

Égalité

Fraternité

Journée technique d'information et de retour d'expérience de la gestion des sites et sols pollués

maîtriser le risque | pour un développement durable |

Mardi 5 décembre 2023

Organisée par l'Ineris et le BRGM, en concertation avec le Ministère Transition écologique et de la Cohésion des territoires

Intervenant

Hélène Roussel - ADEME

Marie-Amélie Néollier – Cerema Direction Technique Risques, Eaux et Mer

Prévenir le relargage des plastiques dans le milieu naturel : illustration par la résorption des décharges littorales historiques

Hélène Roussel, ADEME et Marie-Amélie Neollier, CEREMA

décharges littorales.

1. Titre de partie a. Sous-titre de partie

Focus sur le plan de gestion des microplastiques

Annonce du Président de la République du lancement d'un plan de résorption à 10 ans des décharges littorales historiques présentant, à court terme, le plus fort risque de déversement de déchets en mer (février 2022) lors du One Ocean Summit.

La prise en compte de la problématique macro et microplastiques est d'autant plus prégnante que la France est activement engagée pour lutter contre la pollution plastique des mers et des océans, notamment à travers la Feuille de route « zéro déchet plastique en mer 2019-2025 ».

Adhésion du projet aux objectifs préfiguratifs du Traité plastique

Inscription du plan décharges à la Stratégie Nationale Biodiversité à travers la réduction des pressions exercées A l'issue du dernier inventaire (V4) le plan concerne 110 sur la biodiversité.

ADEME

Focus sur le plan de gestion des microplastiques

OBJECTIFS GENERAUX BASES SUR UNE DECLINAISON DE LA METHODOLOGIE SSP

- Cadrer l'acquisition de données harmonisée en phase d'études et de travaux (gestion des couts, stratégie d'échantillonnage, choix des méthodes d'analyse,...);
- Développer ou optimiser de nouvelles solutions de traitement des sols pour adapter les modalités de réemploi des terres excavées ;
- Répondre aux maîtres d'ouvrage déjà mobilisés sur le sujet microplastiques comme la Ville du Havre pour les décharges de Dollemard (site pilote) ou Plouneour-Brignogan (29).

SOUS - OBJECTIFS

- Éviter le relargage en mer de macro et microplastiques lors de travaux et sur le long terme;
- Éviter la fragmentation des grands plastiques en micro particules et le relargage de leurs additifs/charges polluantes;
- Éviter le transfert des microplastiques vers les milieux air, sol et eaux et notamment dans les chaînes trophiques;
- Permettre une valorisation des matériaux les moins pollués en se basant sur les techniques inhérentes à d'autres types de polluants résiduels.

Focus sur les microplastiques dans les sols

nombre de particules/kg terre	Décharge 1	Décharge 2	Décharge 3	Décharge 4	Décharge 5	Décharge 6	
nb Macroplastiques	2	3	45	14	54	55	
nb Microplastiques	660	1 140	125 753	21 968	99 704	202 027	

Décharge n°1

Microplastiques (<5 mm) 50 à 100 fois plus importants en masse que les macroplastiques (5mm < x < 40 mm)

masse de particules en mg/kg terre	Décharge 1	Décharge 2	Décharge 3	Décharge 4	Décharge 5		Décharge 5		Décharge 6
masse Macroplastiques	41	7	1227	269	806		1070		
masse Microplastiques	90	626	45 759	5 494	33 877		89 540		

Tableau 32 : Résultats d'analyses sur les sols (µg/kg MS)

	MP1	MP2	MP3	MP4	MP5	MP6	MP7	MP8	MP9
Localisation	Environnement local témoin	Décharge	Environnement local témoin	Environnement local témoin	Décharge	Décharge	Décharge	Environnement local témoin	Banc – Sols e carrière
Profondeur (m)	0 - 0,3	0 - 0,5	0 - 0,2	0 - 0,3	1-1,8	1-1,3	1,5 – 1,8	0 - 0,3	-
Date de prélèvement	06/12/2022	06/12/2022	05/12/2022	05/12/2022	20/12/2022	12/01/2023	26/01/2022	000000000000000000000000000000000000000	02/12/2022
	•		Micropla	stiques			•		•
Polyamide 6 (PA6)	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00	22 600	4,2	<2,00
Polycarbonate (PC)	<20,0	<20,0	<20,0	<20,0	<20,0	<20,0	<20,0	<20,0	<20,0
Polychlorure de vinyle (PVC)	191	3 820	811	<50,0	<50,0	<50,0	37 400	326	<50,0
Polyéthylène	81,6	6 430	<5,00	1 230	3 620	7 610	25 300	147	7,5
Polyméthacrylate de méthyle (PMMA)	<4,00	<4,00	<4,00	<4,00	<4,00	<4,00	<4,00	<4,00	<4,00
Polypropylène	420	860	<8,00	<8,00	<8,00	<8,00	<8,00	<8,00	<8,00
Polystyrène	<2,00	11 600	134	<2,00	2 710	2 360	19 300	49,4	<2,00
Polytéréphtalate d'éthylène (PET)	17,6	<4,00	854	<4,00	<4,00	<4,00	<4,00	12,6	<4,00
Somme de polymères quantifiés	778	22 700	1 800	1 230	6 330	9 960	135 000	759	7,5

Décharge n°2

Les teneurs en microplastiques retrouvées au droit des sondages de la décharge sont 4 à 180 fois plus importantes que dans les échantillons de l'environnement local témoin.

Focus sur les microplastiques dans les eaux souterraines et surface

Nombre / m3	e / m3 Classe de taille (μm) - PZ1										
Polymères	<50	50-100	100-250	250-315	315-500	500-1000	1000-2000	2000-5000	TOTAL		
EVA	0	0	3000	400	200	0	0	0	3600		
PE	0	10400	38000	6000	3800	1200	0	0	59400		
PMMA	0	0	200	0	0	0	0	0	200		
PP	0	1400	5800	600	200	0	0	0	9000		
PS	0	1400	3800	0	0	0	0	0	5200		
PVC	0	1000	10000	600	200	200	200	0	12200		
SOMME	0	14200	60800	7600	4400	1400	200	0	88600		

Résultat du blanc de terrain

	Classe de taille (µm) - Blanc PZ1										
Polymère	<50	50-100	100-250	250-315	315-500	500-1000	1000-2000	2000-5000	TOTAL		
PE	0	0	2	0	0	0	0	0	2		
SOMME	0	0	2	0	0	0	0	0	2		

Pas de présence de microplastiques

dans les eaux de surface

Saulaie/Typhale

Présence de fortes quantités de microplastiques dans les eaux souterraines au droit de la décharge

Nombre / m3	Classe de taille (µm) - Point 1									
Polymères	<50	50-100	100-250	250-315	315-500	500-1000	1000-2000	2000-50	TOTAL	
PE	0,0	0,1	0,2	0,1	0,1	0,2	0,0	0,0	0.5	
PET	0,0	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,2	
PP	0,0	0,0	0,2	0,0	0,1	0,1	0,0	0,0	0,3	
SOMME	0,0	0,2	0,5	0,1	0,1	0,2	0,0	0,0	1,1	
•	· ·	· ·				· ·	· ·			

PZ1

Résultat du blanc - Point 1

	Classe de taille (µm) - Point 1									
Polymère	<50	50-100	100-250	250-315	315-500	500-1000	1000-2000	2000-5000	TOTAL	
PE	0	0	1	0	0	0	0	0	1	
SOMME	0	0	1	0	0	0	0	0	1	

Journée technique d'information et de retour d'expérience de

Constats et questionnements

- ✓ Besoin de référentiels accessibles via une base de données (valeurs) de fonds et projets APR ADEME-OFB)
- ✓ Besoin de **normalisation** pour les analyses sols (FTIR/Pyr GCMS, etc.) +préparation + prélèvement
- ✓ Besoin d'harmoniser **l'expression des résultats** (nb/kg, mg/kg, types de polymères détectés)
- ✓ Besoin de laboratoires commerciaux
- ✓ Besoin de **rationaliser** les analyses (baisse des prix, réduction de la durée de préparation, analyse semi-quantitative, analyse in situ?, etc.)

Utiliser les **projets de R&D** pour améliorer et orienter les diagnostics et les plans de gestion des décharges

Utiliser des marqueurs chimiques de contamination de microplastiques (phtalates, bisphénols, etc.)?

Focus sur le plan de gestion des microplastiques

Recherche et innovation

Leviers/outils

- Recherche 1 : caractérisation des microplastiques (gestion Cerema + Université)
- Recherche 2: innovation et solution de traitement des sols (gestion ADEME via consortium)
- 3) Groupe de travail animé par le Cerema

Prestataires

Recherche 1 = université conventionnée avec Cerema Recherche 2 = consortium ADEME entre universités / instituts recherche / labos / entreprises

Résultats attendus

- Recherche 1 = typologie, base de données, préconisations à destination des MO et leur AMO
- 2) Recherche 2 = solutions opérationnelles de traitement des sols
- 3) GT = préconisations pour les MO et leur AMO

Opérationnel / Maîtrise d'ouvrage (sites)

Leviers/outils

Mise à disposition des collectivités d'une AMO, via un accord cadre marché AMO (Cerema) pris en compte par l'avenant n°2 à la convention ADEME-Cerema

Prestataires

Bureaux d'études en charge de l'AMO, mettant en œuvre le diagnostic attendu, puis son interprétation (Dès juin 2024 le Cerema proposera une AMO via accord cadre au bénéfice des collectivités et en charge de la partie microplastiques).

Résultats attendus

- Prestation intellectuelle (rapport, gestion et interprétation des données)
- 2) Calibrage et réalisation des prélèvements, échantillonnage et analyses des sols
- Si sols contaminés => prélèvements, échantillonnage et analyses Air/Eau

Tous les maîtres d'ouvrage pourront être bénéficiaires de cet appui quelque soit le taux d'aide ADFMF

POUR EN SAVOIR PLUS

Cerema

https://www.cerema.fr/fr/plan-national-resorption-decharges-littorales

ADEME

https://agirpourlatransition.ademe.fr/collectivites/aides-financieres/2023/resorption-dechargeslittorales-

historiques-a-risque-relargage-dechets-mer

BRGM

https://www.georisques.gouv.fr/articles-risques/pollutions-sols-sis-anciens-sitesindustriels/decharges-littorales

Ministère

https://www.ecologie.gouv.fr/dechets-marins

https://www.dailymotion.com/video/x8puhwe

