

[...]

Section II – sous-section III – article 10:

L'installation, les appareils, les systèmes de protection et tout dispositif de raccordement associé ne peuvent être mis en service que s'il est mentionné dans le DRPCE, qu'ils peuvent être utilisés en toute sécurité en atmosphères explosives. Il en est de même pour les équipements de travail et les dispositifs de raccordement associés qui ne sont pas des appareils ou des systèmes de protection au sens de la réglementation relative aux appareils et systèmes de protection destinés à être utilisés en atmosphères explosibles, si leur intégration dans l'installation peut, à elle seule, susciter un danger d'inflammation. L'employeur doit prendre les mesures nécessaires pour éviter une confusion entre les dispositifs de raccordement.

Section II - sous-section III - article 11:

Tout doit être mis en œuvre pour assurer que le lieu de travail, les équipements de travail et tout dispositif de raccordement associé mis à la disposition des travailleurs, d'une part, ont été conçus, construits, montés et installés, et, d'autre part, sont entretenus et utilisés de manière à réduire au maximum les risques d'explosion; si néanmoins une explosion se produit, tout doit être fait pour en maîtriser, ou réduire au maximum, la propagation sur le lieu de travail et dans les équipements de travail. Sur ces lieux de travail, des mesures appropriées sont prises pour réduire au maximum les effets physiques potentiels d'une explosion sur les travailleurs.»

1. Exigences pour le matériel installé avant le 30 juin 2003

• Le matériel électrique doit avoir été évalué avant le 1^{er} juillet 2006 afin de valider sa conformité à l'article 3 de l'arrêté du 19 décembre 1988. L'utilisateur doit être en mesure de démontrer que le mode de protection original a été maintenu et que celui-ci est toujours en état.

La traçabilité de cette évaluation et de la mise en conformité doit être réalisée au travers du document relatif à la protection contre les explosions (DRPCE).

Cela peut être démontré par une maintenance et des inspections régulières réalisées par des personnes compétentes telles que définies dans le chapitre 3.

Un matériel électrique, conforme à l'article 3 de l'arrêté du 19 décembre 1988, déjà en stock chez l'utilisateur au 30 juin 2003, pourrait être utilisé en remplacement d'un matériel **identique** déjà installé sur site dès lors qu'il ne s'agit pas de la mise à disposition d'un nouvel équipement de travail, ni la création d'un nouveau lieu de travail.

- Le matériel non électrique doit faire l'objet d'une analyse des risques et de mesures techniques ou organisationnelles en vue de maîtriser ses sources d'inflammation potentielles.
 - L'article 10 de l'arrêté du 8 juillet 2003 précise que les équipements de travail ne peuvent être mis en service que s'il est mentionné dans le DRPCE qu'ils peuvent être utilisés en toute sécurité en zone ATEX
 - L'article 11 précise en outre que les équipements de travail sont conçus, construits, montés, installés mais aussi entretenus et utilisés de manière à réduire au maximum les risques d'explosion.

L'évaluation et la mise en conformité doivent être réalisées par des personnes compétentes, telles que définies dans le chapitre 3, au travers d'une méthodologie conforme aux exigences essentielles de sécurité, définies par la directive 2014/34/UE. La traçabilité de l'évaluation et de la mise en conformité doit être réalisée au travers du document relatif à la protection contre les explosions (DRPCE).

Pour cela, l'utilisation des normes harmonisées, telles que EN 1127-1, EN 80079-36 et EN 80079-37 ou précédemment la série EN 13463, est préconisée.

Lorsque l'utilisation de ce matériel est autorisée par l'utilisateur, il est recommandé de l'identifier physiquement comme utilisable en zone ATEX et de conserver toute la documentation nécessaire à son utilisation (installation, maintenance, réparation...).

Pour les équipements de travail non soumis à des règles de conception lors de leur première mise sur le marché (avant les directives européennes) mettant en œuvre des produits ou matériaux dégageant des gaz, vapeurs, poussières ou autres déchets inflammables, l'article R. 4324-22 du Code du travail s'applique, et donc des dispositifs de protection doivent empêcher l'apparition d'une source d'inflammation.

Dans le cas d'une modification, extension ou transformation d'un lieu de travail existant avant le 30 juin 2003 (ex : modification du process) et si la démarche de prévention du risque d'explosion (cf. chapitre 2) débouche sur une caractérisation plus sévère du risque (ex : classement en zone 1 au lieu de zone 2, subdivision IIC au lieu de IIB...), il conviendra de considérer de remplacer le matériel existant par du matériel ATEX adapté aux nouvelles caractéristiques de la zone.

2. Exigences pour le matériel installé après le 30 juin 2003

- •le matériel électrique doit répondre à l'article 3 de l'arrêté du 28 juillet 2003 et doit, de ce fait, être conforme :
 - aux exigences de la directive 94/9/CE pour les matériels mis sur le marché avant le 20 avril 2016;
 - aux exigences de la directive 2014/34/
 UE pour les matériels mis sur le marché à partir du 20 avril 2016.

- Le matériel non électrique, doit répondre à l'article 16 de l'arrêté du 8 juillet 2003 et doit, sauf dispositions contraires prévues par le document relatif à la protection contre les explosions, être conforme :
 - aux exigences de la directive 94/9/CE pour les matériels mis sur le marché avant le 20 avril 2016;
 - aux exigences de la directive 2014/34/
 UE pour les matériels mis sur le marché à partir du 20 avril 2016.

Voir le paragraphe 5.4.2 dans le cas où l'utilisateur conçoit un matériel ATEX ou transforme un matériel standard en matériel utilisable en ATEX.

Pour les équipements de travail non soumis à la directive 94/9/CE ou 2014/34/UE, ce sont les dispositions mentionnées au § 5.2.1 qui s'appliquent.

5.2.2.2 La circulaire n° 2003-11 du 6 août 2003

La circulaire DRT n° 2003-11 du 6 août 2003, commentant l'arrêté du 28 juillet 2003 relatif aux conditions d'installation des matériels électriques dans les emplacements où des atmosphères explosives peuvent se présenter, fournit quelques précisions concernant le vocabulaire technique employé au sein de l'arrêté du 8 juillet 2003 et de la réglementation ATEX :

- « Atmosphère explosive » : mélange avec l'air, dans les conditions atmosphériques, de substances inflammables sous forme de gaz, vapeurs, brouillards ou poussières, dans lequel, après inflammation, la combustion se propage à l'ensemble du mélange non brûlé.
- « Atmosphère explosible » : atmosphère susceptible de devenir explosive du fait de conditions locales particulières (cf. art. 1 du décret du 19 novembre 1996).

- « Appareil » : ne pas confondre le terme « appareil » utilisé dans le décret du 19 novembre 1996 et le même terme utilisé par exemple dans l'expression « appareil d'utilisation » dans la normalisation électrique. Ces appareils d'utilisation font partie des matériels électriques terme très général de la normalisation électrique dont la définition est reprise à l'article 2 du décret n° 88-1056 du 14 novembre 1988 lesquels matériels électriques font, bien entendu, partie des appareils du décret du 19 novembre 1996.
- « Emplacement dangereux » : emplacement où il est probable qu'une atmosphère explosive puisse se présenter en quantité telle que des précautions spéciales sont nécessaires en vue de protéger la sécurité et la santé des travailleurs concernés.
- Zone 0 : emplacement où une atmosphère explosive consistant en un mélange avec l'air de substances inflammables sous forme de gaz, de vapeurs ou de brouillards est présente en permanence, pendant de longues périodes ou fréquemment.
- Zone 1 : emplacement où une atmosphère explosive consistant en un mélange avec l'air de substances inflammables sous forme de gaz, de vapeurs ou de brouillards est susceptible de se présenter occasionnellement en fonctionnement normal.
- Zone 2 : emplacement où une atmosphère explosive consistant en un mélange avec l'air de substances inflammables sous forme de gaz, de vapeurs ou de brouillards n'est pas susceptible de se présenter en fonctionnement normal ou n'est que de courte durée s'il advient qu'elle se présente néanmoins.
- Zone 20 : emplacement où une atmosphère explosive sous forme de nuage de poussières combustibles est présente dans l'air en permanence, pendant de longues périodes ou fréquemment.
- Zone 21 : emplacement où une atmosphère explosive sous forme de nuage de poussières

- combustibles est susceptible de se présenter occasionnellement en fonctionnement normal.
- Zone 22: emplacement où une atmosphère explosive sous forme de nuage de poussières combustibles n'est pas susceptible de se présenter en fonctionnement normal ou n'est que de courte durée s'il advient qu'elle se présente néanmoins.

Elle indique par ailleurs que :

- les couches, dépôts et tas de poussières combustibles doivent être traités comme toute autre source susceptible de former une atmosphère explosive;
- la subdivision en zones des emplacements dangereux est faite par l'employeur, les emplacements dangereux ainsi subdivisés devant apparaître dans le document relatif à la protection contre les explosions que le chef d'établissement doit établir et tenir à jour.

Et apporte quelques précisions complémentaires :

- l'arrêté du 8 juillet 2003 ne s'applique pas aux zones servant directement au traitement médical des patients et pendant celui-ci. À défaut de textes réglementaires permettant de déterminer les parties dangereuses des zones précédentes, on peut prendre en compte les indications de l'article 14 de la norme NF C 15-211 relative aux installations électriques dans les locaux à usage médical, article qui contient également des prescriptions pour le choix des matériels dans de telles zones;
- conformément à l'article 3 du décret du 19 novembre 1996 :
 - le groupe I comprend les matériels électriques destinés aux travaux souterrains des exploitations minières ainsi qu'aux installations de surface, soumises à des risques d'explosion en raison de la présence de grisou ou de poussières combustibles;

- le groupe II comprend les matériels électriques destinés à être utilisés dans des lieux autres que ceux où sont installés les appareils du groupe I qui sont néanmoins susceptibles d'être exposés aux dangers résultant de la présence d'atmosphères explosives;
- conformément aux prescriptions du paragraphe 1.05 de l'annexe I du décret du 19 novembre 1996, le marquage des matériels du groupe II comprend, notamment, l'indication du groupe (II) et celle de la catégorie (1, 2 ou 3) suivie de la lettre G pour les matériels destinés à des atmosphères explosives dues à la présence de gaz, vapeurs ou de brouillards, de la lettre D pour les matériels destinés à des atmosphères explosives dues à la présence de poussières explosives dues à la présence de poussières. Le choix des matériels doit également tenir compte de la nature du gaz, de la vapeur, du brouillard ou des poussières;
- la norme NF C 15-100 s'applique aux installations à basse tension. La norme NF C 13-200 relative aux installations à haute

tension ne contient pas de disposition pour la mise en œuvre des installations dans la condition d'influence externe BE 3. Néanmoins, cette dernière norme est en cours de révision, et sa prochaine édition contiendra vraisemblablement de telles dispositions. En attendant, les dispositions pertinentes de la norme NF C 15-100, c'est-à-dire les dispositions visiblement indépendantes de la tension, peuvent être appliquées.

L'attention est attirée sur l'importance de la validation des **installations existantes** par le document relatif à la protection contre les explosions établi par l'employeur.

Cette validation devra, notamment, confirmer l'adéquation des matériels électriques mis en œuvre dans les zones 2, 20, 21 et 22, les spécifications auxquelles devaient répondre de tels matériels, les vérifications et épreuves, de type et individuelles, auxquelles ils devaient satisfaire, ainsi que les marques et indications qu'ils devaient comporter, telles que prévues dans le décret du 17 juillet 1978, n'ayant jamais été précisées.

En synthèse: zonage - documentation - plaque

	Zone 0/20	Zone 1/21	Zone 2/22
Arrêtés	Permanent.	Occasionnel en fonctionnement normal.	Pas susceptible
du 8 juillet 2003	Longues périodes.		de se présenter.
et du 28 juillet 2003	Fréquemment.		Courte durée.
Exemples de zones	Intérieur des réservoirs, évents.	Prises d'échantillons, soupape de régulation.	Autour des singularités (brides, garnitures de vannes, soupapes de sécurité).
Prescriptions relatives	Catégories	Catégories	Catégories
aux matériels	1G ou 1D.	1G, 2G ou 1D, 2D.	1G, 2G, 3G ou 1D, 2D, 3D.

5.3 Matériels hors champ d'application de la directive n° 2014/34/UE

Voir également le guide d'application de la 2014/34/ UE (ATEX 2014/34/UE Guidelines) et notamment la « Borderline List – ATEX Products ».

5.3.1 Matériels simples

Un matériel simple, conformément à la directive 2014/34/UE, ne doit pas porter de marquage Ex et ne doit donc pas être désigné comme « ATEX ».

• Les matériels simples non électriques. Il s'agit de matériels mécaniques ne possédant pas de source propre d'inflammation. Il est à noter que le risque électrostatique n'est pas considéré comme une source d'inflammation propre.

Exemples de matériels simples non électriques :

- les outils à main tels que les marteaux, les clés, les scies et les échelles sont des exemples d'équipements de travail sans source propre d'inflammation;
- les matériels mécaniques ne présentant aucun mouvement ni échauffement (manomètres à tube de bourdon, détendeur...);
- d'autres exemples sont les soupapes de régulation process, les portes (non motorisées) et les équipements entraînés uniquement par des moyens humains (équipement de levage manuel...).

De nombreux matériels simples non électriques sont fabriqués à partir de plastiques pouvant se charger électrostatiquement s'ils sont frottés, ou lors d'écoulement de poussières ou de liquide sur la surface.

Si l'équipement ne possède pas d'autre source d'inflammation (étincelle électrique, étincelle mécanique...) que le risque électrostatique, et que la seule source de charge électrostatique provient du process, cet équipement n'entre pas dans le champ d'application de la directive 2014/34/UE.

C'est donc à l'utilisateur d'un tel équipement de tenir compte de ce risque électrostatique lors d'une évaluation des risques sur le lieu de travail.

Exemples:

Les conteneurs en plastique utilisés pour le transport de produits chimiques, les tuyaux en polyéthylène...

Pour réaliser cette évaluation, l'utilisateur peut s'appuyer sur le guide technique IEC/TS 60079-32-1.

- Les matériels simples électriques. Il s'agit des appareils suivants, qui n'ont pas besoin d'être certifiés ATEX selon la directive 2014/34/UE, lorsqu'ils sont installés dans un système de sécurité intrinsèque réalisé conformément aux normes EN 60079-11 et EN 60079-25.
 - Les composants passifs, par exemple les interrupteurs, les boîtes de jonction, les résistances et les dispositifs simples à semi-conducteur;
 - les sources réserves d'énergie consistant en des composants simples dans des circuits simples, ayant des paramètres bien définis, par exemple les condensateurs ou les inductances, dont les valeurs doivent être prises en compte lors de la détermination de la sécurité globale du système;
 - les sources génératrices d'énergie, par exemple les thermocouples et les cellules photoélectriques, qui ne délivrent pas plus de 1,5 V, 100 mA et 25 MW.

Exemples issus de la « Borderline List – ATEX Products » du guide d'application de la directive 2014/34/UE (ATEX 2014/34/UE Guidelines)

Matériel	Dans le champ de la directive ATEX 2014/34/UE	Exemple de matériel	Remarques
Pinces de mise à la terre simples avec ou sans cordon	Non (matériel simple)	IMAGES BD	Ne possède pas de source propre d'inflammation. Il s'agit de pinces avec une seule connexion de la terre.
Vanne manuelle	Non (matériel simple)		Ne possède pas de source propre d'inflammation. Entre dans le champ d'application si elle est motorisée.
Hublot de visualisation	Non (matériel simple)	IMAGES BD	Ne possède pas de source propre d'inflammation. Entre dans le champ d'application s'il forme une partie d'enveloppe d'un matériel ATEX (exemple : hublot d'une enveloppe antidéflagrante).
Conduites/tuyaux (extraction de fumée, conduites et gaines pour l'installation de câbles électriques)	Non (matériel simple)	IMAGES BD	Ne possèdent pas de source propre d'inflammation. Entrent dans le champ s'il s'agit d'un conduit destiné à être utilisé entre un boîtier antidéflagrant et un dispositif d'obstruction.
Sonde PT 100	Non/Oui		Hors champ d'application si elle est utilisée dans un système de sécurité intrinsèque. Dans le champ d'application dans les autres cas.

5.3.2 Les équipements de protection individuelle (EPI)

Les équipements, couverts par le règlement 2016/425/UE (abrogeant la directive 89/686 et entré en vigueur en avril 2019) relatif aux équipements de protection individuelle (EPI), sont spécifiquement exclus du champ d'application de la directive ATEX 2014/34/UE et ne portent donc pas le marquage spécifique de protection contre les explosions.

La conception d'équipements de protection individuelle destinés à être utilisés dans des atmosphères explosives est couverte par les exigences essentielles de santé et de sécurité contenues à l'annexe II, l'exigence 2.6, du règlement EPI: « les EPI destinés à une utilisation dans des atmosphères explosives doivent être conçus et fabriqués de façon telle qu'ils ne puissent être le siège d'un arc ou d'une étincelle d'origine électrique, électrostatique, ou résultant d'un choc, susceptibles d'enflammer un mélange explosible ».

Pour rappel, conformément à l'article 9 de l'arrêté du 8 juillet 2003 :

• il convient de prendre en compte les décharges électrostatiques provenant des travailleurs ou du milieu de travail en tant que porteurs ou générateurs de charges.

L'application des exigences de santé et de sécurité de la directive 2014/34/UE, comme mentionnée dans le guide d'application du règlement 2016/425/UE relatif aux EPI, est l'une des manières de démontrer la conformité de l'EPI à l'exigence 2.6 de ce règlement.

- Pour un EPI contenant des parties électriques (exemple : appareil respiratoire), il est souhaitable, afin que l'EPI ne soit pas source d'inflammation, qu'il soit conçu, fabriqué et évalué en tenant compte des exigences de la directive 2014/34/UE.
- Pour un EPI uniquement composé d'éléments non électriques (exemples : casques, chaussures...), le respect des exigences du point 2.6 de l'annexe II du règlement EPI est suffisant pour une utilisation en atmosphère explosive. Le fabricant de l'EPI doit évaluer les risques liés à l'apparition de sources d'inflammation et doit informer l'utilisateur sur le type de zone et le groupe d'atmosphère dans lequel l'EPI peut être utilisé, notamment vis-à-vis du risque électrostatique. Un tel EPI n'a cependant pas à être déclaré conforme à la directive ATEX 2014/34/UE par le fabricant.
- Les EPI mis à disposition sur le marché sont accompagnés des instructions précisant, en particulier, les conditions d'emploi (exigence 1.4 du règlement 2016/425/UE).
- Pour un EPI destiné à une utilisation dans une atmosphère explosive, les instructions indiquent donc le type de zone et le groupe d'atmosphère dans lequel l'EPI peut être utilisé, notamment vis-à-vis du risque électrostatique.

• Les travailleurs doivent être équipés, en tant que de besoin, de vêtements de travail et d'équipements de protection individuelle antistatiques appropriés à une utilisation en atmosphère explosive.

5.3.3 Les câbles électriques

Les câbles électriques ne sont pas des matériels « certifiés » au sens de la directive 2014/34/UE et ne portent donc pas de marquage ATEX.

Il existe cependant des règles d'installation électrique à respecter en zone à risque d'explosion (normes EN 60079-14 et NF C 15-100).

5.4 Cas particuliers d'application de la directive n° 2014/34/UE

5.4.1 Assemblage de matériels ATEX (ensemble fonctionnel)

Un assemblage formé par la combinaison de plusieurs appareils, éventuellement avec des composants, ainsi qu'avec d'autres éléments, reliés électriquement et mécaniquement pour créer un ensemble fonctionnel complet, doit être considéré comme un équipement relevant du champ d'application de la directive 2014/34/UE. Pour qu'il en soit ainsi, il doit être mis sur le marché et/ou mis en service par une personne responsable (qui est alors le fabricant de cet assemblage) sous la forme d'une unité fonctionnelle unique/indépendante (cf. guide d'application de la direction 2014/34/UE).

Dans le cas d'un ensemble constitué de différents matériels ATEX (ayant une déclaration UE de conformité ou une attestation écrite de conformité au titre de la directive 2014/34/UE), précédemment mis sur le marché par différents fabricants, le fabricant de l'assemblage peut présumer de la conformité de ces pièces d'équipement et limiter sa propre évaluation des risques aux risques supplémentaires d'inflammation apportés par la combinaison de ces équipements et l'ajout d'autres éléments (structure...).

S'il existe des risques d'inflammation supplémentaires, une évaluation de conformité de l'ensemble concernant ces risques est nécessaire.

Toutefois, si le fabricant de l'ensemble intègre des pièces sans conformité à la directive 2014/34/UE

dans l'assemblage (parce qu'il s'agit de pièces fabriquées par lui-même ou de pièces qu'il a reçues de son fournisseur en vue d'une transformation ultérieure par lui-même) ou de composants non accompagnés de l'attestation écrite de conformité, son évaluation de la conformité de l'ensemble doit également couvrir ces pièces.

Exemples d'assemblage:

5.4.2 Matériel fabriqué pour son propre usage

Un matériel ATEX fabriqué pour son propre usage doit respecter les exigences essentielles de sécurité et de santé de la directive 2014/34/UE (cf. art. 6 de la directive 2014/34/UE et le § 78 du guide d'application de cette directive) et doit donc présenter tous les éléments (notice d'instructions, marquage...).

Cela implique que l'utilisateur final, en qualité de constructeur, réalise ou fasse réaliser une évaluation de la conformité selon la directive 2014/34/UE, sauf disposition contraire prévue par le DRPCE pour le matériel non électrique (cf. arrêté du 8 juillet 2003, section III, article 16).

5.4.3 Équipements personnels

Les équipements personnels tels que les montres électroniques, matériels auditifs, les pompes à insulines ne doivent pas entrer en zone ATEX sans avoir été préalablement évalués.

Les équipements ci-dessous **peuvent être déclarés acceptables** pour une utilisation en ATEX :

- certaines montres-bracelets électroniques (dispositifs électroniques à basse tension pouvant être considérés comme matériel simple conformément à la norme EN 60079-11);
- les équipements personnels totalement implantés dans l'organisme (pacemaker).

Les autres équipements personnels fonctionnant sur piles/batterie ou par énergie solaire (y compris les montres-bracelets électroniques incorporant d'autres dispositifs, les pompes à insuline, les implants cochléaires...), qui **ne peuvent** être définis en tant que matériel simple, devraient :

- être évalués conformément à la directive sur les appareils ATEX ;
- ou faire l'objet d'une évaluation des risques sous la responsabilité de l'employeur, entraînant des mesures techniques et/ou organisationnelles à définir dans le document relatif à la protection contre les explosions pour être introduits en zone ATEX (exemple : utilisation en zone ATEX avec présence d'un détecteur de gaz correctement calibré et vérifié, autorisation de travail, changement de pile effectué hors zone...).

Concernant les dispositifs médicaux, il sera opportun de se mettre en relation avec les services de prévention et de santé au travail.

5.4.4 Les équipements de travail possédant une ATEX interne

Il faut considérer que les équipements de travail :

 qui créent eux-mêmes, du fait de leur fonctionnement, une ATEX interne (cf. note 1);

et qui,

• ne sont ni connectés à une zone à risque d'explosion classée par l'utilisateur (cf. note 2);

- ni destinés à être utilisés dans une zone à risque d'explosion classée par l'utilisateur;
- ne relèvent pas du champ d'application de la directive 2014/34/UE (cf. note 3).
- (1) À noter que, dans le cadre des commentaires de la directive 2006/42/CE relative aux machines, il est recommandé que le fabricant d'une machine utilise du matériel conforme aux exigences de la directive 2014/34/UE aux emplacements où une ATEX est susceptible de se former. Cela implique qu'il réalise l'équivalent d'un zonage interne.

Il est précisé que dans le cas où l'atmosphère explosive est générée au sein d'une machine telle que définie à l'article R. 4311-4 du Code du travail, le fabricant de la machine doit prendre en compte la présence de l'ATEX au sein de la machine et la conçoit pour éviter l'explosion. Pour ce faire, les exigences mentionnées à l'annexe I du R. 4312-1 et en particulier les exigences 1.5.6 et 1.5.7 s'appliquent.

- (2) Exemple d'équipements connectés à une zone à risque d'explosion classée par l'utilisateur :
 - une pompe ou un ventilateur destiné à véhiculer une zone classée par l'utilisateur (par exemple raccordés sur une tuyauterie process classée en zone à risque d'explosion).

Dans ces cas, la directive 2014/34/UE s'applique. L'utilisateur doit choisir le matériel ATEX en fonction des zones qu'il a classées et auxquelles le matériel ATEX est raccordé.

- (3) Exemple d'équipements ne relevant pas de la directive 2014/34/UE pour cette raison :
 - un dépoussiéreur/aspirateur, installé/utilisé hors zone ATEX :
 - son fonctionnement peut entraîner la création d'une ATEX interne qui n'est pas définie par l'utilisateur ;

et

- il n'est pas raccordé à une zone ATEX définie par l'utilisateur ;
- il n'est pas installé/utilisé en zone ATEX.
- > Si le fabricant du dépoussiéreur/aspirateur installe du matériel dans l'ATEX interne, il est fortement recommandé que ce matériel soit conforme à la directive 2014/34/UE.
- > Si le dépoussiéreur/aspirateur est finalement installé dans une zone classée par l'utilisateur, alors le dépoussiéreur/aspirateur doit être conforme à la directive 2014/34/UE.

De tels équipements de travail peuvent, en outre, créer par leur fonctionnement une ATEX externe impactant le lieu de travail. Dans un tel cas :

- il convient que le fabricant informe l'utilisateur du niveau et de l'étendue de l'ATEX créée afin que ce dernier l'intègre dans son classement de zone et son document relatif à la protection contre les explosions (DRPCE);
- l'équipement pourrait alors être déclaré après évaluation conforme, par le fabricant, à la directive 2014/34/UE et marqué en tant que tel.

Autre exemple issu de la « Borderline List – ATEX Products » du guide d'application de la 2014/34/UE (ATEX 2014/34/UE Guidelines)

Matériel	Dans le champ de la directive ATEX fabricant	Exemple de matériel	Remarques
Réfrigérateurs et armoires de stockage pour substances inflammables volatiles	Non		Hors champ si ATEX interne uniquement. Il est fortement recommandé que le matériel installé dans l'armoire (ex : luminaire) soit du matériel ATEX.

5.4.5 Matériels utilisés dans des ATEX « hybrides » gaz et poussières

Les équipements non marqués « II... GD » ne sont généralement pas adaptés à une utilisation dans une atmosphère dite « hybride gaz et poussières » (c'est-à-dire une ATEX présentant simultanément un risque d'explosion lié aux gaz et aux poussières).

Un marquage « II... GD » signifie généralement que l'équipement peut être installé soit en ATEX gaz, soit en ATEX poussières.

Si une ATEX hybride peut réellement se présenter, il est nécessaire de bien vérifier avec le fabricant que le matériel est adapté à cette utilisation, car aucun marquage n'est prévu pour distinguer spécifiquement cette possibilité.

5.4.6 Matériels installés à l'interface entre deux zones

Certaines situations nécessitent qu'un matériel ATEX soit installé à l'interface entre deux zones à risque d'explosion de caractéristiques différentes. Le matériel doit alors être sélectionné et marqué en compatibilité avec ces deux zones ou, le cas échéant, pour la plus sévère d'entre elles.

Cela peut être le cas :

- d'un capteur, monté sur un réservoir, ayant une partie sensible située à l'intérieur du réservoir (par exemple classé « zone 0 ») et une partie raccordement électrique à l'extérieur (par exemple classé « zone 1 »);
 - exemple de marquage : II 1/2 G (matériel ayant une partie pouvant être installée en zone 0 et une partie en zone 1);
- d'un ventilateur qui n'est pas destiné à véhiculer une zone interne mais pouvant être installé dans une zone externe (par exemple zone 2);
 - exemple de marquage : II -/3 G (matériel ayant une partie devant être installée hors zone et une partie pouvant être installée en zone 2).

Un marquage plus explicite (interne/externe) peut aussi être ajouté.

Les autres critères de sélection et d'adéquation (classe de température, groupe de subdivision gaz ou poussière, températures ambiantes d'utilisation...) doivent également être vérifiés.

Dans tous les cas, se référer à la notice d'instruction du fabricant devant définir les différentes conditions d'emploi du matériel.

5.4.7 Autres cas particuliers

D'autres cas particuliers d'application de la directive sont présentés dans le guide d'application de la 2014/34/UE (ATEX 2014/34/UE Guidelines https://ec.europa.eu/), notamment :

- systèmes d'inertage;
- cabines de pulvérisation de peinture ;
- · dépoussiéreurs ;
- turbines à gaz ;
- turbines vapeur;
- garnitures mécaniques d'étanchéité;
- élévateurs à godets ;
- chariots élévateurs.

5.5 Installation du matériel en zone ATEX

La directive 2014/34/UE ne réglemente pas le processus d'installation.

Telle que définie dans le guide d'application de la directive 2014/34/UE, une installation est une entité constituée de matériels ATEX qui sont interconnectés sur site par l'utilisateur. Elle diffère des assemblages qui comprennent des matériels ATEX, interconnectés par un fabricant pour créer un ensemble mis sur le marché comme une seule unité fonctionnelle.

Une installation doit être réalisée sous la responsabilité de l'utilisateur dans le cadre de la directive 1999/92/CE (y compris si l'exploitant utilise une société extérieure pour la concevoir ou la réaliser). Selon l'article 4 de l'arrêté du 28 juillet 2003, les installations électriques doivent être conçues et réalisées, et les canalisations électriques choisies, conformément aux prescriptions de la norme NF C 15-100 relatives aux emplacements à risque d'explosion (condition d'influence externe BE 3).

En complément de la norme française **NF C 15-100**, il convient de suivre les spécifications de la norme **EN 60079-14** définissant les règles d'installation des matériels électriques en zone à risque d'explosion.

L'exploitant doit s'assurer que les équipements initialement conformes restent conformes lors de leur mise en service. Pour cette raison, il doit suivre scrupuleusement toutes les instructions d'installation des fabricants.

Une vérification initiale de l'installation réalisée doit être effectuée sous la responsabilité finale de l'utilisateur au titre de la directive 1999/92/CE (cf. § 5.6.1).

5.6 Inspections des appareils ATEX et de leur installation

5.6.1 Inspection initiale des appareils ATEX et de leur installation

En accord avec l'article 14 de l'arrêté du 8 juillet 2003, l'employeur doit procéder ou faire procéder à la vérification de la sécurité, de l'ensemble de l'installation avant la première utilisation de lieux de travail comprenant des emplacements où une atmosphère explosive peut se présenter.

Arrêté du 8 juillet 2003 : Art. 14

« Avant la première utilisation de lieux de travail comprenant des emplacements où une atmosphère explosive peut se présenter, l'employeur doit procéder ou faire procéder à la vérification de la sécurité de l'ensemble de l'installation. Il doit s'assurer que toutes les conditions nécessaires pour assurer la protection contre les explosions sont maintenues. »

Deux notions sont à considérer ici : la notion de vérification « avant-première utilisation », que nous appellerons aussi « inspection initiale » de la sécurité des installations et la notion de « maintien en état de conformité » faisant référence à des « inspections périodiques » de la sécurité des installations.

Cette inspection initiale dite de sécurité conformément à l'arrêté du 8 juillet s'apparente à une inspection détaillée telle que définie dans la norme EN 60079-17.

Norme EN 60079-17

4.3.3 Types d'inspection

Les types d'inspections comprennent :

- a) « Les inspections initiales mises en œuvre pour vérifier que le mode de protection choisi et son installation sont appropriés sur la base des inspections détaillées. Les exigences sont traitées dans la EN 60079-14. »
- b) « Les inspections périodiques qui peuvent être visuelles, de près ou détaillées conformément aux tableaux 1, 2 et 3, ou des tableaux modifiés conformément à 5.7, selon le cas. »

Norme EN 60079-14

4.3 Inspection initiale

« Le matériel doit être installé en conformité avec sa documentation. Il doit être garanti que les éléments remplaçables sont de type et de caractéristiques assignées corrects. Au terme du montage et avant la première utilisation, le matériel et l'installation doivent faire l'objet d'une inspection initiale approfondie conformément à l'Annexe C, selon le niveau d'inspection « détaillé » de la EN 60079-17. »

L'employeur doit donc s'assurer que toutes les conditions nécessaires pour assurer la protection contre les explosions sont maintenues. Cette inspection doit être réalisée sur tous types d'appareils ATEX installés en zone à risque d'explosion, qu'il s'agisse de matériels électriques ou non électriques (l'arrêté du 8 juillet 2003 ne faisant pas de distinction entre les deux types de matériels).

La réalisation de ces inspections ne peut être confiée qu'à des personnes qui, du fait de leur expérience et leur formation professionnelle, possèdent les compétences nécessaires dans le domaine de la protection contre les explosions (cf. 3° partie du présent guide).

La documentation (notice d'utilisation et déclaration UE de conformité) relative aux appareils ATEX installés à vérifier, doit être disponible et utilisée lors de ces inspections.

5.6.2 Vérification initiale des appareils électriques ATEX et de leur installation

Toute nouvelle installation électrique est soumise aux vérifications initales prévues à l'article R. 4226-14 du Code du travail.

Code du travail: R. 4226-14

« L'employeur fait procéder à la vérification initiale des installations électriques lors de leur mise en service et après qu'elles ont subi une modification de structure, en vue de s'assurer qu'elles sont conformes aux prescriptions de sécurité prévues au présent chapitre. »

Cette vérification initiale est à réaliser dans les conditions prévues par l'arrêté du 26 décembre 2011 par un organisme accrédité art R. 4226-15 du Code du travail.

Code du travail: R. 4226-15

« La vérification initiale est réalisée par un organisme accrédité à cet effet. »

Arrêté du 26 décembre 2011 :

- Art. 2. La vérification initiale prévue à l'article R. 4226-14 du Code du travail est réalisée dans les conditions exprimées dans le présent article.
 - -« Les méthodes et l'étendue de la vérification sont conformes aux dispositions de **l'annexe I.** »
 - « Le contenu du rapport de vérification est conforme aux prescriptions de l'annexe II chapitre I et chapitre II. »

Annexe I:

-1.3. Examen de la documentation technique

« Vérification à partir des documentations des matériels, ou de leur fiche signalétique, de l'adéquation de ces matériels aux caractéristiques de l'installation et de son environnement. »

- 2. Étendue des vérifications

« Les vérifications portent sur la conformité des installations aux dispositions des articles **R.** 4215-3 à **R.** 4215-17, **R.** 4226-5 à **R.** 4226-13 et des arrêtés pris pour leur application. »

ATTENTION:

- La « vérification initiale » des installations électriques, au sens du Code du travail, ne couvre pas le champ d'une « inspection initiale » des matériels soumis à un risque d'explosion.
- L'utilisateur devra compléter cette vérification initiale des installations électriques par une vérification d'adéquation entre les matériels électriques, l'installation et la zone ATEX afin d'être conforme aux articles R. 4227-42 à 54.

Dans ce contexte, il est nécessaire de bien définir le cahier des charges de la prestation et de fournir les documents nécessaires à la réalisation de cette vérification (DRPCE, zonage, notices d'instructions...).

En complément de la norme française NF C 15-100, la norme EN 60079-17 traite des bonnes pratiques d'inspection et de vérification pour les matériels électriques en zone ATEX en fonction de leur mode de protection.

5.6.3 Vérification périodique des appareils électriques ATEX et de leur installation

Les installations électriques se trouvant en zone ATEX sont également soumises aux vérifications périodiques prévues à l'article R. 4226-16 du Code du travail.

Code du travail: R. 4226-16

« L'employeur procède ou fait procéder, périodiquement, à la vérification des installations électriques afin de s'assurer qu'elles sont maintenues en conformité avec les règles de santé et de sécurité qui leur sont applicables. »

Ces vérifications périodiques sont à réaliser conformément à l'article **R. 4226-17** du Code du travail dans les conditions prévues par **l'arrêté du 26 décembre 2011 :**

- soit par un organisme accrédité;
- soit par une personne qualifiée appartenant à l'entreprise dont l'employeur a vérifié les compétences au regard de l'arrêté du 22 décembre 2011.

Code du travail: R. 4226-17

« Les vérifications périodiques sont réalisées soit par un organisme accrédité, soit par une personne qualifiée appartenant à l'entreprise et dont la compétence est appréciée par l'employeur au regard de critères énoncés dans un arrêté du ministre chargé du Travail et du ministre chargé de l'Agriculture. »

Arrêté du 26 décembre 2011:

• **Art. 3.** – La vérification périodique prévue à l'article **R. 4226-16** du Code du travail est réalisée dans les conditions exprimées dans le présent article.

Annexe I:

- 1.3. Examen de la documentation technique
- 2. Étendue des vérifications

Arrêté du 22 décembre 2011 relatif aux critères de compétence des personnes chargées d'effectuer les vérifications périodiques des installations électriques et de mettre en œuvre les processus de vérification des installations électriques temporaires.

• Article 3

« Lorsque les vérifications périodiques des installations électriques d'un établissement, prévues à l'article **R. 4226-16** du Code du travail, sont réalisées par une personne qui n'appartient pas à l'établissement, l'organisme qui l'emploie apporte la preuve de sa compétence au moyen d'une attestation d'accréditation délivrée par le Comité français d'accréditation (COFRAC) ou par un autre organisme, signataire de l'Accord européen multilatéral pris dans le cadre de la coordination européenne des organismes d'accréditation (EA), selon la norme NF en ISO/CEI 17020 (2005). »

La périodicité des vérifications est fixée à un an, le point de départ de cette périodicité étant la date de la vérification initiale.

La section « prévention des explosions » du Code du travail et ses arrêtés d'application ne donnent aucune précision quant à la périodicité des vérifications de maintien en état de conformité des matériels électriques vis-à-vis du risque d'explosion.

ATTENTION:

• il est de la responsabilité de l'employeur de définir les modalités de vérification périodique des matériels ATEX suivant les préconisations du fabricant, définies dans sa notice d'instruction, et de les mentionner au sein du DRPCE. Compte tenu du risque et de l'importance de disposer d'un matériel électrique conforme/ maintenu en conformité dans les zones ATEX, il est recommandé de procéder à une inspection de sécurité tous les ans.

5.6.4 Vérification initiale des appareils non électriques ATEX et de leur installation

Certains équipements de travail sont également soumis à des vérifications initiales prévues à l'article R. 4323-22 par des personnes qualifiées appartement ou non à l'établissement.

Code du travail: R. 4323-22

« Des arrêtés du ministre chargé du travail ou du ministre chargé de l'agriculture déterminent les équipements de travail et les catégories d'équipements de travail pour lesquels l'employeur procède ou fait procéder à une vérification initiale, lors de leur mise en service dans l'établissement, en vue de s'assurer qu'ils sont installés conformément aux spécifications prévues, le cas échéant, par la notice d'instructions du fabricant et peuvent être utilisés en sécurité. Cette vérification est réalisée dans les mêmes conditions que les vérifications périodiques prévues à la sous-section 2. Cette vérification initiale est réalisée en fonction de la catégorie d'équipements de travail dans les conditions prévues par l'arrêté du 1er mars 2004 relatif aux vérifications des appareils et accessoires de levage.»

Tous les appareils non électriques présents en zone ATEX ne sont pas concernés par la vérification initiale réglementaire précitée. Par contre, comme l'article 14 de l'arrêté du 8 juillet 2003 ne fait aucune distinction entre le matériel électrique et le matériel non électrique, l'ensemble des appareils non électriques présents en zone ATEX sont soumis à une inspection initiale afin de s'assurer que le choix, l'installation, l'utilisation et le plan de maintenance de ces appareils sont appropriés à la zone ATEX où ils se trouvent et respectent les spécifications prévues par la notice d'instruction du fabricant. Des référentiels techniques existent désormais et peuvent également servir de base pour procéder aux inspections initiales desdits matériels non électriques (EN ISO 80079-36 et EN ISO 80079-37).

5.6.5 Vérification périodique des appareils non électriques ATEX et de leur installation

Certains équipements de travail sont soumis à des vérifications périodiques prévues à l'article R. 4323-23 par des personnes qualifiées appartement ou non à l'établissement.

Code du travail: R. 4323-23

« Des arrêtés du ministre chargé du Travail ou du ministre chargé de l'Agriculture déterminent les équipements de travail ou les catégories d'équipement de travail pour lesquels l'employeur procède ou fait procéder à des vérifications générales périodiques afin que soit décelée en temps utile toute détérioration susceptible de créer des dangers. »

Ces vérifications périodiques sont réalisées en fonction de la catégorie d'équipements de travail dans les conditions prévues, soit par l'arrêté du 1er mars 2004 relatif aux vérifications des appareils et accessoires de levage, soit par l'arrêté du 5 mars 1993 soumettant certains équipements de travail à l'obligation de faire l'objet des vérifications générales périodiques .

Tous les appareils non électriques présents en zone ATEX ne sont pas concernés par les vérifications périodiques réglementaires précitées. Par contre, l'employeur doit s'assurer que toutes les conditions nécessaires pour assurer la protection contre les explosions soient maintenues (cf. article 14 de l'arrêté du 8 juillet 2003). A cet effet, une inspection du maintien en l'état de conformité des appareils non électriques situés en zone ATEX est nécessaire. Aucune périodicité n'est prévue dans la réglementation ATEX, c'est à l'employeur de la définir en tenant compte notamment des consignes des fabricants définies dans les notices d'instructions des appareils considérés et de l'inscrire dans le DRPCE.

5.7 Entretien et réparation du matériel ATEX

En accord avec l'article 11 de l'arrêté du 8 juillet 2003, tout doit être mis en œuvre pour assurer que le lieu de travail, les équipements de travail et tout dispositif de raccordement associé mis à la disposition des travailleurs, d'une part, ont été conçus, construits, montés et installés, et, d'autre

part, sont entretenus et utilisés de manière à réduire au maximum les risques d'explosion.

Il est nécessaire de suivre les consignes des fabricants définies dans les notices d'instructions des équipements installés relatives aux activités et périodicités d'entretien et de réparation.

5.7.1 Matériels ATEX modifiés

Telle que définie dans le guide d'application de la directive 2014/34/UE au § 33, une modification substantielle d'un matériel ATEX est une modification d'un équipement affectant son mode de protection ATEX. Dans ce cas, la directive 2014/34/UE doit être appliquée à nouveau, impliquant que l'utilisateur final :

- réalise ou fasse réaliser une nouvelle évaluation de la conformité;
- applique les procédures d'évaluation de la conformité prévues par la directive;
- réalise un nouveau marquage conformément à cette directive;
- émette une nouvelle déclaration UE de conformité et une nouvelle notice d'instructions.

Exemples de modifications substantielles :

- modification des caractéristiques électriques ou mécaniques d'un équipement, (rebobinage non identique, changement de type de palier, de garniture mécanique, modification des seuils d'alarme ou de déclenchement prescrits par le fabricant...);
- ajout de matériels ou composants non prévus dans un coffret électrique;
- modification d'une enveloppe (ajout de nouveaux perçages).

5.7.2 Matériels ATEX réparés

Tels que définis dans le guide d'application de la directive ATEX 2014/34/UE (§ 33), il s'agit de produits dont les fonctionnalités ont été restaurées à la suite d'un défaut sans ajout de nouvelle fonctionnalité ou modification. Si cela est réalisé sans modification substantielle, la directive 2014/34/UE ne s'applique pas à nouveau.

La norme NF EN 60079-19 traite des bonnes pratiques de réparation pour les matériels électriques en fonction de leur mode de protection.

Il est donc de la responsabilité de l'utilisateur et du réparateur de garantir qu'une réparation est effectuée sans modification ou dégradation affectant le mode de protection.

Il convient donc de suivre les recommandations du fabricant (notice d'instructions), d'utiliser du personnel compétent et qualifié, tel que défini au chapitre 3 du présent guide, et de s'assurer de la capacité des ateliers de réparation à réaliser ces opérations dans les règles de l'art et en toute sécurité vis-à-vis du risque ATEX. L'utilisateur doit assurer une traçabilité des opérations de réparation et de maintenance effectuées sur les équipements.

Il convient que l'utilisateur tienne à disposition et fournisse aux réparateurs l'ensemble des documents nécessaires au maintien de la conformité ATEX des équipements (certificats, notices, plans, etc.) (cf. partie 1.0.6 de l'annexe II de la directive 2014/34/UE « notice d'instruction »).

5.7.3 Pièces de rechange

Une opération de réparation typique est le remplacement d'une partie défectueuse ou usée d'un matériel ATEX par une pièce de rechange. Une telle pièce de rechange n'est généralement pas marquée selon la directive 2014/34/UE, sauf si la pièce de rechange représente, elle-même, un matériel ATEX au sens de cette directive.

Si le fabricant d'origine de la pièce de rechange en propose une nouvelle, différente, à la place de l'ancienne (en raison des progrès techniques, de l'abandon de la fabrication de l'ancienne pièce...), l'utilisateur doit s'assurer auprès du fabricant que cela ne représente pas une modification substantielle du matériel ATEX réparé:

- si cela ne représente pas une modification substantielle, le changement peut alors avoir lieu sans que la directive 2014/34/UE s'applique à nouveau;
- si cela représente une modification substantielle (nouvelle source d'inflammation ou bien modification du mode de protection originel), le changement ne peut avoir lieu qu'après une nouvelle évaluation de la conformité selon la directive 2014/34/UE.

Le principe est le même pour les produits reconditionnés (ou remis à neuf) ou les produits reconfigurés (équipements déjà utilisés mais dont la configuration a été modifiée, par l'ajout ou l'enlèvement d'une ou plusieurs pièces).

Si le fabricant n'existe plus ou n'est plus en mesure de fournir la pièce d'origine, la responsabilité de la réparation et du choix de la pièce de rechange incombe à l'utilisateur. Si cette réparation affecte le mode de protection de l'équipement, la directive 2014/34/UE doit être appliquée à nouveau par l'utilisateur.

5.8 Synthèse

Les équipements présents en zone ATEX doivent être conçus spécifiquement pour fonctionner dans ces zones et être entretenus et vérifiés afin d'assurer la sécurité lors de leur utilisation.

Il ressort des arrêtés du 8 juillet 2003 et du 28 juillet 2003 que :

- le choix et l'installation du matériel en zone ATEX restent sous la responsabilité de l'employeur;
- 2. le matériel installé en zone ATEX doit être soumis à une inspection initiale et périodique;
- 3. le matériel doit être entretenu afin de maintenir son niveau de protection originel.

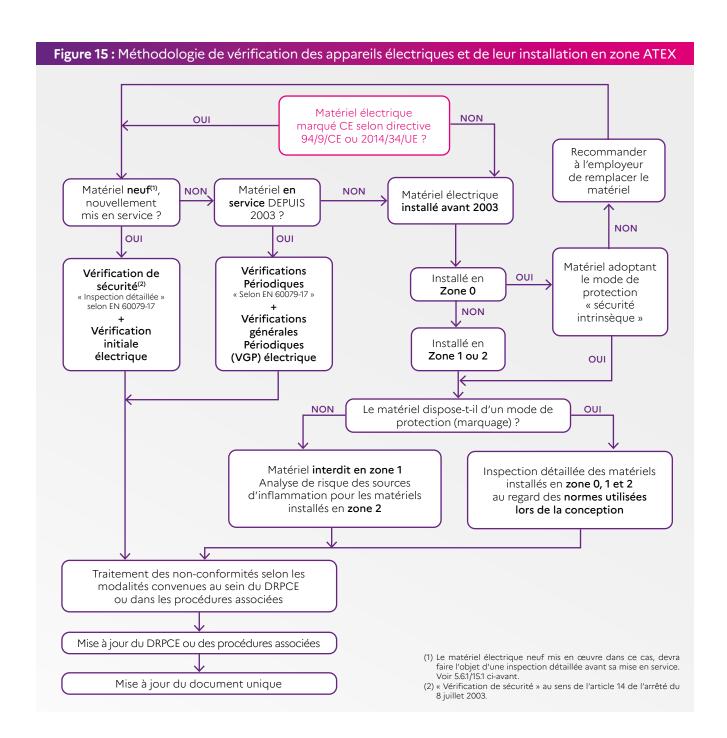
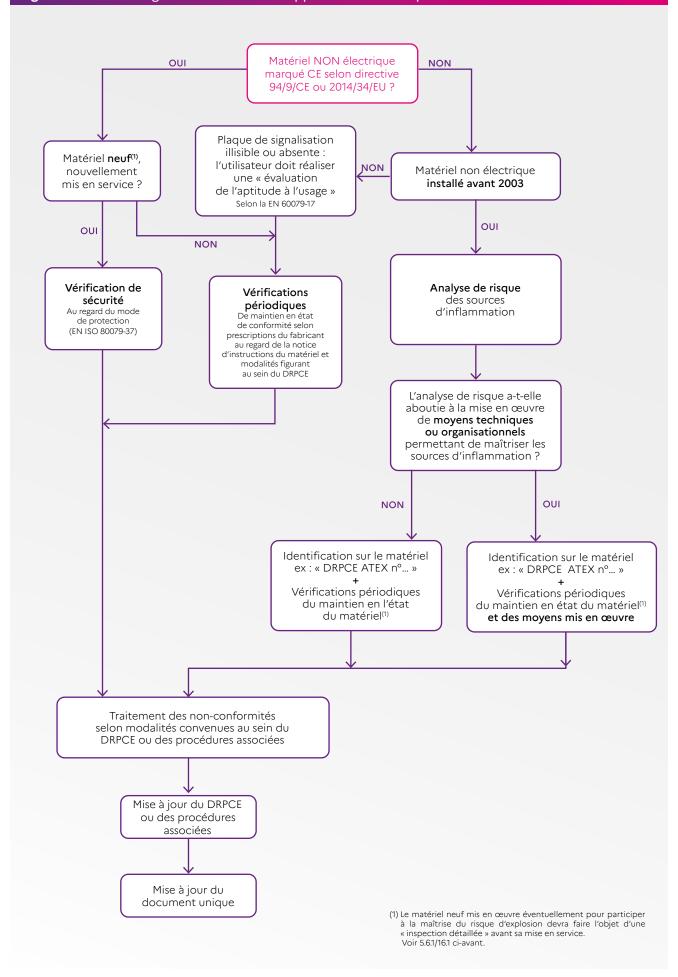



Figure 16: Méthodologie de vérification des appareils non électriques et de leur installation en zone ATEX

ANNEXES

Tableau récapitulatif des principaux modes de protection des appareils certifiés ATEX

Modes de protection électriques

riodes de protection electriques			
Surpression interne • Symbole (p)	La pénétration d'une atmosphère environnante à l'intérieur de l'enveloppe du matériel électrique est empêchée par le maintien, à l'intérieur de ladite enveloppe, d'un gaz de protection à une pression supérieure à celle de l'atmosphère environnante.		
Immersion dans l'huile • Symbole (o)	Le matériel électrique est immergé dans l'huile de telle sorte qu'une atmosphère explosive se trouvant au-dessus du niveau de l'huile ou à l'extérieur de l'enveloppe ne puisse pénétrer et donc s'enflammer.		
Encapsulage • Symbole (m)	Les pièces qui pourraient enflammer une atmosphère explosive par des étincelles ou par des échauffements sont enfermées dans une résine de telle manière que cette atmosphère explosive ne puisse être enflammée ou pénétrer et donc s'enflammer.		
Sécurité augmentée • Symbole (e)	Mode de protection consistant à appliquer des mesures afin d'éviter, avec un coefficient de sécurité élevé, la possibilité de températures excessives et l'apparition d'arcs ou d'étincelles à l'intérieur et sur les parties externes du matériel électrique qui n'en produit pas en fonctionnement normal.		
Sécurité intrinsèque • Symbole (i)	Un circuit de sécurité intrinsèque est un circuit dans lequel aucune étincelle ni aucun effet thermique, produit dans les conditions d'épreuve prescrites par la norme, n'est capable de provoquer l'inflammation d'une atmosphère explosive donnée.		
Enveloppe antidéflagrante • Symbole (d)	Les pièces, qui peuvent enflammer une ATEX, sont enfermées dans une enveloppe qui résiste à la pression développée lors d'une explosion interne d'un mélange explosif et qui empêche la transmission de l'explosion à l'atmosphère environnante de l'enveloppe.		
Remplissage pulvérulent • Symbole (q)	Les parties susceptibles d'enflammer une atmosphère explosive sont en position fixe et sont complètement noyées dans un matériau de remplissage de telle sorte que l'inflammation d'une atmosphère explosive environnante soit empêchée.		
Protection par enveloppe • Symbole (t)	Cette protection est assurée par l'étanchéité des divers matériels aux poussières ainsi que par des mesures visant à limiter les températures maximales de surface en fonctionnement normal.		
Dispositif hermétiquement scellé • Symbole (nC)	Dispositif construit de telle manière que l'atmosphère extérieure ne puisse pénétrer à l'intérieur et dans lequel l'étanchéité est obtenue par fusion.		
Enveloppe à respiration limitée • Symbole (nR)	Enveloppe qui est conçue pour restreindre la pénétration des gaz, vapeurs et brouillards.		
Dispositif sans formation d'étincelles • Symbole (nA)	Dispositif construit pour réduire le risque de formation d'arcs ou d'étincelles capables d'engendrer un danger d'inflammation en conditions normales d'utilisation.		

Modes de protection non électriques

Protection par sécurité à la construction • Symbole (c)	Ce mode de protection a pour principe de base de sélectionner des équipements ne contenant pas, en fonctionnement normal, de source d'inflammation.
Protection par contrôle de la source d'inflammation • Symbole (b)	Ce mode de protection consiste à équiper l'appareil de systèmes de contrôle et de surveillance avec capteurs mettant hors énergie l'appareil en cas de dépassement de ses paramètres de sécurité.
Protection par immersion dans un liquide • Symbole (k)	Norme qui a repris le principe du mode de protection (o) pour les matériels électriques avec des aménagements pour prendre en compte une immersion partielle et l'utilisation de liquide autres que l'huile (eau par exemple).
Mode de protection appliqué à l'appareil non-électrique • Symbole (h)	Une évaluation des risques a été effectuée pour s'assurer qu'en fonctionnement normal et que dans certaines situations prévues, régulières et spécifiées, il ne peut pas provoquer l'inflammation d'une atmosphère explosive gazeuse et poussièreuse. Le mode de protection inclut les modes de protections c, b et k.

Exemple de DRPCE

Document relatif à la protection contre les explosions

SITE

Ce document fait partie intégrante de l'évaluation des risques prévue à l'article R. 4227-53 du Code du travail et du document unique prévu à l'article R. 4121-1.

0							
0							
0							
0							
0							
0							
0							
	data	Nom	signature	Nom	signature	Nom	signature
rev	date	réda	action	vérit	fication	appr	obation

I. Description de la société, du site, des procédés et des activités

Description des lieux et emplacements de travail

- Objet des installations
- Description des unités de production
- Risques d'accidents majeurs présentés par les unités

II. Évaluation du risque d'explosion

La définition des zones

- Définitions retenues
- Emplacements concernés
- Principales sources d'émission
- Interprétation et méthodes de détermination

> Implications de l'employeur

- Règles internes
- Courriers
- Engagements

> Démarches mises en place sur le site

- Identification des produits
- Définition des points d'émission
- Liste des points d'émission susceptibles de créer une zone ATEX
- Établissement d'un premier zonage
- Étude visant à réduire et limiter les sources d'émission existantes et le zonage
- Établissement du zonage définitif
- Audit terrain, validation du plan de zone
- Lieux physiques devant être signalés par un panneau EX
- Méthode de balisage/principes de signalisation zone ATEX

Prévention du risque d'explosion, sources d'inflammation potentielles, règles de protection adoptées

> Mesures de prévention ayant été mises en œuvre

- Substitution
- Inertage
- Diminution de la granulométrie ou de la quantité de combustible
- · Captage, capotage, ventilation
- Détection et alarmes
- Dispositions de maîtrise des sources d'inflammation
- ...

> Sources d'inflammation présentes sur le site

√ Matériel mécanique, pneumatique et hydraulique

- Pompes
- Compresseurs
- Ventilateurs
- Agitateurs
- Équipements pneumatiques
- Équipements hydrauliques...

✓ Matériel électrique

- Moteurs
- Instrumentation
- Éclairage
- Boîtes de jonction
- Signalisation
- Vannes...

✓ Autre matériel

Sont considérés comme autres matériels les équipements qui peuvent, du fait de leur conception, leur utilisation et leur installation au sein des unités présenter un risque potentiel d'explosion.

- Bacs de stockage
- Postes de chargement camions
- Arrête-flammes
- Soupapes et clapets de décompressions
- Équipements ou procédés de type capacités, colonnes de distillation, tuyauteries...

√ Matériel portatif + outillage

Définir les règles d'utilisation sur le site

✓ Assemblages

Gestion et validation des assemblages de matériels certifiés réalisés soit par un fabricant soit par l'utilisateur.

- Procédure
- Certification
- Essai...

√ Matériel neuf/d'occasion/de rechange/de location

Méthodes d'achat, de gestion, de suivi et de tracabilité des différents matériels présents sur site.

✓ Autres sources d'inflammation

- Surfaces chaudes
- Foudre
- Ondes électromagnétiques
- Flammes et gaz chauds
- Équipements mobiles possédant une batterie autonome
- Électricité statique
- Équipements des travailleurs
- Travaux par points chauds, feux nus...
- · Circulation des véhicules à moteur
- Zones fumeurs

III. Règles d'exploitation

- Règles générales
- Formation du personnel
- Personnel d'exploitation
- Personnel de maintenance travaux neufs technique
- Personnel administratif

Règles de gestion du parc matériel

- Matériels électriques achetés avant le 1er juillet 2003
- Matériels électriques achetés après le 1er juillet 2003
- Autres matériels (mécanique, tuyauterie, pneumatique...) achetés avant le 1er juillet 2003
- Autres matériels (mécanique, tuyauterie, pneumatique...) achetés après le 1er juillet 2003
- Matériel en magasin
- Interchangeabilité du matériel entre les unités

Règles de conception : travaux neufs et modifications

Les spécifications techniques, cahiers des charges... doivent respecter le contexte réglementaire et normatif ATEX.

Politique d'achat

- Achat de matériel ATEX divers
- · Matériel mécanique et autre
- Matériel électrique

Les cahiers des charges doivent répondre aux règles internes définies.

• Achat de prestation et service

Les prestataires de service doivent être compétents dans le domaine ATEX et répondre au cahier des charges visant la réglementation et le contexte normatif.

Règles d'entretien et de maintenance

- Maintenance, travaux sur matériel ATEX
- Procédure de consignation électrique en zone ATEX
- Autorisation de travail, permis de travaux
- Travaux par points chauds et « permis de feu »
- Plan de prévention
- Contrôles périodiques et réglementaires

Entreprises sous-traitantes

Les prestataires de service doivent être compétents dans le domaine ATEX et répondre au cahier des charges visant la réglementation et le contexte normatif.

IV. Évaluation et mise en conformité des installations existantes

Évaluation de la conformité

- Recensement du matériel (fixe, mobile, location, portable, outillage...)
- Examen du matériel électrique (gaz et poussières)
- Examen du matériel non électrique (gaz et poussières)

Règles d'évaluation de la conformité du matériel existant

- Matériel électrique gaz (anciennes normes, réparation ATEX, état général)
- Matériel électrique poussière (rétroactivité directive, rectification, remplacement, déclaration conforme par le DRPCE)
- Matériel mécanique (analyse de risque, de dysfonctionnement, certification, essais...)

Matériel de protection/détection

Évents d'explosion, centrale de détection gaz...

Glossaire

Dans un souci de clarté, les définitions des principaux termes relatifs à la protection contre les explosions sont reproduites ci-après. Les sources correspondantes sont indiquées pour les termes qui font l'objet de définitions légales dans les directives, leurs transpositions dans les textes nationaux et les normes harmonisées européennes. Les définitions des autres termes techniques proviennent d'ouvrages spécialisés.

Appareil: Les machines, matériels, dispositifs fixes ou mobiles, organes de commande, instrumentation et systèmes de détection et de prévention qui, seuls ou combinés, sont destinés à la production, au transport, au stockage, à la mesure, à la régulation, à la conversion d'énergies et à la transformation de matériaux et qui, par les sources potentielles d'inflammation qui leur sont propres, risquent de provoquer le déclenchement d'une explosion.

Atmosphère explosive: Mélange avec l'air, dans les conditions atmosphériques, de substances inflammables sous forme de gaz, vapeurs, brouillards ou poussières, dans lequel, après inflammation, la combustion se propage à l'ensemble du mélange non brûlé (directive 1999/92/CE).

CarAtex (base de données): CarAtex (CARactéristiques ATEX) fournit des informations sur l'inflammabilité et l'explosivité des substances (gaz et vapeurs, poussières industrielles). Cette base est constituée de deux bases de données:

- une base consacrée aux gaz et vapeurs, produite et diffusée par l'INRS, donnant des informations sur plus de 1 000 substances ;
- une base consacrée aux poussières, produite en Allemagne et diffusée par le DGUV Deutsche Gesetzliche Unfallversicherung. En 2023, elle décrit 6 805 mélanges de poussières. L'INRS en assure la traduction en français : https://www.inrs.fr/publications/bdd/caratex.html

Catégorie d'appareils: Classification des matériels en fonction du degré de protection requis. Dans ce cas, ils sont marqués en conséquence. Il existe également des appareils qui sont conçus pour une utilisation dans différentes atmosphères explosives et peuvent par exemple s'employer aussi bien dans des mélanges poussières-air que dans des mélanges gaz-air.

Groupe de gaz/vapeurs : Les gaz et les vapeurs sont réparties en trois groupes (II A, II B, II C) en fonction de leur sensibilité à l'inflammation, II C étant les plus sensibles (cf. la norme NF EN 80079-20-1).

Classe de température : Les matériels sont répartis en classes de température en fonction de leur température maximale de surface. Par analogie, les gaz sont répartis en fonction de leur température d'inflammation.

Conditions atmosphériques : Par conditions atmosphériques, on entend généralement une température ambiante de -20 °C à 60 °C et une pression comprise entre 0,8 bar et 1,1 bar.

 $\textbf{Coefficient K}_{\text{st}}: \text{Valeur expérimentale permettant de caractériser la violence d'explosion des poussières}.$

Comburant : Se dit d'un corps qui, en se combinant avec un autre corps, opère la combustion de ce dernier. Exemple : l'air.

Combustible: Qui a la propriété de brûler. Un combustible peut être liquide, solide, gazeux.

Combustion: Réaction d'oxydation libérant de l'énergie (exothermique) produite par des matières/mélanges/matériaux solides combustibles (ou en présence de ces éléments).

Composants: Les pièces essentielles au fonctionnement sûr des appareils et systèmes de protection, mais sans fonction autonome.

Concentration limite en oxygène: Dans des conditions d'essais spécifiées, concentration maximale en oxygène d'un mélange de substances inflammables, d'air et d'un gaz inerte dans lequel une explosion ne se produit pas.

Concentration minimale d'explosivité pour les poussières (CME) : Concentration minimale de poussières combustibles dispersées dans l'air permettant de produire une explosion (mesurée en unité de masse par volume).

Confinement: Caractéristique d'un espace totalement ou partiellement fermé (bâtiment, ouvrage, équipement, installation...).

Décharge de l'explosion : Mesure de protection qui limite la pression d'explosion du fait de la décharge de mélange brûlé et imbrûlé et de produits de combustion par des orifices prévus à cet effet, de manière que le récipient, le lieu de travail ou le bâtiment ne soit pas sollicité au-delà de sa résistance à l'explosion.

Déflagration : Combustion rapide qui se propage dans un milieu à une vitesse inférieure à celle du son. Elle est caractérisée par une augmentation de température et de pression, mais sans onde de choc.

Détonation : Combustion rapide qui se propage dans un milieu à une vitesse suppérieure à celle du son. Elle est caractérisée majoritairement par une onde de choc destructrice.

Dispersion: Répartition de fines particules de poussière sous la forme d'un nuage.

Dispositif de décharge : Dispositif qui ferme un orifice de décharge en fonctionnement normal et l'ouvre en cas d'explosion.

Document relatif à la prévention contre les explosions (DRPCE) : L'ensemble de la démarche (analyse préliminaire, évaluation et plan d'actions pour la prévention du risque d'explosion et la protection contre les explosions) doit être formalisée dans un document dénommé « document relatif à la protection contre les explosions » (cf. art. R. 4227-52 du Code du travail).

Emplacement dangereux: Emplacement où une atmosphère explosive peut se présenter en quantité telle que des précautions spéciales sont nécessaires en vue de protéger la sécurité et la santé des travailleurs (cf. directive 1999/92/CE).

Emplacement non dangereux : Emplacement où il est improbable que des atmosphères explosives se présentent en quantité telle que des précautions spéciales soient nécessaires (cf. directive 1999/92/CE).

Employeur: Toute personne physique ou morale qui est titulaire de la relation de travail avec le travailleur et qui a la responsabilité de l'entreprise et/ou de l'établissement (cf. directive 89/391/CEE).

Énergie minimale d'inflammation (EMI): Quantité d'énergie minimale apportée localement (sous forme d'une flamme, d'une étincelle, d'un choc, d'un frottement...) pour provoquer l'inflammation d'une atmosphère explosive.

Équipement de travail: Toute machine, appareil, outil ou installation, utilisé au travail (cf. directive 89/655/CEE).

Explosion: Transformation rapide d'un système matériel donnant lieu à une forte émission de gaz, accompagnée éventuellement d'une émission de chaleur importante. Les explosions peuvent être soit d'origine physique (éclatement d'un récipient dont la pression intérieure est devenue trop grande...), soit d'origine chimique, ces dernières résultant d'une réaction chimique. De nombreuses substances sont susceptibles, dans certaines conditions, de provoquer des explosions. Ce sont pour la plupart des gaz et des vapeurs, mais aussi des poussières et des composés particulièrement instables. La définition, donnée par la norme EN 1127-1, peut également être citée: une explosion est « une réaction brutale d'oxydation ou de décomposition impliquant une élévation de température ou de pression ou des deux simultanément ».

Feu couvant : Combustion lente d'un matériau, sans flamme ni émission visible de lumière, et généralement révélée par une élévation de la température ou par émission de fumées (ou les deux à la fois). Il correspond à une oxydation lente auto-entretenue de gaz combustibles, accompagnée d'une faible libération d'énergie. Le feu couvant se caractérise par la décomposition du matériau considéré, un fort dégagement de fumées et une incandescence locale due à la réaction entre le résidu solide et l'oxygène de l'air.

Groupe d'appareils : Le groupe d'appareils I est le groupe des appareils destinés aux travaux souterrains des mines et aux parties de leurs installations de surface, susceptibles d'être mis en danger par le grisou et/ou des poussières combustibles. Le groupe d'appareils II est celui des appareils destinés à être utilisés dans d'autres lieux susceptibles d'être mis en danger par des atmosphères explosives.

Indice de protection (IPxx): Degré de protection procuré par l'enveloppe extérieure d'un appareil. Le 1^{er} chiffre correspond à la protection des corps solides (les contacts et corps étrangers) et le 2^e chiffre à la protection contre les corps liquides (contre l'eau). Le matériel électrique ATEX offre généralement des indices de protection très supérieurs au matériel standard, car il est destiné à fonctionner régulièrement ou en permanence dans des environnements difficiles.

Selon la norme IEC 60529 - IPXX:

1 ^{er} Chiffre = Protection contre les corps solides	2 ^{ème} chiffre: Protection contre les corps liquides		
0 Pas de protection	0 Pas de de protection		
1 Protégé contre les corps solides supérieurs à 50 mm	1 Protégé contre les chutes verticales d'eau		
2 Protégé contre les corps solides supérieurs à 12.5 mm	2 Protégé contre les chutes de gouttes d'eau jusqu'à 15° de la verticale		
3 Protégé contre les corps solides supérieurs à 2.5 mm (outils, vis, etc.)	3 Protégé contre l'eau en pluie jusqu'à 60° de la verticale (pulvérisation d'eau)		
4 Protégé contre les corps solides supérieurs à 1mm (outils fins)	4 Protégé contre les projections d'eau de toutes les directions		
5 Protégé contre les dépôts de poussières (pas de dépôt nuisible)	5 Protégé contre les jets d'eau de toutes les directions		
6 Totalement protégé contre l'entrée des poussières	6 Totalement protégé contre les projections d'eau assimilables aux paquets de mer (forts jets d'eau)		
	7 Protégé contre les effets de l'immersion		
	8 Protégé contre les effets de l'immersion prolongée dans des conditions spécifiées		

Exemples:

IP 67 = Totalement protégé contre les poussières et protégé contre les effets de l'immersion.

ISM-ATEX Installation service maintenance ATEX référentiel Ineris: L'Ineris propose la **certification volontaire Ism-ATEX** (Installation, service et maintenance d'installations électriques en ATEX) des entreprises extérieures et des personnels intervenant dans la conception, la réalisation et/ou la maintenance d'installations électriques en atmosphères explosives.

Interstice expérimental maximal de sécurité (IEMS): Épaisseur maximale de la couche d'air entre deux parties d'une chambre interne d'un appareil d'essai qui, lorsque le mélange interne est enflammé empêche l'inflammation du même mélange gazeux externe à travers un épaulement de 25 mm de longueur.

Limites d'explosivité: Une explosion peut se produire lorsque la concentration d'une substance inflammable, mélangée en quantité suffisante avec l'air, dépasse une valeur minimale déterminée (limite inférieure d'explosivité). Lorsque la concentration de gaz ou de vapeurs est supérieure à une valeur maximale déterminée (limite supérieure d'explosivité), l'explosion du mélange n'est plus possible.

Les limites d'explosivité varient dans des conditions non atmosphériques. La gamme des concentrations comprises entre les limites d'explosivité est en principe plus étendue lorsque, par exemple, la pression et la température du mélange augmentent. Une atmosphère explosive ne peut se former au-dessus d'une substance inflammable que lorsque la température de surface du liquide dépasse une valeur minimale spécifiée.

Limite inférieure d'explosivité: Limite inférieure du domaine de concentration d'une substance inflammable dans l'air à l'intérieur duquel une explosion peut se produire (cf. EN 1127-1).

Limite supérieure d'explosivité : Limite supérieure du domaine de concentration d'une substance inflammable dans l'air à l'intérieur duquel une explosion peut se produire (cf. EN 1127-1).

Mélange explosif : Mélange composé d'une substance combustible en phase gazeuse finement dispersée et d'un oxydant dans lequel une explosion peut se propager après inflammation. Lorsque l'oxydant est de l'air dans les conditions atmosphériques, on parle d'atmosphère explosive.

Mélange hybride : Mélange avec l'air de substances inflammables dans des états physiques différents, par exemple les mélanges de méthane et de poussières de charbon avec l'air (cf. EN 1127-1).

Point chaud : Source de chaleur émise par un appareil, un travail, une activité pouvant être source d'ignition d'un feu ou d'une explosion en présence d'un combustible et d'un comburant (comme l'air).

Point d'éclair (PE) : Température minimale à laquelle, dans des conditions d'essais spécifiées, un liquide donne suffisamment de gaz ou de vapeurs combustibles capables de s'enflammer momentanément en présence d'une source d'inflammation active (cf. EN 1127-1).

Poussières combustibles : Particules solides très fines d'une matière ou d'un mélange qui sont susceptibles de s'enflammer ou d'exploser en cas d'inflammation lorsqu'elles sont dispersées dans l'air ou d'autres milieux comburants.

Poussières conductrices : Poussières ayant une résistivité électrique égale ou inférieure à 1 000 Ω ·m.

Pression d'explosion (maximale): Dans des conditions d'essais spécifiées, pression maximale obtenue dans un récipient fermé lors de l'explosion d'une atmosphère explosive (cf. EN 1127-1). Niveau de pression le plus élevé enregistré dans une enceinte fermée lors d'une explosion.

Pression de vapeur saturante (PVS) : La pression de vapeur saturante (ou tension de vapeur) est la pression à laquelle la phase gazeuse de cette substance est en équilibre avec sa phase liquide ou solide. Elle dépend de la température.

Quantités dangereuses: Atmosphère explosive présente en quantités susceptibles de présenter un risque pour la santé et la sécurité des travailleurs ou d'autres personnes (cf. directive 1999/92/CE). Une atmosphère explosive de plus de dix litres présente en quantité constante dans des locaux fermés est en principe considérée comme dangereuse, indépendamment des dimensions du local.

Résistance au choc de pression d'explosion : Propriété de récipients et d'appareils conçus pour résister à la pression d'explosion attendue, sans se rompre mais permettant une déformation permanente (cf. EN 1127-1).

Résistance à la pression d'explosion : Propriété de récipients et d'appareils conçus pour résister à la pression d'explosion attendue sans déformation permanente (cf. EN 1127-1).

Résistivité électrique d'une poussière : Les poussières sont considérées comme conductrices si leur résistivité est inférieure à $10^3 \,\Omega$ ·m.

Source d'inflammation : Une source d'inflammation transmet à un mélange explosif une quantité d'énergie donnée susceptible de provoquer la propagation de l'inflammation dans ce mélange.

Source d'inflammation active : Source d'inflammation d'une énergie suffisante pour enflammer une ATEX donnée.

Substances pouvant donner lieu à la formation d'atmosphères explosives : Les substances inflammables et/ou combustibles sont considérées comme des substances pouvant donner lieu à la formation d'une atmosphère explosive, à moins qu'il ne soit avéré, après examen de leurs propriétés, qu'elles ne sont pas en mesure de propager elles-mêmes une explosion lorsqu'elles sont mélangées avec l'air (cf. directive 1999/92/CE).

SAQR-ATEX Système d'assurance qualité des réparateurs ATEX, référentiel Ineris : L'Ineris propose la certification volontaire Saqr-ATEX pour les réparateurs de matériels utilisables en atmosphères explosibles (ATEX).

Systèmes de protection : Dispositifs, autres que les composants, dont la fonction est d'arrêter immédiatement les explosions naissantes et/ou de limiter la zone affectée par une explosion et qui sont mis séparément sur le marché comme systèmes à fonction autonome (cf. directive 2014/34/UE).

On entend également par systèmes de protection les systèmes intégrés mis sur le marché avec un appareil.

Taille des particules : Diamètre nominal d'une particule de poussière.

Température d'inflammation ou température d'ignition: Dans des conditions d'essais spécifiées, température la plus basse d'une surface chaude à laquelle l'inflammation d'une substance inflammable sous forme d'un mélange gaz-air, vapeur-air ou poussières-air peut se produire (cf. EN 1127-1).

Température d'auto-inflammation (TAI) : Température minimale à partir de laquelle une atmosphère explosive s'enflamme spontanément.

Température minimale d'inflammation d'une couche de poussières : Température minimale d'inflammation d'une surface chaude pour laquelle l'inflammation se produit dans une couche de poussières d'épaisseur donnée, déposée sur cette surface chaude.

Techniquement étanche : Qualité d'une partie d'installation dans laquelle aucune fuite n'est détectable au cours des essais, des contrôles ou des vérifications de l'étanchéité, par exemple, à l'aide d'agents moussants ou de dispositifs de repérage ou de détection des points de fuite mis en place dans ce but précis, sans que de rares dégagements limités de substances combustibles ne puissent toutefois être exclus.

Température maximale de surface de poussières : Température la plus élevée qui peut être atteinte en un point quelconque de la surface du matériel électrique lorsqu'il est testé dans les conditions de l'essai sans poussière ou avec un revêtement de poussières.

Température maximale de surface admissible: Température maximale admissible d'une surface (par exemple d'un équipement) obtenue en déduisant une valeur de température donnée de la température d'inflammation et/ou de combustion. Ou encore température de surface du matériel électrique la plus élevée qu'il peut être admis d'atteindre en fonctionnement normal pour éviter l'inflammation. La température maximale de surface admissible dépendra de la nature de la poussière, de l'épaisseur de la couche et de l'application d'une marge de sécurité.

Travailleur : Toute personne employée par un employeur ainsi que les stagiaires et apprentis, à l'exclusion des domestiques (cf. directive 89/391/CEE).

Type de protection contre l'inflammation : Mesures spécifiques prises sur les matériels pour éviter l'inflammation d'une atmosphère explosive ambiante (cf. EN 50014).

Utilisation conformément à sa destination: Usage d'appareils et de systèmes de protection ainsi que de dispositifs visés à l'article 1^{er}, paragraphe 2 conformément aux groupes et catégories d'appareils, ainsi qu'à toutes les indications fournies par le constructeur et nécessaires pour assurer le fonctionnement sûr des appareils (cf. directive 2014/34/UE).

Zones ou « Classification en zone » : Classement des emplacements dangereux en fonction de la fréquence et de la durée d'une atmosphère explosive (cf. directive 1999/92/CE).

Notes

GUIDE PRATIQUE PRÉVENTION DU RISQUE ATEX ATmosphère EXplosive