

OBJET: Analyses de canisters (compléments d'analyse sur C1 à C6)

AFFAIRE: LUBRIZOL - Réf.: DRC-19-200506-07012A - Mise à jour du 01/10/19 à 16h30

ECHANTILLONS ANALYSES

6 canisters prélevés par Atmo Normandie entre 05h13 et 13h00 le 26/09/19. Ces échantillons ont été réceptionnés au laboratoire de l'INERIS le 26/09/2019 vers 18 h.

RESULTATS

Les valeurs obtenues sont consignées dans les tableaux ci-après.

Tableau I Résultats d'analyse des gaz prélevés sur canisters

Repère	Réf.		СО	CO ₂
carte	INERIS	Localisations	ppm	ppm
C-1	19AS754	Collège Isnauville – 11h12	< LQ	380
C-2	19AS755	Mairie de Bihorel – 07h00	< LQ	400
C-3	19AS756	Site Lubrizol – 13h10	< LQ	510
C-4	19AS758	RP Apollinaire – 11h30	< LQ	420
C-5	19AS759	Docks 76 - 06h15	< LQ	400
C-6	19AS757	Lubrizol quai – 05h13	< LQ	410

LQ : Limite de quantification de 20 ppm pour CO

Tableau II Résultats d'analyse des gaz prélevés sur canisters, quantification des COV en μg/m³

	LQ (μg/m³)	Collège Isnauville	Mairie de Bihorel	Site Lubrizol	RP Apollinaire	Docks_76	Lubrizol quai	
		11h12 19AS754	07h00 19AS755	13h10 19AS756	11h30 19AS758	06h15 19AS759	05h13 19AS757	
		C-1	C-2	C-3	C-4	C-5	C-6	
Benzène	10	<lq< td=""><td><lq< td=""><td>172</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>172</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	172	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Toluène	10	<lq< td=""><td><lq< td=""><td>110</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>110</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	110	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Ethylbenzène	10	<lq< td=""><td><lq< td=""><td>16</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>16</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	16	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
m+p xylène	10	<lq< td=""><td><lq< td=""><td>37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	37	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
o xylène	10	<lq< td=""><td><lq< td=""><td>12</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>12</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	12	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
H ₂ S	10	<lq< td=""><td><lq< td=""><td>13</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>13</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	13	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
COS	10	<lq< td=""><td><lq< td=""><td>40</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>40</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	40	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Methylmercaptan	10	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Sulfure de méthyle	10	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Ethylmercaptan	10	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Propylmercaptan	10	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Isobutylmercaptan	10	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Butylmercaptan	10	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Tetrahydrothiophene	10	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	

Réf.: DRC-19-200506-07012A

Tableau III Résultats d'analyse des gaz prélevés sur canisters, semi-quantification des COV par rapport au toluène^(*) en µg/m³

			19AS754	19AS755	19AS756	19AS758	19AS759	19AS757
			Collège Isnauville	Mairie de Bihorel	Site Lubrizol	RP Apollinaire	Docks_76	Lubrizol quai
			11h12	07h00	13h10	11h30	06h15	05h13
Composé	CAS	LQ (μg/m³)	C-1	C-2	C-3	C-4	C-5	C-6
Acétone	67-64-1	10	< LQ	10	< LQ	< LQ	< LQ	10
Acide acétique	64-19-7	10	< LQ	20	< LQ	20	20	20
C ₅ H ₁₀		10	< LQ	< LQ	60	< LQ	< LQ	< LQ
C ₆ H ₁₂		10	< LQ	< LQ	90	< LQ	< LQ	< LQ
C ₈ H ₁₈		10	< LQ	< LQ	60	< LQ	< LQ	< LQ
Disulfure de carbone (CS ₂)	75-15-0	10	< LQ	< LQ	100	< LQ	< LQ	< LQ
Di-tert-butyl disulfide	110-06-5	10	< LQ	< LQ	< LQ	< LQ	< LQ	10
Ethanol	64-17-5	10	< LQ	40	60	30	< LQ	20
Méthanol	67-56-1	10	< LQ	40	80	20	< LQ	< LQ
Non identifié soufré-oxygéné		10	< LQ	< LQ	< LQ	< LQ	< LQ	10
Dioxyde de soufre (SO ₂)	7446-09-5	10	< LQ	< LQ	30	30	10	< LQ

^(*) Semi-quantification des composés selon la gamme d'étalonnage du toluène LQ : Limite de quantification

Premiers éléments d'interprétation

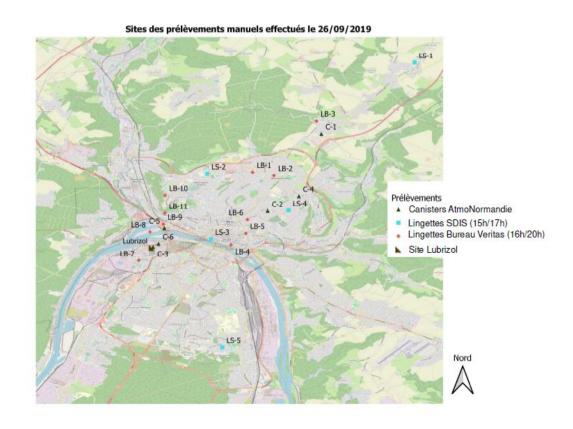
Les valeurs les plus fortes sont obtenues à proximité immédiate du site de Lubrizol, excepté pour l'acide acétique. Pour cette substance nous n'avons pas identifié de valeurs de références pour des expositions court terme.

Sur les autres points, les valeurs sont inférieures ou égales aux valeurs de références pour des expositions court terme ci-après :

- Benzène : 30 μg/m³ (1-14 j) (ATSDR 2007, ANSES (VGAI) 2008)

- H_2S : 100 μ g/m³ (1-14 j) (ATSDR 2018)

- CO: 30 mg/m³ (1H) (AFFSET 2007)


Acétone: 66 mg/m³ (1-14j) (ATSDR 1994)
Méthanol: 28 mg/m³ (1h) (OEHHA 1999)

- Dioxyde de soufre (SO_2): 30 µg/m³ (1-14j) (ATSDR 1998)

Il faut noter que les seuils de la littérature permettent d'écarter un effet dommageable sur la santé. Elles n'excluent pas toujours des effets jugés bénins par les toxicologues en charge d'élaborer ces valeurs mais pouvant occasionner des gênes temporaires.

Ces premiers résultats devront être mis en perspective avec les observations de terrain et l'ensemble des résultats acquis et en cours d'acquisition sur la zone par les acteurs impliqués dans le cadre du plan de surveillance en cours.

INERIS - Réf.: DRC-19-200506-07012A

Réf.: DRC-19-200506-07012A - 6/6-